effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let c1 = 0x3320646eul | let c1 = | false | null | false | 0x3320646eul | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul | false | true | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val c1 : FStar.UInt32.t | [] | Hacl.Spec.Chacha20.Vec.c1 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | FStar.UInt32.t | {
"end_col": 21,
"end_line": 102,
"start_col": 9,
"start_line": 102
} |
|
Prims.Tot | val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_encrypt_bytes #w key nonce ctr0 msg =
let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 msg | val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_encrypt_bytes #w key nonce ctr0 msg = | false | null | false | let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 msg | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.chacha20_update",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.chacha20_init",
"Prims.eq2",
"Prims.nat"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len
val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_update #w st0 msg =
let cipher = msg in
map_blocks (w * size_block) cipher
(chacha20_encrypt_block st0)
(chacha20_encrypt_last st0)
val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | [] | Hacl.Spec.Chacha20.Vec.chacha20_encrypt_bytes | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
c: Hacl.Spec.Chacha20.Vec.counter ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg} | {
"end_col": 28,
"end_line": 209,
"start_col": 50,
"start_line": 207
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w | let vec_load_i (#t: v_inttype) (w: width) (x: uint_t t SEC) = | false | null | false | vec_load #t x w | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Lib.IntVector.v_inttype",
"Lib.IntVector.width",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Lib.IntVector.vec_load",
"Lib.IntVector.vec_t",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntVector.vec_v",
"Lib.Sequence.create"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0)) | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vec_load_i : w: Lib.IntVector.width -> x: Lib.IntTypes.uint_t t Lib.IntTypes.SEC
-> v: Lib.IntVector.vec_t t w {Lib.IntVector.vec_v v == Lib.Sequence.create w x} | [] | Hacl.Spec.Chacha20.Vec.vec_load_i | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | w: Lib.IntVector.width -> x: Lib.IntTypes.uint_t t Lib.IntTypes.SEC
-> v: Lib.IntVector.vec_t t w {Lib.IntVector.vec_v v == Lib.Sequence.create w x} | {
"end_col": 74,
"end_line": 118,
"start_col": 59,
"start_line": 118
} |
|
Prims.Tot | val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_decrypt_bytes #w key nonce ctr0 cipher =
let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 cipher | val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg}
let chacha20_decrypt_bytes #w key nonce ctr0 cipher = | false | null | false | let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 cipher | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.chacha20_update",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.chacha20_init",
"Prims.eq2",
"Prims.nat"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len
val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_update #w st0 msg =
let cipher = msg in
map_blocks (w * size_block) cipher
(chacha20_encrypt_block st0)
(chacha20_encrypt_last st0)
val chacha20_encrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_encrypt_bytes #w key nonce ctr0 msg =
let st0 = chacha20_init #w key nonce ctr0 in
chacha20_update #w st0 msg
val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_decrypt_bytes:
#w:lanes
-> k: key
-> n: nonce
-> c: counter
-> cipher: bytes{length cipher <= max_size_t}
-> msg: bytes{length cipher == length msg} | [] | Hacl.Spec.Chacha20.Vec.chacha20_decrypt_bytes | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
c: Hacl.Spec.Chacha20.Vec.counter ->
cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher <= Lib.IntTypes.max_size_t}
-> msg: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg} | {
"end_col": 31,
"end_line": 221,
"start_col": 53,
"start_line": 219
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint32xN (w:lanes) = vec_t U32 w | let uint32xN (w: lanes) = | false | null | false | vec_t U32 w | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8} | false | true | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint32xN : w: Hacl.Spec.Chacha20.Vec.lanes -> Type0 | [] | Hacl.Spec.Chacha20.Vec.uint32xN | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | w: Hacl.Spec.Chacha20.Vec.lanes -> Type0 | {
"end_col": 36,
"end_line": 31,
"start_col": 25,
"start_line": 31
} |
|
Prims.Tot | val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w) | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b | val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b = | false | null | false | let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.blocks",
"Hacl.Spec.Chacha20.Vec.xor_block",
"Hacl.Spec.Chacha20.Vec.transpose",
"Hacl.Spec.Chacha20.Vec.chacha20_core"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w -> | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w) | [] | Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
st0: Hacl.Spec.Chacha20.Vec.state w ->
incr: Hacl.Spec.Chacha20.Vec.counter{incr * w <= Lib.IntTypes.max_size_t} ->
b: Hacl.Spec.Chacha20.Vec.blocks w
-> Hacl.Spec.Chacha20.Vec.blocks w | {
"end_col": 15,
"end_line": 173,
"start_col": 42,
"start_line": 170
} |
Prims.Tot | val add_counter (#w: lanes) (ctr: counter{w * ctr <= max_size_t}) (st: state w) : state w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv | val add_counter (#w: lanes) (ctr: counter{w * ctr <= max_size_t}) (st: state w) : state w
let add_counter (#w: lanes) (ctr: counter{w * ctr <= max_size_t}) (st: state w) : state w = | false | null | false | let cv = vec_load (u32 w *! u32 ctr) w in
st.[ 12 ] <- st.[ 12 ] +| cv | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.Sequence.op_String_Assignment",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.op_Plus_Bar",
"Lib.IntTypes.U32",
"Lib.Sequence.op_String_Access",
"Lib.IntVector.vec_t",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntVector.vec_v",
"Lib.Sequence.create",
"Lib.IntTypes.mul",
"Lib.IntTypes.mk_int",
"Lib.IntVector.vec_load",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.u32"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2 | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_counter (#w: lanes) (ctr: counter{w * ctr <= max_size_t}) (st: state w) : state w | [] | Hacl.Spec.Chacha20.Vec.add_counter | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
ctr: Hacl.Spec.Chacha20.Vec.counter{w * ctr <= Lib.IntTypes.max_size_t} ->
st: Hacl.Spec.Chacha20.Vec.state w
-> Hacl.Spec.Chacha20.Vec.state w | {
"end_col": 26,
"end_line": 91,
"start_col": 88,
"start_line": 89
} |
Prims.Tot | val transpose (#w: lanes) (st: state w) : state w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st | val transpose (#w: lanes) (st: state w) : state w
let transpose (#w: lanes) (st: state w) : state w = | false | null | false | match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.transpose1",
"Hacl.Spec.Chacha20.Vec.transpose4",
"Hacl.Spec.Chacha20.Vec.transpose8"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose (#w: lanes) (st: state w) : state w | [] | Hacl.Spec.Chacha20.Vec.transpose | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: Hacl.Spec.Chacha20.Vec.state w -> Hacl.Spec.Chacha20.Vec.state w | {
"end_col": 22,
"end_line": 144,
"start_col": 2,
"start_line": 141
} |
Prims.Tot | val column_round (#w: lanes) : shuffle w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15 | val column_round (#w: lanes) : shuffle w
let column_round (#w: lanes) : shuffle w = | false | null | false | quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.op_At",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.quarter_round",
"Hacl.Spec.Chacha20.Vec.shuffle"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7) | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val column_round (#w: lanes) : shuffle w | [] | Hacl.Spec.Chacha20.Vec.column_round | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Spec.Chacha20.Vec.shuffle w | {
"end_col": 25,
"end_line": 68,
"start_col": 2,
"start_line": 65
} |
Prims.Tot | val sum_state (#w: lanes) (st1 st2: state w) : state w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2 | val sum_state (#w: lanes) (st1 st2: state w) : state w
let sum_state (#w: lanes) (st1 st2: state w) : state w = | false | null | false | map2 ( +| ) st1 st2 | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.Sequence.map2",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.op_Plus_Bar",
"Lib.IntTypes.U32"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m))))))))) | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sum_state (#w: lanes) (st1 st2: state w) : state w | [] | Hacl.Spec.Chacha20.Vec.sum_state | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st1: Hacl.Spec.Chacha20.Vec.state w -> st2: Hacl.Spec.Chacha20.Vec.state w
-> Hacl.Spec.Chacha20.Vec.state w | {
"end_col": 19,
"end_line": 87,
"start_col": 2,
"start_line": 87
} |
Prims.Tot | val diagonal_round (#w: lanes) : shuffle w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14 | val diagonal_round (#w: lanes) : shuffle w
let diagonal_round (#w: lanes) : shuffle w = | false | null | false | quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.op_At",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.quarter_round",
"Hacl.Spec.Chacha20.Vec.shuffle"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15 | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val diagonal_round (#w: lanes) : shuffle w | [] | Hacl.Spec.Chacha20.Vec.diagonal_round | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Spec.Chacha20.Vec.shuffle w | {
"end_col": 25,
"end_line": 74,
"start_col": 2,
"start_line": 71
} |
Prims.Tot | val xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) | val xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w
let xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w = | false | null | false | map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.blocks",
"Lib.Sequence.map_blocks_multi",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.Chacha20.Vec.xor_block_f"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val xor_block (#w: lanes) (k: state w) (b: blocks w) : blocks w | [] | Hacl.Spec.Chacha20.Vec.xor_block | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Spec.Chacha20.Vec.state w -> b: Hacl.Spec.Chacha20.Vec.blocks w
-> Hacl.Spec.Chacha20.Vec.blocks w | {
"end_col": 53,
"end_line": 162,
"start_col": 2,
"start_line": 162
} |
Prims.Tot | val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len) | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len | val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b = | false | null | false | let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Hacl.Spec.Chacha20.Vec.counter",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"Hacl.Spec.Chacha20.Vec.size_block",
"Lib.ByteSequence.lbytes",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Hacl.Spec.Chacha20.Vec.blocks",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"Prims.op_Addition",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_imp",
"Lib.Sequence.create",
"Lib.IntTypes.u8"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len -> | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len) | [] | Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
st0: Hacl.Spec.Chacha20.Vec.state w ->
incr: Hacl.Spec.Chacha20.Vec.counter{incr * w <= Lib.IntTypes.max_size_t} ->
len: Lib.IntTypes.size_nat{len < w * Hacl.Spec.Chacha20.Vec.size_block} ->
b: Lib.ByteSequence.lbytes len
-> Lib.ByteSequence.lbytes len | {
"end_col": 18,
"end_line": 186,
"start_col": 45,
"start_line": 182
} |
Prims.Tot | val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_update #w st0 msg =
let cipher = msg in
map_blocks (w * size_block) cipher
(chacha20_encrypt_block st0)
(chacha20_encrypt_last st0) | val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg}
let chacha20_update #w st0 msg = | false | null | false | let cipher = msg in
map_blocks (w * size_block) cipher (chacha20_encrypt_block st0) (chacha20_encrypt_last st0) | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.map_blocks",
"FStar.Mul.op_Star",
"Hacl.Spec.Chacha20.Vec.size_block",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block",
"Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last",
"Lib.Sequence.seq",
"Lib.IntTypes.int_t",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.eq2",
"Prims.nat"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k
let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y
let xor_block (#w:lanes) (k:state w) (b:blocks w) : blocks w =
map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k)
val chacha20_encrypt_block:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> b: blocks w ->
Tot (blocks w)
let chacha20_encrypt_block #w st0 incr b =
let k = chacha20_core incr st0 in
let k = transpose k in
xor_block k b
val chacha20_encrypt_last:
#w: lanes
-> st0: state w
-> incr: counter{incr * w <= max_size_t}
-> len: size_nat{len < w * size_block}
-> b: lbytes len ->
Tot (lbytes len)
let chacha20_encrypt_last #w st0 incr len b =
let plain = create (w * size_block) (u8 0) in
let plain = update_sub plain 0 len b in
let cipher = chacha20_encrypt_block st0 incr plain in
sub cipher 0 len
val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t} | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_update:
#w:lanes
-> st0: state w
-> msg: bytes{length msg <= max_size_t}
-> cipher: bytes{length cipher == length msg} | [] | Hacl.Spec.Chacha20.Vec.chacha20_update | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
st0: Hacl.Spec.Chacha20.Vec.state w ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t}
-> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg} | {
"end_col": 31,
"end_line": 197,
"start_col": 32,
"start_line": 193
} |
Prims.Tot | val chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c | val chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w
let chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w = | false | null | false | let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[ 12 ] <- st.[ 12 ] +| c | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Lib.Sequence.op_String_Assignment",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.op_Plus_Bar",
"Lib.IntTypes.U32",
"Lib.Sequence.op_String_Access",
"Lib.IntVector.vec_t",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntVector.vec_v",
"Lib.Sequence.createi",
"Lib.IntTypes.mk_int",
"Lib.IntVector.vec_counter",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.index",
"Hacl.Spec.Chacha20.Vec.vec_load_i",
"Lib.Sequence.map",
"Lib.IntTypes.uint32",
"Hacl.Spec.Chacha20.Vec.setup1",
"Hacl.Spec.Chacha20.Vec.state"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_init (#w: lanes) (k: key) (n: nonce) (ctr0: counter) : state w | [] | Hacl.Spec.Chacha20.Vec.chacha20_init | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
ctr0: Hacl.Spec.Chacha20.Vec.counter
-> Hacl.Spec.Chacha20.Vec.state w | {
"end_col": 25,
"end_line": 124,
"start_col": 73,
"start_line": 120
} |
Prims.Tot | val setup1 (k: key) (n: nonce) (ctr0: counter) : lseq uint32 16 | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0)) | val setup1 (k: key) (n: nonce) (ctr0: counter) : lseq uint32 16
let setup1 (k: key) (n: nonce) (ctr0: counter) : lseq uint32 16 = | false | null | false | Scalar.setup k n ctr0 (create 16 (u32 0)) | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.key",
"Hacl.Spec.Chacha20.Vec.nonce",
"Hacl.Spec.Chacha20.Vec.counter",
"Spec.Chacha20.setup",
"Lib.Sequence.create",
"Lib.IntTypes.uint32",
"Lib.IntTypes.u32",
"Lib.Sequence.lseq"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val setup1 (k: key) (n: nonce) (ctr0: counter) : lseq uint32 16 | [] | Hacl.Spec.Chacha20.Vec.setup1 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Spec.Chacha20.Vec.key ->
n: Hacl.Spec.Chacha20.Vec.nonce ->
ctr0: Hacl.Spec.Chacha20.Vec.counter
-> Lib.Sequence.lseq Lib.IntTypes.uint32 16 | {
"end_col": 43,
"end_line": 115,
"start_col": 2,
"start_line": 115
} |
Prims.Tot | val line (#w: lanes) (a b d: idx) (s: rotval U32) (m: state w) : state w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m | val line (#w: lanes) (a b d: idx) (s: rotval U32) (m: state w) : state w
let line (#w: lanes) (a b d: idx) (s: rotval U32) (m: state w) : state w = | false | null | false | let m = m.[ a ] <- m.[ a ] +| m.[ b ] in
let m = m.[ d ] <- (m.[ d ] ^| m.[ a ]) <<<| s in
m | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.idx",
"Lib.IntTypes.rotval",
"Lib.IntTypes.U32",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.Sequence.lseq",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntVector.op_Less_Less_Less_Bar",
"Lib.IntVector.op_Hat_Bar",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.Sequence.op_String_Access",
"Lib.IntVector.op_Plus_Bar"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x) | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val line (#w: lanes) (a b d: idx) (s: rotval U32) (m: state w) : state w | [] | Hacl.Spec.Chacha20.Vec.line | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Spec.Chacha20.Vec.idx ->
b: Hacl.Spec.Chacha20.Vec.idx ->
d: Hacl.Spec.Chacha20.Vec.idx ->
s: Lib.IntTypes.rotval Lib.IntTypes.U32 ->
m: Hacl.Spec.Chacha20.Vec.state w
-> Hacl.Spec.Chacha20.Vec.state w | {
"end_col": 3,
"end_line": 56,
"start_col": 82,
"start_line": 53
} |
Prims.Tot | val chacha20_constants:lseq size_t 4 | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l | val chacha20_constants:lseq size_t 4
let chacha20_constants:lseq size_t 4 = | false | null | false | [@@ inline_let ]let l = [c0; c1; c2; c3] in
assert_norm (List.Tot.length l == 4);
createL l | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Lib.Sequence.createL",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Hacl.Spec.Chacha20.Vec.c0",
"Hacl.Spec.Chacha20.Vec.c1",
"Hacl.Spec.Chacha20.Vec.c2",
"Hacl.Spec.Chacha20.Vec.c3",
"Prims.Nil"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val chacha20_constants:lseq size_t 4 | [] | Hacl.Spec.Chacha20.Vec.chacha20_constants | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB) 4 | {
"end_col": 11,
"end_line": 112,
"start_col": 2,
"start_line": 109
} |
Prims.Tot | val transpose1 (st: state 1) : state 1 | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose1 (st:state 1) : state 1 = st | val transpose1 (st: state 1) : state 1
let transpose1 (st: state 1) : state 1 = | false | null | false | st | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.state"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose1 (st: state 1) : state 1 | [] | Hacl.Spec.Chacha20.Vec.transpose1 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: Hacl.Spec.Chacha20.Vec.state 1 -> Hacl.Spec.Chacha20.Vec.state 1 | {
"end_col": 42,
"end_line": 126,
"start_col": 40,
"start_line": 126
} |
Prims.Tot | val xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let xor_block_f (#w:lanes) (k:state w) (i:nat{i < 16}) (b:lbytes (w * 4)) : lbytes (w * 4) =
let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[i] in
vec_to_bytes_le y | val xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4)
let xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) = | false | null | false | let x = vec_from_bytes_le U32 w b in
let y = x ^| k.[ i ] in
vec_to_bytes_le y | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.ByteSequence.lbytes",
"FStar.Mul.op_Star",
"Lib.IntVector.vec_to_bytes_le",
"Lib.IntTypes.U32",
"Lib.IntVector.vec_t",
"Lib.IntVector.op_Hat_Bar",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.vec_from_bytes_le"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15
let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15
let transpose (#w:lanes) (st:state w) : state w =
match w with
| 1 -> transpose1 st
| 4 -> transpose4 st
| 8 -> transpose8 st
// let store_block0 (#w:lanes) (st:state w) : Tot block1 =
// let bl = create 64 (u8 0) in
// repeati (16 / w)
// (fun i bl -> update_sub bl (i * w * 4) (w * 4) (vec_to_bytes_le st.[i])) bl
// let chacha20_key_block0 (#w:lanes) (k:key) (n:nonce) : Tot block1 =
// let st0 = chacha20_init #w k n 0 in
// let k = chacha20_core 0 st0 in
// store_block0 k | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val xor_block_f (#w: lanes) (k: state w) (i: nat{i < 16}) (b: lbytes (w * 4)) : lbytes (w * 4) | [] | Hacl.Spec.Chacha20.Vec.xor_block_f | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < 16} -> b: Lib.ByteSequence.lbytes (w * 4)
-> Lib.ByteSequence.lbytes (w * 4) | {
"end_col": 19,
"end_line": 159,
"start_col": 92,
"start_line": 156
} |
Prims.Tot | val transpose_state (#w: lanes) (st: state w) : lseq (lseq uint32 16) w | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x) | val transpose_state (#w: lanes) (st: state w) : lseq (lseq uint32 16) w
let transpose_state (#w: lanes) (st: state w) : lseq (lseq uint32 16) w = | false | null | false | createi w
(fun i ->
let x:lseq uint32 16 =
create16 (vec_v st.[ 0 ]).[ i ] (vec_v st.[ 1 ]).[ i ] (vec_v st.[ 2 ]).[ i ]
(vec_v st.[ 3 ]).[ i ] (vec_v st.[ 4 ]).[ i ] (vec_v st.[ 5 ]).[ i ]
(vec_v st.[ 6 ]).[ i ] (vec_v st.[ 7 ]).[ i ] (vec_v st.[ 8 ]).[ i ]
(vec_v st.[ 9 ]).[ i ] (vec_v st.[ 10 ]).[ i ] (vec_v st.[ 11 ]).[ i ]
(vec_v st.[ 12 ]).[ i ] (vec_v st.[ 13 ]).[ i ] (vec_v st.[ 14 ]).[ i ]
(vec_v st.[ 15 ]).[ i ]
in
x) | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.lanes",
"Hacl.Spec.Chacha20.Vec.state",
"Lib.Sequence.createi",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.SEC",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.create16",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.uint_t",
"Lib.IntVector.vec_v",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntTypes.uint32"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose_state (#w: lanes) (st: state w) : lseq (lseq uint32 16) w | [] | Hacl.Spec.Chacha20.Vec.transpose_state | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: Hacl.Spec.Chacha20.Vec.state w -> Lib.Sequence.lseq (Lib.Sequence.lseq Lib.IntTypes.uint32 16) w | {
"end_col": 6,
"end_line": 50,
"start_col": 2,
"start_line": 44
} |
Prims.Tot | val transpose4 (st: state 4) : state 4 | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | val transpose4 (st: state 4) : state 4
let transpose4 (st: state 4) : state 4 = | false | null | false | let v0, v1, v2, v3 = VecTranspose.transpose4x4 (st.[ 0 ], st.[ 1 ], st.[ 2 ], st.[ 3 ]) in
let v4, v5, v6, v7 = VecTranspose.transpose4x4 (st.[ 4 ], st.[ 5 ], st.[ 6 ], st.[ 7 ]) in
let v8, v9, v10, v11 = VecTranspose.transpose4x4 (st.[ 8 ], st.[ 9 ], st.[ 10 ], st.[ 11 ]) in
let v12, v13, v14, v15 = VecTranspose.transpose4x4 (st.[ 12 ], st.[ 13 ], st.[ 14 ], st.[ 15 ]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.state",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32",
"Lib.Sequence.create16",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.Transpose.vec_t4",
"Lib.IntVector.Transpose.transpose4x4",
"FStar.Pervasives.Native.Mktuple4",
"Lib.Sequence.op_String_Access"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose4 (st: state 4) : state 4 | [] | Hacl.Spec.Chacha20.Vec.transpose4 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: Hacl.Spec.Chacha20.Vec.state 4 -> Hacl.Spec.Chacha20.Vec.state 4 | {
"end_col": 64,
"end_line": 133,
"start_col": 39,
"start_line": 128
} |
Prims.Tot | val transpose8 (st: state 8) : state 8 | [
{
"abbrev": true,
"full_module": "Lib.IntVector.Transpose",
"short_module": "VecTranspose"
},
{
"abbrev": true,
"full_module": "Spec.Chacha20",
"short_module": "Scalar"
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Chacha20",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let transpose8 (st:state 8) : state 8 =
let (v0,v1,v2,v3,v4,v5,v6,v7) = VecTranspose.transpose8x8 (st.[0],st.[1],st.[2],st.[3],st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11,v12,v13,v14,v15) = VecTranspose.transpose8x8 (st.[8],st.[9],st.[10],st.[11],st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | val transpose8 (st: state 8) : state 8
let transpose8 (st: state 8) : state 8 = | false | null | false | let v0, v1, v2, v3, v4, v5, v6, v7 =
VecTranspose.transpose8x8 (st.[ 0 ],
st.[ 1 ],
st.[ 2 ],
st.[ 3 ],
st.[ 4 ],
st.[ 5 ],
st.[ 6 ],
st.[ 7 ])
in
let v8, v9, v10, v11, v12, v13, v14, v15 =
VecTranspose.transpose8x8 (st.[ 8 ],
st.[ 9 ],
st.[ 10 ],
st.[ 11 ],
st.[ 12 ],
st.[ 13 ],
st.[ 14 ],
st.[ 15 ])
in
create16 v0 v8 v1 v9 v2 v10 v3 v11 v4 v12 v5 v13 v6 v14 v7 v15 | {
"checked_file": "Hacl.Spec.Chacha20.Vec.fst.checked",
"dependencies": [
"Spec.Chacha20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntVector.Transpose.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Chacha20.Vec.fst"
} | [
"total"
] | [
"Hacl.Spec.Chacha20.Vec.state",
"Lib.IntVector.vec_t",
"Lib.IntTypes.U32",
"Lib.Sequence.create16",
"Hacl.Spec.Chacha20.Vec.uint32xN",
"Lib.IntVector.Transpose.vec_t8",
"Lib.IntVector.Transpose.transpose8x8",
"FStar.Pervasives.Native.Mktuple8",
"Lib.Sequence.op_String_Access"
] | [] | module Hacl.Spec.Chacha20.Vec
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
open Lib.IntVector
module Scalar = Spec.Chacha20
module VecTranspose = Lib.IntVector.Transpose
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
/// Constants and Types
let size_key = 32
let size_block = 64
let size_nonce = 12
type key = lbytes size_key
type block1 = lbytes size_block
type nonce = lbytes size_nonce
type counter = size_nat
type subblock = b:bytes{length b <= size_block}
// Internally, blocks are represented as 16 x 4-byte integers
let lanes = n:width{n == 1 \/ n == 4 \/ n == 8}
inline_for_extraction
let uint32xN (w:lanes) = vec_t U32 w
type state (w:lanes) = lseq (uint32xN w) 16
type idx = n:size_nat{n < 16}
type shuffle (w:lanes) = state w -> state w
type blocks (w:lanes) = lbytes (w * 64)
// Using @ as a functional substitute for ;
let op_At f g = fun x -> g (f x)
/// Specification
let transpose_state (#w:lanes) (st:state w) : lseq (lseq uint32 16) w =
createi w (fun i ->
let x : lseq uint32 16 = create16
(vec_v st.[0]).[i] (vec_v st.[1]).[i] (vec_v st.[2]).[i] (vec_v st.[3]).[i]
(vec_v st.[4]).[i] (vec_v st.[5]).[i] (vec_v st.[6]).[i] (vec_v st.[7]).[i]
(vec_v st.[8]).[i] (vec_v st.[9]).[i] (vec_v st.[10]).[i] (vec_v st.[11]).[i]
(vec_v st.[12]).[i] (vec_v st.[13]).[i] (vec_v st.[14]).[i] (vec_v st.[15]).[i] in
x)
let line (#w:lanes) (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state w) : state w =
let m = m.[a] <- m.[a] +| m.[b] in
let m = m.[d] <- (m.[d] ^| m.[a]) <<<| s in
m
let quarter_round (#w:lanes) a b c d : shuffle w =
line a b d (size 16) @
line c d b (size 12) @
line a b d (size 8) @
line c d b (size 7)
let column_round (#w:lanes) : shuffle w =
quarter_round 0 4 8 12 @
quarter_round 1 5 9 13 @
quarter_round 2 6 10 14 @
quarter_round 3 7 11 15
let diagonal_round (#w:lanes) : shuffle w =
quarter_round 0 5 10 15 @
quarter_round 1 6 11 12 @
quarter_round 2 7 8 13 @
quarter_round 3 4 9 14
let double_round (#w:lanes) : shuffle w =
column_round @ diagonal_round (* 2 rounds *)
let rounds (#w:lanes) (m:state w) : state w =
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round (
double_round (double_round m)))))))))
let sum_state (#w:lanes) (st1:state w) (st2:state w) : state w =
map2 (+|) st1 st2
let add_counter (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (st:state w) : state w =
let cv = vec_load (u32 w *! u32 ctr) w in
st.[12] <- st.[12] +| cv
let chacha20_core (#w:lanes) (ctr:counter{w * ctr <= max_size_t}) (s0:state w) : state w =
let k = add_counter ctr s0 in
let k = rounds k in
let k = sum_state k s0 in
add_counter ctr k
inline_for_extraction
let c0 = 0x61707865ul
inline_for_extraction
let c1 = 0x3320646eul
inline_for_extraction
let c2 = 0x79622d32ul
inline_for_extraction
let c3 = 0x6b206574ul
let chacha20_constants : lseq size_t 4 =
[@ inline_let]
let l = [c0;c1;c2;c3] in
assert_norm(List.Tot.length l == 4);
createL l
let setup1 (k:key) (n:nonce) (ctr0:counter) : lseq uint32 16 =
Scalar.setup k n ctr0 (create 16 (u32 0))
inline_for_extraction
let vec_load_i (#t:v_inttype) (w:width) (x:uint_t t SEC) = vec_load #t x w
let chacha20_init (#w:lanes) (k:key) (n:nonce) (ctr0:counter) : state w =
let st1 = setup1 k n ctr0 in
let st = map (vec_load_i w) st1 in
let c = vec_counter U32 w in
st.[12] <- st.[12] +| c
let transpose1 (st:state 1) : state 1 = st
let transpose4 (st:state 4) : state 4 =
let (v0,v1,v2,v3) = VecTranspose.transpose4x4 (st.[0],st.[1],st.[2],st.[3]) in
let (v4,v5,v6,v7) = VecTranspose.transpose4x4 (st.[4],st.[5],st.[6],st.[7]) in
let (v8,v9,v10,v11) = VecTranspose.transpose4x4 (st.[8],st.[9],st.[10],st.[11]) in
let (v12,v13,v14,v15) = VecTranspose.transpose4x4 (st.[12],st.[13],st.[14],st.[15]) in
create16 v0 v4 v8 v12 v1 v5 v9 v13 v2 v6 v10 v14 v3 v7 v11 v15 | false | false | Hacl.Spec.Chacha20.Vec.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val transpose8 (st: state 8) : state 8 | [] | Hacl.Spec.Chacha20.Vec.transpose8 | {
"file_name": "code/chacha20/Hacl.Spec.Chacha20.Vec.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: Hacl.Spec.Chacha20.Vec.state 8 -> Hacl.Spec.Chacha20.Vec.state 8 | {
"end_col": 64,
"end_line": 138,
"start_col": 39,
"start_line": 135
} |
FStar.Tactics.Effect.Tac | val squash_and_elim (t: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Reflection.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let squash_and_elim (t : term) : Tac unit =
let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t]) | val squash_and_elim (t: term) : Tac unit
let squash_and_elim (t: term) : Tac unit = | true | null | false | let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t]) | {
"checked_file": "Vale.Lib.Tactics.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Derived.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.Formula.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Tactics.fst"
} | [] | [
"FStar.Reflection.Types.term",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"Prims.unit"
] | [] | module Vale.Lib.Tactics
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.Derived
open FStar.Reflection.Formula
(***** Tactic to destruct conjuctions in context *)
private val __squash_and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __squash_and_elim #p #q #phi p_and_q f = () | false | false | Vale.Lib.Tactics.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val squash_and_elim (t: term) : Tac unit | [] | Vale.Lib.Tactics.squash_and_elim | {
"file_name": "vale/code/lib/util/Vale.Lib.Tactics.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 33,
"end_line": 18,
"start_col": 43,
"start_line": 16
} |
FStar.Tactics.Effect.Tac | val tf (t: term) : Tot (term -> Tac unit) | [
{
"abbrev": false,
"full_module": "FStar.Reflection.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tf (t : term) : Tot (term -> Tac unit) =
match unsquash_term t with
| None -> and_elim
| _ -> squash_and_elim | val tf (t: term) : Tot (term -> Tac unit)
let tf (t: term) : Tot (term -> Tac unit) = | true | null | false | match unsquash_term t with
| None -> and_elim
| _ -> squash_and_elim | {
"checked_file": "Vale.Lib.Tactics.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Derived.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.Formula.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Tactics.fst"
} | [] | [
"FStar.Reflection.Types.term",
"FStar.Reflection.V1.Derived.unsquash_term",
"FStar.Tactics.V1.Logic.and_elim",
"FStar.Pervasives.Native.option",
"Vale.Lib.Tactics.squash_and_elim",
"Prims.unit"
] | [] | module Vale.Lib.Tactics
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.Derived
open FStar.Reflection.Formula
(***** Tactic to destruct conjuctions in context *)
private val __squash_and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __squash_and_elim #p #q #phi p_and_q f = ()
let squash_and_elim (t : term) : Tac unit =
let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t]) | false | false | Vale.Lib.Tactics.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tf (t: term) : Tot (term -> Tac unit) | [] | Vale.Lib.Tactics.tf | {
"file_name": "vale/code/lib/util/Vale.Lib.Tactics.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: FStar.Reflection.Types.term -> _: FStar.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 24,
"end_line": 23,
"start_col": 2,
"start_line": 21
} |
FStar.Tactics.Effect.Tac | val destruct_conj: Prims.unit -> Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Reflection.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let destruct_conj () : Tac unit =
let e = cur_env () in
iterate_env (binders_of_env e) | val destruct_conj: Prims.unit -> Tac unit
let destruct_conj () : Tac unit = | true | null | false | let e = cur_env () in
iterate_env (binders_of_env e) | {
"checked_file": "Vale.Lib.Tactics.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Derived.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.Formula.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Tactics.fst"
} | [] | [
"Prims.unit",
"Vale.Lib.Tactics.iterate_env",
"FStar.Reflection.V1.Builtins.binders_of_env",
"FStar.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | module Vale.Lib.Tactics
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.Derived
open FStar.Reflection.Formula
(***** Tactic to destruct conjuctions in context *)
private val __squash_and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __squash_and_elim #p #q #phi p_and_q f = ()
let squash_and_elim (t : term) : Tac unit =
let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t])
let tf (t : term) : Tot (term -> Tac unit) =
match unsquash_term t with
| None -> and_elim
| _ -> squash_and_elim
let rec iterate_env (bs : binders) : Tac unit =
match bs with
| [] -> ()
| b :: bs ->
let ty = type_of_binder b in
let elim = tf ty in
begin
match term_as_formula_total ty with
| And _ _ ->
elim (pack (Tv_Var (bv_of_binder b)));
clear b;
let t1 = implies_intro () in
let t2 = implies_intro () in
iterate_env (t1 :: t2 :: bs)
| _ -> iterate_env bs
end | false | false | Vale.Lib.Tactics.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val destruct_conj: Prims.unit -> Tac unit | [] | Vale.Lib.Tactics.destruct_conj | {
"file_name": "vale/code/lib/util/Vale.Lib.Tactics.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 33,
"end_line": 45,
"start_col": 33,
"start_line": 43
} |
FStar.Tactics.Effect.Tac | val iterate_env (bs: binders) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Reflection.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec iterate_env (bs : binders) : Tac unit =
match bs with
| [] -> ()
| b :: bs ->
let ty = type_of_binder b in
let elim = tf ty in
begin
match term_as_formula_total ty with
| And _ _ ->
elim (pack (Tv_Var (bv_of_binder b)));
clear b;
let t1 = implies_intro () in
let t2 = implies_intro () in
iterate_env (t1 :: t2 :: bs)
| _ -> iterate_env bs
end | val iterate_env (bs: binders) : Tac unit
let rec iterate_env (bs: binders) : Tac unit = | true | null | false | match bs with
| [] -> ()
| b :: bs ->
let ty = type_of_binder b in
let elim = tf ty in
match term_as_formula_total ty with
| And _ _ ->
elim (pack (Tv_Var (bv_of_binder b)));
clear b;
let t1 = implies_intro () in
let t2 = implies_intro () in
iterate_env (t1 :: t2 :: bs)
| _ -> iterate_env bs | {
"checked_file": "Vale.Lib.Tactics.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Derived.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.Formula.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Lib.Tactics.fst"
} | [] | [
"FStar.Reflection.Types.binders",
"Prims.unit",
"FStar.Reflection.Types.binder",
"Prims.list",
"FStar.Reflection.Types.term",
"Vale.Lib.Tactics.iterate_env",
"Prims.Cons",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Tactics.V1.Builtins.clear",
"FStar.Tactics.V1.Builtins.pack",
"FStar.Reflection.V1.Data.Tv_Var",
"FStar.Reflection.V1.Derived.bv_of_binder",
"FStar.Reflection.V1.Formula.formula",
"FStar.Reflection.V1.Formula.term_as_formula_total",
"Vale.Lib.Tactics.tf",
"FStar.Reflection.Types.typ",
"FStar.Reflection.V1.Derived.type_of_binder"
] | [] | module Vale.Lib.Tactics
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.Derived
open FStar.Reflection.Formula
(***** Tactic to destruct conjuctions in context *)
private val __squash_and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __squash_and_elim #p #q #phi p_and_q f = ()
let squash_and_elim (t : term) : Tac unit =
let ae = `__squash_and_elim in
apply_lemma (mk_e_app ae [t])
let tf (t : term) : Tot (term -> Tac unit) =
match unsquash_term t with
| None -> and_elim
| _ -> squash_and_elim | false | false | Vale.Lib.Tactics.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val iterate_env (bs: binders) : Tac unit | [
"recursion"
] | Vale.Lib.Tactics.iterate_env | {
"file_name": "vale/code/lib/util/Vale.Lib.Tactics.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | bs: FStar.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 11,
"end_line": 40,
"start_col": 4,
"start_line": 26
} |
Prims.Tot | val set_to_one (q: quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_to_one (q:quad32) : quad32 = Mkfour 1 q.lo1 q.hi2 q.hi3 | val set_to_one (q: quad32) : quad32
let set_to_one (q: quad32) : quad32 = | false | null | false | Mkfour 1 q.lo1 q.hi2 q.hi3 | {
"checked_file": "Vale.AES.GCM_BE.fsti.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_BE_s.fst.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCTR_BE.fsti.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.GCM_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_BE.fsti"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3"
] | [] | module Vale.AES.GCM_BE
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_BE_s
open Vale.AES.AES_BE_s
open Vale.AES.GCM_helpers_BE
open Vale.AES.GCTR_BE_s
open Vale.AES.GCTR_BE
open Vale.AES.GHash_BE_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open FStar.Calc
open Vale.AES.GHash_BE | false | true | Vale.AES.GCM_BE.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_to_one (q: quad32) : quad32 | [] | Vale.AES.GCM_BE.set_to_one | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | {
"end_col": 63,
"end_line": 21,
"start_col": 37,
"start_line": 21
} |
Prims.Pure | val gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) | [
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gcm_decrypt_BE_tag (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) :
Pure (seq nat8)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
)
(ensures fun t -> True)
=
let key_BE = seq_nat8_to_seq_nat32_BE key in
let h_BE = aes_encrypt_word alg key_BE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_BE iv in
let lengths_BE = two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length cipher))) in
let zero_padded_c_BE = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_BE = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_BE = append zero_padded_a_BE (append zero_padded_c_BE (create 1 lengths_BE)) in
let s_BE = ghash_BE h_BE hash_input_BE in
let t = gctr_encrypt j0_BE (be_quad32_to_bytes s_BE) alg key_BE in
t | val gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True)
let gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) = | false | null | false | let key_BE = seq_nat8_to_seq_nat32_BE key in
let h_BE = aes_encrypt_word alg key_BE (Mkfour 0 0 0 0) in
let j0_BE = compute_iv_BE h_BE iv in
let lengths_BE =
two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length cipher)))
in
let zero_padded_c_BE = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in
let zero_padded_a_BE = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in
let hash_input_BE = append zero_padded_a_BE (append zero_padded_c_BE (create 1 lengths_BE)) in
let s_BE = ghash_BE h_BE hash_input_BE in
let t = gctr_encrypt j0_BE (be_quad32_to_bytes s_BE) alg key_BE in
t | {
"checked_file": "Vale.AES.GCM_BE.fsti.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GHash_BE_s.fst.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.GCTR_BE.fsti.checked",
"Vale.AES.GCM_helpers_BE.fsti.checked",
"Vale.AES.GCM_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GCM_BE.fsti"
} | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCM_BE_s.supported_iv_BE",
"Vale.AES.GCTR_BE_s.gctr_encrypt",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.Def.Types_s.quad32",
"Vale.AES.GHash_BE_s.ghash_BE",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.two_two_to_four",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.nat_to_two",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.AES.GCM_BE_s.compute_iv_BE",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE",
"Prims.l_and",
"Vale.AES.AES_common_s.is_aes_key",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Prims.l_True"
] | [] | module Vale.AES.GCM_BE
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GCM_BE_s
open Vale.AES.AES_BE_s
open Vale.AES.GCM_helpers_BE
open Vale.AES.GCTR_BE_s
open Vale.AES.GCTR_BE
open Vale.AES.GHash_BE_s
open FStar.Mul
open FStar.Seq
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open FStar.Calc
open Vale.AES.GHash_BE
let set_to_one (q:quad32) : quad32 = Mkfour 1 q.lo1 q.hi2 q.hi3
val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma
(requires
length iv_extra_b == 1 /\
length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\
num_bytes == 96/8 /\
(let iv_BE = index iv_extra_b 0 in
j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\
(let raw_quads = append iv_b iv_extra_b in
let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in
iv_bytes == iv))
(ensures j0 == compute_iv_BE h_BE iv)
val lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma
(requires
~(length iv == 96/8) /\
quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\
j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\
length_quad == two_two_to_four (Mktwo (nat_to_two 32 0)
(nat_to_two 32 (8 * length iv))))
(ensures j0 == compute_iv_BE h_BE iv)
val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes)
val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32)
(a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32)
(p_num_bytes a_num_bytes:nat)
(iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma
(requires // Required by gcm_blocks
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length a128 * 16 <= a_num_bytes /\
a_num_bytes < length a128 * 16 + 16 /\
a_num_bytes < pow2_32 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
length a_bytes == 1 /\
is_aes_key_word alg key /\
j0_BE == compute_iv_BE h iv /\
h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\
length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\
(let ctr_BE_1:quad32 = j0_BE in
let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > length p128 * 16 then
append p128 p_bytes
else
p128
in
let cipher:seq quad32 =
if p_num_bytes > length p128 * 16 then
append c128 c_bytes
else
c128
in
let cipher_bound:nat = length p128 +
(if p_num_bytes > length p128 * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\
(let auth_raw_quads =
if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128
in
let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in
let auth_padded_bytes = pad_to_128_bits auth_input_bytes in
let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in
let raw_quads = append auth_quads c128 in
let total_bytes = length auth_quads * 16 + p_num_bytes in
let raw_quads =
if p_num_bytes > length p128 * 16 then
let raw_quads = append raw_quads c_bytes in
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in
let input_padded_bytes = pad_to_128_bits input_bytes in
be_bytes_to_seq_quad32 input_padded_bytes
else
raw_quads
in
let final_quads = append raw_quads (create 1 length_quad) in
enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0
)))
(ensures (let auth_raw_quads = append a128 a_bytes in
let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in
let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\
be_quad32_to_bytes enc_hash ==
snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key)
iv plain_bytes auth_bytes))
)
val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32)
(p128 p_bytes c128 c_bytes:seq quad32)
(auth_bytes alleged_tag:seq nat8)
(p_num_bytes:nat)
(iv:supported_iv_BE) (j0_BE:quad32) : Lemma
(requires // Required by gcm_blocks
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
(length auth_bytes) < pow2_32 /\
is_aes_key_word alg key /\
(let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in
j0_BE = compute_iv_BE h_BE iv) /\
// Ensured by gcm_blocks
p_num_bytes < pow2_32 /\
(let ctr_BE_2:quad32 = inc32 j0_BE 1 in
let plain:seq quad32 =
if p_num_bytes > length p128 * 16 then
append p128 p_bytes
else
p128
in
let cipher:seq quad32 =
if p_num_bytes > length p128 * 16 then
append c128 c_bytes
else
c128
in
let cipher_bound:nat = length p128 +
(if p_num_bytes > length p128 * 16 then 1 else 0)
in
gctr_partial alg cipher_bound plain cipher key ctr_BE_2
))
(ensures (let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in
length auth_bytes < pow2_32 /\
length plain_bytes < pow2_32 /\
cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag)))
let gcm_decrypt_BE_tag (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) :
Pure (seq nat8)
(requires
is_aes_key alg key /\
length cipher < pow2_32 /\
length auth < pow2_32
) | false | false | Vale.AES.GCM_BE.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gcm_decrypt_BE_tag
(alg: algorithm)
(key: seq nat8)
(iv: supported_iv_BE)
(cipher auth: seq nat8)
: Pure (seq nat8)
(requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32)
(ensures fun t -> True) | [] | Vale.AES.GCM_BE.gcm_decrypt_BE_tag | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
iv: Vale.AES.GCM_BE_s.supported_iv_BE ->
cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 ->
auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8
-> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Words_s.nat8) | {
"end_col": 3,
"end_line": 200,
"start_col": 3,
"start_line": 187
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i] | let close_pattern' (p: pattern) (x: var) (i: index) = | false | null | false | subst_pat p [ND x i] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v] | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_pattern' : p: Pulse.Syntax.Base.pattern -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | [] | Pulse.Typing.LN.close_pattern' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: Pulse.Syntax.Base.pattern -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | {
"end_col": 22,
"end_line": 146,
"start_col": 2,
"start_line": 146
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v] | let open_pattern' (p: pattern) (v: term) (i: index) = | false | null | false | subst_pat p [DT i v] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_pattern' : p: Pulse.Syntax.Base.pattern -> v: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | [] | Pulse.Typing.LN.open_pattern' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: Pulse.Syntax.Base.pattern -> v: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> Pulse.Syntax.Base.pattern | {
"end_col": 22,
"end_line": 144,
"start_col": 2,
"start_line": 144
} |
|
Prims.Tot | val close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ] | val close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term))
let close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) = | false | null | false | subst_term_pairs t [ND v i] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_term_pairs",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index) | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_term_pairs' (t: list (term & term)) (v: var) (i: index) : Tot (list (term & term)) | [] | Pulse.Typing.LN.close_term_pairs' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
v: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) | {
"end_col": 33,
"end_line": 785,
"start_col": 4,
"start_line": 785
} |
Prims.Tot | val open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ] | val open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term))
let open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) = | false | null | false | subst_term_pairs t [DT i v] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_term_pairs",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index) | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_pairs' (t: list (term & term)) (v: term) (i: index) : Tot (list (term & term)) | [] | Pulse.Typing.LN.open_term_pairs' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) | {
"end_col": 33,
"end_line": 113,
"start_col": 4,
"start_line": 113
} |
FStar.Pervasives.Lemma | val tot_typing_ln (#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma (ln e /\ ln t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d | val tot_typing_ln (#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma (ln e /\ ln t)
let tot_typing_ln (#g #e #t: _) (d: tot_typing g e t) : Lemma (ensures ln e /\ ln t) = | false | null | true | tot_or_ghost_typing_ln d | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tot_typing_ln (#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma (ln e /\ ln t) | [] | Pulse.Typing.LN.tot_typing_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.tot_typing g e t
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln e /\ Pulse.Syntax.Naming.ln t) | {
"end_col": 28,
"end_line": 926,
"start_col": 4,
"start_line": 926
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v] | let open_pattern_args' (ps: list (pattern & bool)) (v: term) (i: index) = | false | null | false | subst_pat_args ps [DT i v] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat_args",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.DT",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i] | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_pattern_args' : ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | [] | Pulse.Typing.LN.open_pattern_args' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
v: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | {
"end_col": 28,
"end_line": 148,
"start_col": 2,
"start_line": 148
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i] | let close_pattern_args' (ps: list (pattern & bool)) (x: var) (i: index) = | false | null | false | subst_pat_args ps [ND x i] | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Prims.bool",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Naming.subst_pat_args",
"Prims.Cons",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Naming.ND",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v] | false | true | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_pattern_args' : ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | [] | Pulse.Typing.LN.close_pattern_args' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
ps: Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> Prims.list (Pulse.Syntax.Base.pattern * Prims.bool) | {
"end_col": 28,
"end_line": 150,
"start_col": 2,
"start_line": 150
} |
|
FStar.Pervasives.Lemma | val close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i | val close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
let rec close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) = | false | null | true | match t with
| [] -> ()
| hd :: tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln_list'",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term_list'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_term_ln_list' (t: list term) (x: var) (i: index)
: Lemma (requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t) | [
"recursion"
] | Pulse.Typing.LN.close_term_ln_list' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.list Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t (i - 1))
(ensures Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.close_term_list' t x i) i)
(decreases t) | {
"end_col": 32,
"end_line": 781,
"start_col": 4,
"start_line": 777
} |
FStar.Pervasives.Lemma | val close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' t (i - 1)) (ensures ln_opt' (close_term_opt' t x i) i) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i | val close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' t (i - 1)) (ensures ln_opt' (close_term_opt' t x i) i) (decreases t)
let close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' t (i - 1)) (ensures ln_opt' (close_term_opt' t x i) i) (decreases t) = | false | null | true | match t with
| None -> ()
| Some t -> close_term_ln' t x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term_opt'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_term_ln_opt' (t: option term) (x: var) (i: index)
: Lemma (requires ln_opt' t (i - 1)) (ensures ln_opt' (close_term_opt' t x i) i) (decreases t) | [] | Pulse.Typing.LN.close_term_ln_opt' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_opt' t (i - 1))
(ensures Pulse.Syntax.Naming.ln_opt' (Pulse.Syntax.Naming.close_term_opt' t x i) i)
(decreases t) | {
"end_col": 36,
"end_line": 770,
"start_col": 4,
"start_line": 768
} |
FStar.Pervasives.Lemma | val well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d | val well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t)
let well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) = | false | null | true | RT.well_typed_terms_are_ln g e (eff, t) d | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"FStar.Reflection.Types.env",
"FStar.Reflection.Types.term",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Reflection.Typing.typing",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.typ",
"FStar.Reflection.Typing.well_typed_terms_are_ln",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"FStar.Reflection.Typing.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) = | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val well_typed_terms_are_ln (g: R.env) (e t: R.term) (#eff: _) (d: RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) | [] | Pulse.Typing.LN.well_typed_terms_are_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
g: FStar.Reflection.Types.env ->
e: FStar.Reflection.Types.term ->
t: FStar.Reflection.Types.term ->
d: FStar.Reflection.Typing.typing g e (eff, t)
-> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.ln e /\ FStar.Reflection.Typing.ln t) | {
"end_col": 43,
"end_line": 18,
"start_col": 2,
"start_line": 18
} |
FStar.Pervasives.Lemma | val ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j | val ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t)
let rec ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) = | false | null | true | match t with
| [] -> ()
| (l, r) :: tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening_pairs",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening_pairs (t: list (term & term)) (i j: int)
: Lemma (requires ln_terms' t i /\ i <= j) (ensures ln_terms' t j) (decreases t) | [
"recursion"
] | Pulse.Typing.LN.ln_weakening_pairs | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_terms' t j)
(decreases t) | {
"end_col": 31,
"end_line": 407,
"start_col": 4,
"start_line": 402
} |
FStar.Pervasives.Lemma | val open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0 | val open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0)
let open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) = | false | null | true | open_st_term_ln' e (term_of_no_name_var v) 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.open_st_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_st",
"Pulse.Syntax.Naming.open_st_term",
"Prims.squash",
"Pulse.Syntax.Naming.ln_st'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_st_term_ln (e: st_term) (v: var)
: Lemma (requires ln_st (open_st_term e v)) (ensures ln_st' e 0) | [] | Pulse.Typing.LN.open_st_term_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | e: Pulse.Syntax.Base.st_term -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_st (Pulse.Syntax.Naming.open_st_term e v))
(ensures Pulse.Syntax.Naming.ln_st' e 0) | {
"end_col": 48,
"end_line": 319,
"start_col": 4,
"start_line": 319
} |
FStar.Pervasives.Lemma | val tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t | val tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t)
let tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) = | false | null | true | let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"Pulse.Typing.typing",
"FStar.Reflection.Typing.typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.Types.typ",
"Pulse.Typing.LN.elab_ln_inverse",
"Prims.unit",
"Pulse.Typing.LN.well_typed_terms_are_ln",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tot_or_ghost_typing_ln (#g #e #t #eff: _) (d: typing g e eff t) : Lemma (ensures ln e /\ ln t) | [] | Pulse.Typing.LN.tot_or_ghost_typing_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.typing g e eff t
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln e /\ Pulse.Syntax.Naming.ln t) | {
"end_col": 21,
"end_line": 919,
"start_col": 3,
"start_line": 916
} |
Prims.Tot | val __brs_of (t: st_term{Tm_Match? t.term}) : list branch | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs | val __brs_of (t: st_term{Tm_Match? t.term}) : list branch
let __brs_of (t: st_term{Tm_Match? t.term}) : list branch = | false | null | false | let Tm_Match { brs = brs } = t.term in
brs | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_Tm_Match",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Pulse.Syntax.Base.term",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.vprop",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Pulse.Syntax.Base.branch",
"Pulse.Syntax.Base.st_term'"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val __brs_of (t: st_term{Tm_Match? t.term}) : list branch | [] | Pulse.Typing.LN.__brs_of | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Pulse.Syntax.Base.st_term{Tm_Match? (Mkst_term?.term t)} -> Prims.list Pulse.Syntax.Base.branch | {
"end_col": 5,
"end_line": 98,
"start_col": 58,
"start_line": 96
} |
FStar.Pervasives.Lemma | val open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i | val open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t)
let rec open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) = | false | null | true | match t with
| [] -> ()
| hd :: tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_list'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Pulse.Syntax.Naming.open_term_list'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_list' (t: list term) (x: term) (i: index)
: Lemma (requires ln_list' (open_term_list' t x i) (i - 1)) (ensures ln_list' t i) (decreases t) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln_list' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.list Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.open_term_list' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_list' t i)
(decreases t) | {
"end_col": 31,
"end_line": 109,
"start_col": 4,
"start_line": 105
} |
FStar.Pervasives.Lemma | val open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0 | val open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0)
let open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) = | false | null | true | open_term_ln' e (term_of_no_name_var v) 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Naming.open_term",
"Prims.squash",
"Pulse.Syntax.Naming.ln'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln (e: term) (v: var) : Lemma (requires ln (open_term e v)) (ensures ln' e 0) | [] | Pulse.Typing.LN.open_term_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | e: Pulse.Syntax.Base.term -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln (Pulse.Syntax.Naming.open_term e v))
(ensures Pulse.Syntax.Naming.ln' e 0) | {
"end_col": 45,
"end_line": 312,
"start_col": 4,
"start_line": 312
} |
FStar.Pervasives.Lemma | val ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j | val ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t)
let rec ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) = | false | null | true | match t with
| [] -> ()
| hd :: tl ->
ln_weakening hd i j;
ln_weakening_list tl i j | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening_list",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_list'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening_list (t: list term) (i j: int)
: Lemma (requires ln_list' t i /\ i <= j) (ensures ln_list' t j) (decreases t) | [
"recursion"
] | Pulse.Typing.LN.ln_weakening_list | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Prims.list Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_list' t j)
(decreases t) | {
"end_col": 30,
"end_line": 395,
"start_col": 4,
"start_line": 391
} |
FStar.Pervasives.Lemma | val close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0 | val close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0)
let close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) = | false | null | true | close_comp_ln' c v 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.var",
"Pulse.Typing.LN.close_comp_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c",
"Prims.squash",
"Pulse.Syntax.Naming.ln_c'",
"Pulse.Syntax.Naming.close_comp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_comp_ln (c: comp) (v: var) : Lemma (requires ln_c c) (ensures ln_c' (close_comp c v) 0) | [] | Pulse.Typing.LN.close_comp_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.comp -> v: Pulse.Syntax.Base.var
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c c)
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.close_comp c v) 0) | {
"end_col": 24,
"end_line": 901,
"start_col": 4,
"start_line": 901
} |
FStar.Pervasives.Lemma | val ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j | val ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)]
let rec ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] = | false | null | true | match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Pure p -> ln_weakening p i j
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t -> r_ln_weakening t i j | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.ln_weakening",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_ln_weakening",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.bool",
"Prims.Nil"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening (e: term) (i j: int)
: Lemma (requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j); SMTPat (ln' e i)] | [
"recursion"
] | Pulse.Typing.LN.ln_weakening | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | e: Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln' e j)
(decreases e)
[SMTPat (Pulse.Syntax.Naming.ln' e j); SMTPat (Pulse.Syntax.Naming.ln' e i)] | {
"end_col": 26,
"end_line": 354,
"start_col": 4,
"start_line": 334
} |
FStar.Pervasives.Lemma | val open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' t i) (ensures ln_opt' (open_term_opt' t x i) (i - 1)) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i | val open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' t i) (ensures ln_opt' (open_term_opt' t x i) (i - 1)) (decreases t)
let open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' t i) (ensures ln_opt' (open_term_opt' t x i) (i - 1)) (decreases t) = | false | null | true | match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv'",
"Prims.unit",
"Pulse.Syntax.Naming.ln_opt'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term_opt'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_inv_opt' (t: option term) (x: term{ln x}) (i: index)
: Lemma (requires ln_opt' t i) (ensures ln_opt' (open_term_opt' t x i) (i - 1)) (decreases t) | [] | Pulse.Typing.LN.open_term_ln_inv_opt' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_opt' t i)
(ensures Pulse.Syntax.Naming.ln_opt' (Pulse.Syntax.Naming.open_term_opt' t x i) (i - 1))
(decreases t) | {
"end_col": 39,
"end_line": 574,
"start_col": 4,
"start_line": 572
} |
FStar.Pervasives.Lemma | val open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i | val open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t)
let rec open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) = | false | null | true | match t with
| [] -> ()
| hd :: tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv_list'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Naming.ln_list'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term_list'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_inv_list' (t: list term) (x: term{ln x}) (i: index)
: Lemma (requires ln_list' t i) (ensures ln_list' (open_term_list' t x i) (i - 1)) (decreases t) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln_inv_list' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_list' t i)
(ensures Pulse.Syntax.Naming.ln_list' (Pulse.Syntax.Naming.open_term_list' t x i) (i - 1))
(decreases t) | {
"end_col": 35,
"end_line": 587,
"start_col": 4,
"start_line": 583
} |
FStar.Pervasives.Lemma | val close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i | val close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
let rec close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) = | false | null | true | match t with
| [] -> ()
| (l, r) :: tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.close_term_ln_pairs",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Typing.LN.close_term_pairs'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_term_ln_pairs (t: list (term & term)) (x: var) (i: index)
: Lemma (requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t) | [
"recursion"
] | Pulse.Typing.LN.close_term_ln_pairs | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.var ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t (i - 1))
(ensures Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.close_term_pairs' t x i) i)
(decreases t) | {
"end_col": 32,
"end_line": 797,
"start_col": 4,
"start_line": 792
} |
FStar.Pervasives.Lemma | val open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i | val open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i)
let open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) = | false | null | true | match t with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> open_term_ln' p x i
| RENAME { pairs = pairs ; goal = goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1 = t1 ; t2 = t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.open_term_ln'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.LN.open_term_ln_opt'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_pairs",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Pulse.Syntax.Naming.open_proof_hint'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_proof_hint_ln (t: proof_hint_type) (x: term) (i: index)
: Lemma (requires ln_proof_hint' (open_proof_hint' t x i) (i - 1)) (ensures ln_proof_hint' t i) | [] | Pulse.Typing.LN.open_proof_hint_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Pulse.Syntax.Base.proof_hint_type -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires
Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.open_proof_hint' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_proof_hint' t i) | {
"end_col": 26,
"end_line": 141,
"start_col": 4,
"start_line": 131
} |
FStar.Pervasives.Lemma | val st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let st_comp_typing_ln (#g:_) (#st:_) (d:st_comp_typing g st)
: Lemma (ensures ln_st_comp st (-1)) =
let STC _ {post} x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0 | val st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1))
let st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) = | false | null | true | let STC _ { post = post } x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.vprop",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Syntax.Base.Mkst_comp",
"Pulse.Typing.universe_of",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_term",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.null_var",
"Prims.unit",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Pure.tm_type",
"Prims.l_True",
"Prims.squash",
"Pulse.Syntax.Naming.ln_st_comp",
"Prims.op_Minus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= let ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post = d in
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
let bind_comp_ln #g #x #c1 #c2 #c (d:bind_comp g x c1 c2 c)
: Lemma
(requires ln_c c1 /\ ln_c c2)
(ensures ln_c c)
= () | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val st_comp_typing_ln (#g #st: _) (d: st_comp_typing g st) : Lemma (ensures ln_st_comp st (- 1)) | [] | Pulse.Typing.LN.st_comp_typing_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.st_comp_typing g st
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln_st_comp st (- 1)) | {
"end_col": 35,
"end_line": 974,
"start_col": 40,
"start_line": 968
} |
FStar.Pervasives.Lemma | val ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1) | val ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j)
let ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) = | false | null | true | match c with
| C_Tot t -> ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1) | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.comp",
"Prims.int",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.ln_weakening",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening_comp (c: comp) (i j: int)
: Lemma (requires ln_c' c i /\ i <= j) (ensures ln_c' c j) | [] | Pulse.Typing.LN.ln_weakening_comp | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.comp -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_c' c j) | {
"end_col": 41,
"end_line": 374,
"start_col": 4,
"start_line": 360
} |
FStar.Pervasives.Lemma | val open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i | val open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
let open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) = | false | null | true | match ht with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> open_term_ln_inv' p x i
| RENAME { pairs = pairs ; goal = goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1 = t1 ; t2 = t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.open_term_ln_inv'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.LN.open_term_ln_inv_opt'",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv_pairs",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.squash",
"Pulse.Syntax.Naming.open_proof_hint'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_proof_hint_ln_inv (ht: proof_hint_type) (x: term{ln x}) (i: index)
: Lemma (requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1)) | [] | Pulse.Typing.LN.open_proof_hint_ln_inv | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
ht: Pulse.Syntax.Base.proof_hint_type ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' ht i)
(ensures
Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.open_proof_hint' ht x i) (i - 1)) | {
"end_col": 30,
"end_line": 617,
"start_col": 4,
"start_line": 607
} |
FStar.Pervasives.Lemma | val open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i | val open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
let rec open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) = | false | null | true | match t with
| [] -> ()
| (l, r) :: tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv_pairs",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Naming.ln_terms'",
"Prims.squash",
"Pulse.Typing.LN.open_term_pairs'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_inv_pairs (t: list (term & term)) (x: term{ln x}) (i: index)
: Lemma (requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln_inv_pairs | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_terms' t i)
(ensures Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.open_term_pairs' t x i) (i - 1))
(decreases t) | {
"end_col": 35,
"end_line": 601,
"start_col": 4,
"start_line": 596
} |
FStar.Pervasives.Lemma | val close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i | val close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
let close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) = | false | null | true | match ht with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> close_term_ln' p v i
| RENAME { pairs = pairs ; goal = goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1 = t1 ; t2 = t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.proof_hint_type",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.close_term_ln'",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.close_term_ln_opt'",
"Prims.unit",
"Pulse.Typing.LN.close_term_ln_pairs",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_proof_hint'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_proof_hint_ln (ht: proof_hint_type) (v: var) (i: index)
: Lemma (requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i) | [] | Pulse.Typing.LN.close_proof_hint_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | ht: Pulse.Syntax.Base.proof_hint_type -> v: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' ht (i - 1))
(ensures Pulse.Syntax.Naming.ln_proof_hint' (Pulse.Syntax.Naming.close_proof_hint' ht v i) i) | {
"end_col": 27,
"end_line": 813,
"start_col": 4,
"start_line": 803
} |
FStar.Pervasives.Lemma | val open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1) | val open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i)
let open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) = | false | null | true | match c with
| C_Tot t -> open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1) | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Pulse.Syntax.Naming.open_comp'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_comp_ln' (c: comp) (x: term) (i: index)
: Lemma (requires ln_c' (open_comp' c x i) (i - 1)) (ensures ln_c' c i) | [] | Pulse.Typing.LN.open_comp_ln' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.comp -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.open_comp' c x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_c' c i) | {
"end_col": 36,
"end_line": 84,
"start_col": 4,
"start_line": 70
} |
FStar.Pervasives.Lemma | val open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i | val open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e)
let rec open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) = | false | null | true | match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ln_weakening x (- 1) (i - 1)
| Tm_Pure p -> open_term_ln_inv' p x i
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (- 1);
r_open_term_ln_inv' t (elab_term x) i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.ln_weakening",
"Prims.op_Minus",
"Prims.op_Subtraction",
"Pulse.Typing.LN.open_term_ln_inv'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_open_term_ln_inv'",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Elaborate.elab_ln",
"Pulse.Syntax.Naming.ln'",
"Prims.squash",
"Pulse.Syntax.Naming.open_term'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_inv' (e: term) (x: term{ln x}) (i: index)
: Lemma (requires ln' e i) (ensures ln' (open_term' e x i) (i - 1)) (decreases e) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln_inv' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
e: Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e i)
(ensures Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.open_term' e x i) (i - 1))
(decreases e) | {
"end_col": 43,
"end_line": 541,
"start_col": 4,
"start_line": 518
} |
FStar.Pervasives.Lemma | val open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i | val open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e)
let rec open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) = | false | null | true | match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Pure p -> open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t -> open_term_ln_host' t (elab_term x) i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.open_term_ln'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.open_term_ln_host'",
"Pulse.Elaborate.Pure.elab_term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Pulse.Syntax.Naming.open_term'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln' (e x: term) (i: index)
: Lemma (requires ln' (open_term' e x i) (i - 1)) (ensures ln' e i) (decreases e) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | e: Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.term -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.open_term' e x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln' e i)
(decreases e) | {
"end_col": 42,
"end_line": 62,
"start_col": 4,
"start_line": 42
} |
FStar.Pervasives.Lemma | val st_equiv_ln (#g #c1 #c2: _) (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= let ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post = d in
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0 | val st_equiv_ln (#g #c1 #c2: _) (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2)
let st_equiv_ln #g #c1 #c2 (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) = | false | null | true | let ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post = d in
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_equiv",
"Pulse.Syntax.Base.comp_st",
"Pulse.Typing.st_equiv_pre",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars",
"Pulse.Syntax.Base.comp_post",
"FStar.Reflection.Typing.typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_pre",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Reflection.Types.typ",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Pure.tm_type",
"Pulse.Syntax.Base.comp_u",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_term",
"FStar.Reflection.Typing.equiv",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.LN.open_term_ln'",
"Pulse.Syntax.Pure.term_of_no_name_var",
"Prims.unit",
"Pulse.Typing.LN.elab_ln_inverse",
"Pulse.Typing.LN.rt_equiv_ln",
"Pulse.Typing.LN.vprop_equiv_ln",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Naming.ln_c",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val st_equiv_ln (#g #c1 #c2: _) (d: st_equiv g c1 c2) : Lemma (requires ln_c c1) (ensures ln_c c2) | [] | Pulse.Typing.LN.st_equiv_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.st_equiv g c1 c2
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c c1)
(ensures Pulse.Syntax.Naming.ln_c c2) | {
"end_col": 58,
"end_line": 959,
"start_col": 3,
"start_line": 953
} |
FStar.Pervasives.Lemma | val comp_typing_ln (#g #c #u: _) (d: comp_typing g c u) : Lemma (ensures ln_c c) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let comp_typing_ln (#g:_) (#c:_) (#u:_) (d:comp_typing g c u)
: Lemma (ensures ln_c c) =
match d with
| CT_Tot _ _ _ t_typing -> tot_or_ghost_typing_ln t_typing
| CT_ST _ _ st_typing -> st_comp_typing_ln st_typing
| CT_STAtomic _ _ _ inames_typing st_typing
| CT_STGhost _ _ _ inames_typing st_typing ->
tot_or_ghost_typing_ln inames_typing;
st_comp_typing_ln st_typing | val comp_typing_ln (#g #c #u: _) (d: comp_typing g c u) : Lemma (ensures ln_c c)
let comp_typing_ln (#g #c #u: _) (d: comp_typing g c u) : Lemma (ensures ln_c c) = | false | null | true | match d with
| CT_Tot _ _ _ t_typing -> tot_or_ghost_typing_ln t_typing
| CT_ST _ _ st_typing -> st_comp_typing_ln st_typing
| CT_STAtomic _ _ _ inames_typing st_typing
| CT_STGhost _ _ _ inames_typing st_typing ->
tot_or_ghost_typing_ln inames_typing;
st_comp_typing_ln st_typing | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.universe",
"Pulse.Typing.comp_typing",
"Pulse.Syntax.Base.term",
"Pulse.Typing.universe_of",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"Pulse.Syntax.Pure.tm_type",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"Pulse.Typing.LN.st_comp_typing_ln",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_inames",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= let ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post = d in
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
let bind_comp_ln #g #x #c1 #c2 #c (d:bind_comp g x c1 c2 c)
: Lemma
(requires ln_c c1 /\ ln_c c2)
(ensures ln_c c)
= ()
let st_comp_typing_ln (#g:_) (#st:_) (d:st_comp_typing g st)
: Lemma (ensures ln_st_comp st (-1)) =
let STC _ {post} x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0
let comp_typing_ln (#g:_) (#c:_) (#u:_) (d:comp_typing g c u)
: Lemma (ensures ln_c c) = | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val comp_typing_ln (#g #c #u: _) (d: comp_typing g c u) : Lemma (ensures ln_c c) | [] | Pulse.Typing.LN.comp_typing_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | d: Pulse.Typing.comp_typing g c u171 -> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln_c c) | {
"end_col": 31,
"end_line": 985,
"start_col": 2,
"start_line": 979
} |
FStar.Pervasives.Lemma | val ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' t i /\ i <= j) (ensures ln_opt' t j) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j | val ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' t i /\ i <= j) (ensures ln_opt' t j) (decreases t)
let ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' t i /\ i <= j) (ensures ln_opt' t j) (decreases t) = | false | null | true | match t with
| None -> ()
| Some t -> ln_weakening t i j | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Prims.int",
"Pulse.Typing.LN.ln_weakening",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening_opt (t: option term) (i j: int)
: Lemma (requires ln_opt' t i /\ i <= j) (ensures ln_opt' t j) (decreases t) | [] | Pulse.Typing.LN.ln_weakening_opt | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_opt' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_opt' t j)
(decreases t) | {
"end_col": 34,
"end_line": 383,
"start_col": 4,
"start_line": 381
} |
FStar.Pervasives.Lemma | val ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j | val ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j)
let ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) = | false | null | true | match t with
| ASSERT { p = p } | FOLD { p = p } | UNFOLD { p = p } -> ln_weakening p i j
| RENAME { pairs = pairs ; goal = goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1 = t1 ; t2 = t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.proof_hint_type",
"Prims.int",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.LN.ln_weakening",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.ln_weakening_opt",
"Prims.unit",
"Pulse.Typing.LN.ln_weakening_pairs",
"Prims.l_and",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_proof_hint'",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ln_weakening_proof_hint (t: proof_hint_type) (i j: int)
: Lemma (requires ln_proof_hint' t i /\ i <= j) (ensures ln_proof_hint' t j) | [] | Pulse.Typing.LN.ln_weakening_proof_hint | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | t: Pulse.Syntax.Base.proof_hint_type -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_proof_hint' t i /\ i <= j)
(ensures Pulse.Syntax.Naming.ln_proof_hint' t j) | {
"end_col": 25,
"end_line": 423,
"start_col": 4,
"start_line": 413
} |
FStar.Pervasives.Lemma | val open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' (open_term_opt' t x i) (i - 1)) (ensures ln_opt' t i) (decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i | val open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' (open_term_opt' t x i) (i - 1)) (ensures ln_opt' t i) (decreases t)
let open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' (open_term_opt' t x i) (i - 1)) (ensures ln_opt' t i) (decreases t) = | false | null | true | match t with
| None -> ()
| Some t -> open_term_ln' t x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln'",
"Prims.unit",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_opt'",
"Pulse.Syntax.Naming.open_term_opt'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_opt' (t: option term) (x: term) (i: index)
: Lemma (requires ln_opt' (open_term_opt' t x i) (i - 1)) (ensures ln_opt' t i) (decreases t) | [] | Pulse.Typing.LN.open_term_ln_opt' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: FStar.Pervasives.Native.option Pulse.Syntax.Base.term ->
x: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_opt' (Pulse.Syntax.Naming.open_term_opt' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_opt' t i)
(decreases t) | {
"end_col": 35,
"end_line": 93,
"start_col": 4,
"start_line": 91
} |
FStar.Pervasives.Lemma | val open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i | val open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
let rec open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) = | false | null | true | match t with
| [] -> ()
| (l, r) :: tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_pairs",
"Prims.unit",
"Pulse.Typing.LN.open_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_terms'",
"Pulse.Typing.LN.open_term_pairs'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_term_ln_pairs (t: list (term & term)) (x: term) (i: index)
: Lemma (requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t) | [
"recursion"
] | Pulse.Typing.LN.open_term_ln_pairs | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
t: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
x: Pulse.Syntax.Base.term ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma
(requires Pulse.Syntax.Naming.ln_terms' (Pulse.Typing.LN.open_term_pairs' t x i) (i - 1))
(ensures Pulse.Syntax.Naming.ln_terms' t i)
(decreases t) | {
"end_col": 31,
"end_line": 125,
"start_col": 4,
"start_line": 120
} |
FStar.Pervasives.Lemma | val close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1) | val close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i)
let close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) = | false | null | true | match c with
| C_Tot t -> close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1) | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.term",
"Pulse.Typing.LN.close_term_ln'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Prims.b2t",
"Pulse.Syntax.Naming.ln_c'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_comp'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1)) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_comp_ln' (c: comp) (x: var) (i: index)
: Lemma (requires ln_c' c (i - 1)) (ensures ln_c' (close_comp' c x i) i) | [] | Pulse.Typing.LN.close_comp_ln' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | c: Pulse.Syntax.Base.comp -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c (i - 1))
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.close_comp' c x i) i) | {
"end_col": 37,
"end_line": 761,
"start_col": 4,
"start_line": 747
} |
FStar.Pervasives.Lemma | val close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i | val close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e)
let rec close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) = | false | null | true | match e.t with
| Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Unknown -> ()
| Tm_Pure p -> close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t -> r_close_term_ln' t x i | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.var",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Typing.LN.close_term_ln'",
"Prims.unit",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.binder",
"Prims.op_Addition",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.host_term",
"Pulse.Typing.LN.r_close_term_ln'",
"Prims.b2t",
"Pulse.Syntax.Naming.ln'",
"Prims.op_Subtraction",
"Prims.squash",
"Pulse.Syntax.Naming.close_term'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val close_term_ln' (e: term) (x: var) (i: index)
: Lemma (requires ln' e (i - 1)) (ensures ln' (close_term' e x i) i) (decreases e) | [
"recursion"
] | Pulse.Typing.LN.close_term_ln' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | e: Pulse.Syntax.Base.term -> x: Pulse.Syntax.Base.var -> i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln' e (i - 1))
(ensures Pulse.Syntax.Naming.ln' (Pulse.Syntax.Naming.close_term' e x i) i)
(decreases e) | {
"end_col": 28,
"end_line": 739,
"start_col": 4,
"start_line": 719
} |
FStar.Pervasives.Lemma | val open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1) | val open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1))
let open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) = | false | null | true | match c with
| C_Tot t -> open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1) | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Base.term",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Pulse.Syntax.Base.index",
"Pulse.Typing.LN.open_term_ln_inv'",
"Pulse.Syntax.Base.st_comp",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Prims.op_Addition",
"Prims.unit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"Pulse.Syntax.Naming.ln_c'",
"Prims.squash",
"Pulse.Syntax.Naming.open_comp'",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val open_comp_ln_inv' (c: comp) (x: term{ln x}) (i: index)
: Lemma (requires ln_c' c i) (ensures ln_c' (open_comp' c x i) (i - 1)) | [] | Pulse.Typing.LN.open_comp_ln_inv' | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
c: Pulse.Syntax.Base.comp ->
x: Pulse.Syntax.Base.term{Pulse.Syntax.Naming.ln x} ->
i: Pulse.Syntax.Base.index
-> FStar.Pervasives.Lemma (requires Pulse.Syntax.Naming.ln_c' c i)
(ensures Pulse.Syntax.Naming.ln_c' (Pulse.Syntax.Naming.open_comp' c x i) (i - 1)) | {
"end_col": 40,
"end_line": 563,
"start_col": 4,
"start_line": 549
} |
FStar.Pervasives.Lemma | val vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1 | val vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v)
let rec vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) = | false | null | true | match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' -> vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma",
""
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.vprop_equiv",
"Pulse.Typing.LN.vprop_equiv_ln",
"Prims.unit",
"FStar.Tactics.Types.equiv_token",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Pervasives.Native.tuple2",
"Pulse.Typing.vprop_eq_typing_inversion",
"Prims.l_True",
"Prims.squash",
"Prims.l_iff",
"Prims.b2t",
"Pulse.Syntax.Naming.ln",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vprop_equiv_ln (#g #t0 #t1: _) (v: vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1) (decreases v) | [
"recursion"
] | Pulse.Typing.LN.vprop_equiv_ln | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | v: Pulse.Typing.vprop_equiv g t0 t1
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln t0 <==> Pulse.Syntax.Naming.ln t1)
(decreases v) | {
"end_col": 31,
"end_line": 947,
"start_col": 4,
"start_line": 931
} |
FStar.Pervasives.Lemma | val st_typing_ln_tot_or_ghost_bind
(#g #t #c: _)
(d: st_typing g t c {T_TotBind? d \/ T_GhostBind? d})
(typing_ln:
(#g: env -> #e: st_term -> #c: comp -> d': st_typing g e c {d' << d}
-> Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c) | [
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Naming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let st_typing_ln_tot_or_ghost_bind #g #t #c (d:st_typing g t c { T_TotBind? d \/ T_GhostBind? d })
(typing_ln:
(#g:env ->
#e:st_term ->
#c:comp ->
d':st_typing g e c{d' << d} ->
Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c) =
match d with
| T_TotBind _ e1 e2 _ c2 b x e1_typing e2_typing
| T_GhostBind _ e1 e2 _ c2 b x e1_typing e2_typing _ ->
tot_or_ghost_typing_ln e1_typing;
typing_ln e2_typing;
open_st_term_ln e2 x;
close_comp_ln' c2 x 0;
open_comp_ln_inv' (close_comp c2 x) e1 0 | val st_typing_ln_tot_or_ghost_bind
(#g #t #c: _)
(d: st_typing g t c {T_TotBind? d \/ T_GhostBind? d})
(typing_ln:
(#g: env -> #e: st_term -> #c: comp -> d': st_typing g e c {d' << d}
-> Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c)
let st_typing_ln_tot_or_ghost_bind
#g
#t
#c
(d: st_typing g t c {T_TotBind? d \/ T_GhostBind? d})
(typing_ln:
(#g: env -> #e: st_term -> #c: comp -> d': st_typing g e c {d' << d}
-> Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c) = | false | null | false | match d with
| T_TotBind _ e1 e2 _ c2 b x e1_typing e2_typing
| T_GhostBind _ e1 e2 _ c2 b x e1_typing e2_typing _ ->
tot_or_ghost_typing_ln e1_typing;
typing_ln e2_typing;
open_st_term_ln e2 x;
close_comp_ln' c2 x 0;
open_comp_ln_inv' (close_comp c2 x) e1 0 | {
"checked_file": "Pulse.Typing.LN.fst.checked",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Typing.LN.fst"
} | [
"lemma"
] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Prims.l_or",
"Prims.b2t",
"Pulse.Typing.uu___is_T_TotBind",
"Pulse.Typing.uu___is_T_GhostBind",
"Prims.precedes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Pulse.Syntax.Naming.ln_st",
"Pulse.Syntax.Naming.ln_c",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.comp_st",
"Pulse.Syntax.Base.binder",
"Prims.eq2",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.var",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars_st",
"Pulse.Typing.tot_typing",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_st_term_nv",
"Pulse.Syntax.Base.v_as_nv",
"Pulse.Typing.LN.open_comp_ln_inv'",
"Pulse.Syntax.Naming.close_comp",
"Pulse.Typing.LN.close_comp_ln'",
"Pulse.Typing.LN.open_st_term_ln",
"Pulse.Typing.LN.tot_or_ghost_typing_ln",
"FStar.Stubs.TypeChecker.Core.E_Total",
"Pulse.Typing.ghost_typing",
"Pulse.Typing.non_informative",
"FStar.Stubs.TypeChecker.Core.E_Ghost"
] | [] | module Pulse.Typing.LN
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
//
// TODO: this is needed only for the E_Total flag,
// may be the flag should move to reflection
//
module T = FStar.Tactics.V2
let well_typed_terms_are_ln (g:R.env) (e:R.term) (t:R.term) (#eff:_) (d:RT.typing g e (eff, t))
: Lemma (ensures RT.ln e /\ RT.ln t) =
RT.well_typed_terms_are_ln g e (eff, t) d
let rt_equiv_ln (g:R.env) (e1 e2:R.term) (d:RT.equiv g e1 e2)
: Lemma (RT.ln e1 /\ RT.ln e2) = admit ()
assume
val elab_ln_inverse (e:term)
: Lemma
(requires RT.ln (elab_term e))
(ensures ln e)
assume
val open_term_ln_host' (t:host_term) (x:R.term) (i:index)
: Lemma
(requires RT.ln' (RT.subst_term t [ RT.DT i x ]) (i - 1))
(ensures RT.ln' t i)
let rec open_term_ln' (e:term)
(x:term)
(i:index)
: Lemma
(requires ln' (open_term' e x i) (i - 1))
(ensures ln' e i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
open_term_ln' p x i
| Tm_Star l r ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln' t.binder_ty x i;
open_term_ln' b x (i + 1)
| Tm_FStar t ->
open_term_ln_host' t (elab_term x) i
let open_comp_ln' (c:comp)
(x:term)
(i:index)
: Lemma
(requires ln_c' (open_comp' c x i) (i - 1))
(ensures ln_c' c i)
= match c with
| C_Tot t ->
open_term_ln' t x i
| C_ST s ->
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln' n x i;
open_term_ln' s.res x i;
open_term_ln' s.pre x i;
open_term_ln' s.post x (i + 1)
let open_term_ln_opt' (t:option term) (x:term) (i:index)
: Lemma
(requires ln_opt' (open_term_opt' t x i) (i - 1))
(ensures ln_opt' t i)
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln' t x i
// aux
let __brs_of (t:st_term{Tm_Match? t.term}) : list branch =
let Tm_Match {brs} = t.term in
brs
let rec open_term_ln_list' (t:list term) (x:term) (i:index)
: Lemma
(requires ln_list' (open_term_list' t x i) (i - 1))
(ensures ln_list' t i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln' hd x i;
open_term_ln_list' tl x i
let open_term_pairs' (t:list (term & term)) (v:term) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ DT i v ]
let rec open_term_ln_pairs (t:list (term & term)) (x:term) (i:index)
: Lemma
(requires ln_terms' (open_term_pairs' t x i) (i - 1))
(ensures ln_terms' t i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln' l x i;
open_term_ln' r x i;
open_term_ln_pairs tl x i
let open_proof_hint_ln (t:proof_hint_type) (x:term) (i:index)
: Lemma
(requires ln_proof_hint' (open_proof_hint' t x i) (i - 1))
(ensures ln_proof_hint' t i)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln' p x i
| RENAME { pairs; goal } ->
open_term_ln_pairs pairs x i;
open_term_ln_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
let open_pattern' (p:pattern) (v:term) (i:index) =
subst_pat p [DT i v]
let close_pattern' (p:pattern) (x:var) (i:index) =
subst_pat p [ND x i]
let open_pattern_args' (ps:list (pattern & bool)) (v:term) (i:index) =
subst_pat_args ps [DT i v]
let close_pattern_args' (ps:list (pattern & bool)) (x:var) (i:index) =
subst_pat_args ps [ND x i]
let rec pattern_shift_subst_invariant (p:pattern) (s:subst)
: Lemma
(ensures pattern_shift_n p == pattern_shift_n (subst_pat p s))
[SMTPat (pattern_shift_n (subst_pat p s))]
= match p with
| Pat_Cons _ subpats -> admit()
| _ -> ()
and pattern_args_shift_subst_invariant (ps:list (pattern & bool)) (s:subst)
: Lemma
(ensures pattern_args_shift_n ps == pattern_args_shift_n (subst_pat_args ps s))
= match ps with
| [] -> ()
| (hd, _)::tl ->
pattern_shift_subst_invariant hd s;
pattern_args_shift_subst_invariant tl (shift_subst_n (pattern_shift_n hd) s)
let rec open_pattern_ln (p:pattern) (x:term) (i:index)
: Lemma
(requires ln_pattern' (open_pattern' p x i) (i - 1))
(ensures ln_pattern' p i)
(decreases p)
= match p with
| Pat_Constant _
| Pat_Var _ _
| Pat_Dot_Term None -> ()
| Pat_Dot_Term (Some e) ->
open_term_ln' e x i
| Pat_Cons _ subpats ->
open_pattern_args_ln subpats x i
and open_pattern_args_ln (pats:list (pattern & bool)) (x:term) (i:index)
: Lemma
(requires ln_pattern_args' (open_pattern_args' pats x i) (i - 1))
(ensures ln_pattern_args' pats i)
(decreases pats)
= match pats with
| [] -> ()
| (hd, b)::tl ->
open_pattern_ln hd x i;
open_pattern_args_ln tl x (i + pattern_shift_n hd)
let rec open_st_term_ln' (e:st_term)
(x:term)
(i:index)
: Lemma
(requires ln_st' (open_st_term' e x i) (i - 1))
(ensures ln_st' e i)
(decreases e)
= match e.term with
| Tm_Return { term = e } ->
open_term_ln' e x i
| Tm_STApp { head=l; arg=r } ->
open_term_ln' l x i;
open_term_ln' r x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln' b.binder_ty x i;
open_comp_ln' c x (i + 1);
open_st_term_ln' body x (i + 1)
| Tm_Bind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_st_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' head x i;
open_st_term_ln' body x (i + 1)
| Tm_If { b; then_; else_; post } ->
open_term_ln' b x i;
open_st_term_ln' then_ x i;
open_st_term_ln' else_ x i;
open_term_ln_opt' post x (i + 1)
| Tm_Match {sc;returns_;brs} ->
open_term_ln' sc x i;
open_term_ln_opt' returns_ x i;
assert (__brs_of e == brs);
open_branches_ln' e brs x i;
()
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln' p x i;
open_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln' invariant x (i + 1);
open_st_term_ln' condition x i;
open_st_term_ln' body x i
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln' pre1 x i;
open_st_term_ln' body1 x i;
open_term_ln' post1 x (i + 1);
open_term_ln' pre2 x i;
open_st_term_ln' body2 x i;
open_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln' t1 x i;
open_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln' binder.binder_ty x i;
open_term_ln' initializer x i;
open_term_ln' length x i;
open_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln' typ x i;
open_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln hint_type x (i + n);
open_st_term_ln' t x (i + n)
// The Tm_Match? and __brs_of conditions are to prove that the ln_branches' below
// satisfies the termination refinment.
and open_branches_ln' (t:st_term{Tm_Match? t.term})
(brs:list branch{brs << t /\ __brs_of t == brs})
(x:term)
(i:index)
: Lemma
(requires (
assert (subst_branches t [DT i x] brs == __brs_of (subst_st_term t [DT i x])); // hint
ln_branches' (open_st_term' t x i) (subst_branches t [DT i x] brs) (i - 1)))
(ensures ln_branches' t brs i)
(decreases brs)
= match brs with
| [] -> ()
| br::brs ->
assume (ln_branch' (subst_branch [DT i x] br) (i - 1)); // Should be immediate. Unfold
open_branch_ln' br x i;
admit ()
and open_branch_ln' (br : branch) (x:term) (i:index)
: Lemma
(requires ln_branch' (subst_branch [DT i x] br) (i - 1))
(ensures ln_branch' br i)
= let (p, e) = br in
open_pattern_ln p x i;
open_st_term_ln' e x (i + pattern_shift_n p)
let open_term_ln (e:term) (v:var)
: Lemma
(requires ln (open_term e v))
(ensures ln' e 0)
= open_term_ln' e (term_of_no_name_var v) 0
let open_st_term_ln (e:st_term) (v:var)
: Lemma
(requires ln_st (open_st_term e v))
(ensures ln_st' e 0)
= open_st_term_ln' e (term_of_no_name_var v) 0
assume
val r_ln_weakening (e:R.term) (i j:int)
: Lemma
(requires RT.ln' e i /\ i <= j)
(ensures RT.ln' e j)
let rec ln_weakening (e:term) (i j:int)
: Lemma
(requires ln' e i /\ i <= j)
(ensures ln' e j)
(decreases e)
[SMTPat (ln' e j);
SMTPat (ln' e i)]
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
ln_weakening p i j
// | Tm_PureApp l _ r
| Tm_Star l r ->
ln_weakening l i j;
ln_weakening r i j
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
ln_weakening t.binder_ty i j;
ln_weakening b (i + 1) (j + 1)
| Tm_FStar t ->
r_ln_weakening t i j
let ln_weakening_comp (c:comp) (i j:int)
: Lemma
(requires ln_c' c i /\ i <= j)
(ensures ln_c' c j)
= match c with
| C_Tot t ->
ln_weakening t i j
| C_ST s ->
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
| C_STAtomic n s
| C_STGhost n s ->
ln_weakening n i j;
ln_weakening s.res i j;
ln_weakening s.pre i j;
ln_weakening s.post (i + 1) (j + 1)
let ln_weakening_opt (t:option term) (i j:int)
: Lemma
(requires ln_opt' t i /\ i <= j)
(ensures ln_opt' t j)
(decreases t)
= match t with
| None -> ()
| Some t -> ln_weakening t i j
let rec ln_weakening_list (t:list term) (i j:int)
: Lemma
(requires ln_list' t i /\ i <= j)
(ensures ln_list' t j)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
ln_weakening hd i j;
ln_weakening_list tl i j
let rec ln_weakening_pairs (t:list (term & term)) (i j:int)
: Lemma
(requires ln_terms' t i /\ i <= j)
(ensures ln_terms' t j)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
ln_weakening l i j;
ln_weakening r i j;
ln_weakening_pairs tl i j
let ln_weakening_proof_hint (t:proof_hint_type) (i j:int)
: Lemma
(requires ln_proof_hint' t i /\ i <= j)
(ensures ln_proof_hint' t j)
= match t with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
ln_weakening p i j
| RENAME { pairs; goal } ->
ln_weakening_pairs pairs i j;
ln_weakening_opt goal i j
| REWRITE { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
let rec ln_weakening_st (t:st_term) (i j:int)
: Lemma
(requires ln_st' t i /\ i <= j)
(ensures ln_st' t j)
(decreases t)
= match t.term with
| Tm_Return { term } ->
ln_weakening term i j
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
ln_weakening p i j
| Tm_IntroExists { p; witnesses } ->
ln_weakening p i j;
ln_weakening_list witnesses i j
| Tm_While { invariant; condition; body } ->
ln_weakening invariant (i + 1) (j + 1);
ln_weakening_st condition i j;
ln_weakening_st body i j
| Tm_If { b; then_; else_; post } ->
ln_weakening b i j;
ln_weakening_st then_ i j;
ln_weakening_st else_ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_Match _ ->
admit ()
| Tm_STApp { head; arg } ->
ln_weakening head i j;
ln_weakening arg i j
| Tm_Bind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening_st head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_TotBind { binder; head; body } ->
ln_weakening binder.binder_ty i j;
ln_weakening head i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Abs { b; ascription=c; body } ->
ln_weakening b.binder_ty i j;
ln_weakening_comp c (i + 1) (j + 1);
ln_weakening_st body (i + 1) (j + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
ln_weakening pre1 i j;
ln_weakening_st body1 i j;
ln_weakening post1 (i + 1) (j + 1);
ln_weakening pre2 i j;
ln_weakening_st body2 i j;
ln_weakening post2 (i + 1) (j + 1)
| Tm_Rewrite { t1; t2 } ->
ln_weakening t1 i j;
ln_weakening t2 i j
| Tm_WithLocal { initializer; body } ->
ln_weakening initializer i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_WithLocalArray { initializer; length; body } ->
ln_weakening initializer i j;
ln_weakening length i j;
ln_weakening_st body (i + 1) (j + 1)
| Tm_Admit { typ; post } ->
ln_weakening typ i j;
ln_weakening_opt post (i + 1) (j + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
ln_weakening_proof_hint hint_type (i + n) (j + n);
ln_weakening_st t (i + n) (j + n)
assume
val r_open_term_ln_inv' (e:R.term) (x:R.term { RT.ln x }) (i:index)
: Lemma
(requires RT.ln' e i)
(ensures RT.ln' (RT.subst_term e [ RT.DT i x ]) (i - 1))
let rec open_term_ln_inv' (e:term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln' e i)
(ensures ln' (open_term' e x i) (i - 1))
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown ->
ln_weakening x (-1) (i - 1)
| Tm_Pure p ->
open_term_ln_inv' p x i
// | Tm_PureApp l _ r
| Tm_Star l r ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
open_term_ln_inv' t.binder_ty x i;
open_term_ln_inv' b x (i + 1)
| Tm_FStar t ->
Pulse.Elaborate.elab_ln x (-1);
r_open_term_ln_inv' t (elab_term x) i
let open_comp_ln_inv' (c:comp)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_c' c i)
(ensures ln_c' (open_comp' c x i) (i - 1))
= match c with
| C_Tot t ->
open_term_ln_inv' t x i
| C_ST s ->
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
open_term_ln_inv' n x i;
open_term_ln_inv' s.res x i;
open_term_ln_inv' s.pre x i;
open_term_ln_inv' s.post x (i + 1)
let open_term_ln_inv_opt' (t:option term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_opt' t i)
(ensures ln_opt' (open_term_opt' t x i) (i - 1))
(decreases t)
= match t with
| None -> ()
| Some t -> open_term_ln_inv' t x i
let rec open_term_ln_inv_list' (t:list term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_list' t i)
(ensures ln_list' (open_term_list' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
open_term_ln_inv' hd x i;
open_term_ln_inv_list' tl x i
let rec open_term_ln_inv_pairs (t:list (term & term))
(x:term { ln x })
(i:index)
: Lemma
(requires ln_terms' t i)
(ensures ln_terms' (open_term_pairs' t x i) (i - 1))
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
open_term_ln_inv' l x i;
open_term_ln_inv' r x i;
open_term_ln_inv_pairs tl x i
let open_proof_hint_ln_inv (ht:proof_hint_type) (x:term { ln x }) (i:index)
: Lemma
(requires ln_proof_hint' ht i)
(ensures ln_proof_hint' (open_proof_hint' ht x i) (i - 1))
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
open_term_ln_inv' p x i
| RENAME { pairs; goal } ->
open_term_ln_inv_pairs pairs x i;
open_term_ln_inv_opt' goal x i
| REWRITE { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
#push-options "--z3rlimit_factor 2 --fuel 2 --ifuel 2"
let rec open_term_ln_inv_st' (t:st_term)
(x:term { ln x })
(i:index)
: Lemma
(requires ln_st' t i)
(ensures ln_st' (open_st_term' t x i) (i - 1))
(decreases t)
= match t.term with
| Tm_Return { term } ->
open_term_ln_inv' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
open_term_ln_inv' p x i
| Tm_IntroExists { p; witnesses } ->
open_term_ln_inv' p x i;
open_term_ln_inv_list' witnesses x i
| Tm_While { invariant; condition; body } ->
open_term_ln_inv' invariant x (i + 1);
open_term_ln_inv_st' condition x i;
open_term_ln_inv_st' body x i
| Tm_If { b; then_; else_; post } ->
open_term_ln_inv' b x i;
open_term_ln_inv_st' then_ x i;
open_term_ln_inv_st' else_ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv_st' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' head x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_STApp { head; arg} ->
open_term_ln_inv' head x i;
open_term_ln_inv' arg x i
| Tm_Abs { b; ascription=c; body } ->
open_term_ln_inv' b.binder_ty x i;
open_comp_ln_inv' c x (i + 1);
open_term_ln_inv_st' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
open_term_ln_inv' pre1 x i;
open_term_ln_inv_st' body1 x i;
open_term_ln_inv' post1 x (i + 1);
open_term_ln_inv' pre2 x i;
open_term_ln_inv_st' body2 x i;
open_term_ln_inv' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
open_term_ln_inv' t1 x i;
open_term_ln_inv' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
open_term_ln_inv' binder.binder_ty x i;
open_term_ln_inv' initializer x i;
open_term_ln_inv' length x i;
open_term_ln_inv_st' body x (i + 1)
| Tm_Admit { typ; post } ->
open_term_ln_inv' typ x i;
open_term_ln_inv_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
open_proof_hint_ln_inv hint_type x (i + n);
open_term_ln_inv_st' t x (i + n)
#pop-options
assume
val r_close_term_ln' (e:R.term) (x:var) (i:index)
: Lemma
(requires RT.ln' e (i - 1))
(ensures RT.ln' (RT.subst_term e [ RT.ND x i ]) i)
let rec close_term_ln' (e:term)
(x:var)
(i:index)
: Lemma
(requires ln' e (i - 1))
(ensures ln' (close_term' e x i) i)
(decreases e)
= match e.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Unknown -> ()
| Tm_Pure p ->
close_term_ln' p x i
| Tm_Star l r ->
close_term_ln' l x i;
close_term_ln' r x i
| Tm_ExistsSL _ t b
| Tm_ForallSL _ t b ->
close_term_ln' t.binder_ty x i;
close_term_ln' b x (i + 1)
| Tm_FStar t ->
r_close_term_ln' t x i
let close_comp_ln' (c:comp)
(x:var)
(i:index)
: Lemma
(requires ln_c' c (i - 1))
(ensures ln_c' (close_comp' c x i) i)
= match c with
| C_Tot t ->
close_term_ln' t x i
| C_ST s ->
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
| C_STAtomic n s
| C_STGhost n s ->
close_term_ln' n x i;
close_term_ln' s.res x i;
close_term_ln' s.pre x i;
close_term_ln' s.post x (i + 1)
let close_term_ln_opt' (t:option term) (x:var) (i:index)
: Lemma
(requires ln_opt' t (i - 1))
(ensures ln_opt' (close_term_opt' t x i) i)
(decreases t)
= match t with
| None -> ()
| Some t -> close_term_ln' t x i
let rec close_term_ln_list' (t:list term) (x:var) (i:index)
: Lemma
(requires ln_list' t (i - 1))
(ensures ln_list' (close_term_list' t x i) i)
(decreases t)
= match t with
| [] -> ()
| hd::tl ->
close_term_ln' hd x i;
close_term_ln_list' tl x i
let close_term_pairs' (t:list (term & term)) (v:var) (i:index)
: Tot (list (term & term))
= subst_term_pairs t [ ND v i ]
let rec close_term_ln_pairs (t:list (term & term)) (x:var) (i:index)
: Lemma
(requires ln_terms' t (i - 1))
(ensures ln_terms' (close_term_pairs' t x i) i)
(decreases t)
= match t with
| [] -> ()
| (l, r)::tl ->
close_term_ln' l x i;
close_term_ln' r x i;
close_term_ln_pairs tl x i
let close_proof_hint_ln (ht:proof_hint_type) (v:var) (i:index)
: Lemma
(requires ln_proof_hint' ht (i - 1))
(ensures ln_proof_hint' (close_proof_hint' ht v i) i)
= match ht with
| ASSERT { p }
| FOLD { p }
| UNFOLD { p } ->
close_term_ln' p v i
| RENAME { pairs; goal } ->
close_term_ln_pairs pairs v i;
close_term_ln_opt' goal v i
| REWRITE { t1; t2 } ->
close_term_ln' t1 v i;
close_term_ln' t2 v i
let rec close_st_term_ln' (t:st_term) (x:var) (i:index)
: Lemma
(requires ln_st' t (i - 1))
(ensures ln_st' (close_st_term' t x i) i)
(decreases t)
= match t.term with
| Tm_Return { term } ->
close_term_ln' term x i
| Tm_IntroPure { p }
| Tm_ElimExists { p } ->
close_term_ln' p x i
| Tm_IntroExists { p; witnesses } ->
close_term_ln' p x i;
close_term_ln_list' witnesses x i
| Tm_While { invariant; condition; body } ->
close_term_ln' invariant x (i + 1);
close_st_term_ln' condition x i;
close_st_term_ln' body x i
| Tm_If { b; then_; else_; post } ->
close_term_ln' b x i;
close_st_term_ln' then_ x i;
close_st_term_ln' else_ x i;
close_term_ln_opt' post x (i + 1)
| Tm_Match _ ->
admit ()
| Tm_Bind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_st_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_TotBind { binder; head; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' head x i;
close_st_term_ln' body x (i + 1)
| Tm_STApp { head; arg } ->
close_term_ln' head x i;
close_term_ln' arg x i
| Tm_Abs { b; ascription=c; body } ->
close_term_ln' b.binder_ty x i;
close_comp_ln' c x (i + 1);
close_st_term_ln' body x (i + 1)
| Tm_Par { pre1; body1; post1; pre2; body2; post2 } ->
close_term_ln' pre1 x i;
close_st_term_ln' body1 x i;
close_term_ln' post1 x (i + 1);
close_term_ln' pre2 x i;
close_st_term_ln' body2 x i;
close_term_ln' post2 x (i + 1)
| Tm_Rewrite { t1; t2 } ->
close_term_ln' t1 x i;
close_term_ln' t2 x i
| Tm_WithLocal { binder; initializer; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_st_term_ln' body x (i + 1)
| Tm_WithLocalArray { binder; initializer; length; body } ->
close_term_ln' binder.binder_ty x i;
close_term_ln' initializer x i;
close_term_ln' length x i;
close_st_term_ln' body x (i + 1)
| Tm_Admit { typ; post } ->
close_term_ln' typ x i;
close_term_ln_opt' post x (i + 1)
| Tm_ProofHintWithBinders { binders; hint_type; t } ->
let n = L.length binders in
close_proof_hint_ln hint_type x (i + n);
close_st_term_ln' t x (i + n)
let close_comp_ln (c:comp) (v:var)
: Lemma
(requires ln_c c)
(ensures ln_c' (close_comp c v) 0)
= close_comp_ln' c v 0
#push-options "--ifuel 2 --z3rlimit_factor 4 --z3cliopt 'smt.qi.eager_threshold=100'"
let lift_comp_ln #g #c1 #c2 (d:lift_comp g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= ()
let tot_or_ghost_typing_ln
(#g:_) (#e:_) (#t:_) (#eff:_)
(d:typing g e eff t)
: Lemma
(ensures ln e /\ ln t)
= let E dt = d in
well_typed_terms_are_ln _ _ _ dt;
elab_ln_inverse e;
elab_ln_inverse t
let tot_typing_ln
(#g:_) (#e:_) (#t:_)
(d:tot_typing g e t)
: Lemma
(ensures ln e /\ ln t)
= tot_or_ghost_typing_ln d
let rec vprop_equiv_ln (#g:_) (#t0 #t1:_) (v:vprop_equiv g t0 t1)
: Lemma (ensures ln t0 <==> ln t1)
(decreases v)
= match v with
| VE_Refl _ _ -> ()
| VE_Sym _ _ _ v' ->
vprop_equiv_ln v'
| VE_Trans g t0 t2 t1 v02 v21 ->
vprop_equiv_ln v02;
vprop_equiv_ln v21
| VE_Ctxt g s0 s1 s0' s1' v0 v1 ->
vprop_equiv_ln v0;
vprop_equiv_ln v1
| VE_Unit g t -> ()
| VE_Comm g t0 t1 -> ()
| VE_Assoc g t0 t1 t2 -> ()
| VE_Ext g t0 t1 token ->
let d0, d1 = vprop_eq_typing_inversion _ _ _ token in
tot_or_ghost_typing_ln d0;
tot_or_ghost_typing_ln d1
let st_equiv_ln #g #c1 #c2 (d:st_equiv g c1 c2)
: Lemma
(requires ln_c c1)
(ensures ln_c c2)
= let ST_VPropEquiv _ _ _ x (E dpre) _dres _dpost eq_res eq_pre eq_post = d in
vprop_equiv_ln eq_pre;
open_term_ln_inv' (comp_post c1) (term_of_no_name_var x) 0;
vprop_equiv_ln eq_post;
rt_equiv_ln _ _ _ eq_res;
elab_ln_inverse (comp_res c2);
open_term_ln' (comp_post c2) (term_of_no_name_var x) 0
let bind_comp_ln #g #x #c1 #c2 #c (d:bind_comp g x c1 c2 c)
: Lemma
(requires ln_c c1 /\ ln_c c2)
(ensures ln_c c)
= ()
let st_comp_typing_ln (#g:_) (#st:_) (d:st_comp_typing g st)
: Lemma (ensures ln_st_comp st (-1)) =
let STC _ {post} x res_typing pre_typing post_typing = d in
tot_or_ghost_typing_ln res_typing;
tot_or_ghost_typing_ln pre_typing;
tot_or_ghost_typing_ln post_typing;
open_term_ln' post (null_var x) 0
let comp_typing_ln (#g:_) (#c:_) (#u:_) (d:comp_typing g c u)
: Lemma (ensures ln_c c) =
match d with
| CT_Tot _ _ _ t_typing -> tot_or_ghost_typing_ln t_typing
| CT_ST _ _ st_typing -> st_comp_typing_ln st_typing
| CT_STAtomic _ _ _ inames_typing st_typing
| CT_STGhost _ _ _ inames_typing st_typing ->
tot_or_ghost_typing_ln inames_typing;
st_comp_typing_ln st_typing
let st_typing_ln_tot_or_ghost_bind #g #t #c (d:st_typing g t c { T_TotBind? d \/ T_GhostBind? d })
(typing_ln:
(#g:env ->
#e:st_term ->
#c:comp ->
d':st_typing g e c{d' << d} ->
Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c) = | false | false | Pulse.Typing.LN.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val st_typing_ln_tot_or_ghost_bind
(#g #t #c: _)
(d: st_typing g t c {T_TotBind? d \/ T_GhostBind? d})
(typing_ln:
(#g: env -> #e: st_term -> #c: comp -> d': st_typing g e c {d' << d}
-> Lemma (ensures ln_st e /\ ln_c c)))
: Lemma (ensures ln_st t /\ ln_c c) | [] | Pulse.Typing.LN.st_typing_ln_tot_or_ghost_bind | {
"file_name": "lib/steel/pulse/Pulse.Typing.LN.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
d: Pulse.Typing.st_typing g t c {T_TotBind? d \/ T_GhostBind? d} ->
typing_ln:
(d': Pulse.Typing.st_typing g e c {d' << d}
-> FStar.Pervasives.Lemma
(ensures Pulse.Syntax.Naming.ln_st e /\ Pulse.Syntax.Naming.ln_c c))
-> FStar.Pervasives.Lemma (ensures Pulse.Syntax.Naming.ln_st t /\ Pulse.Syntax.Naming.ln_c c) | {
"end_col": 44,
"end_line": 1003,
"start_col": 2,
"start_line": 996
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n) | let a_spec (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len {0 < BD.bn_v n}) = | false | null | false | Lib.NatMod.nat_mod (BD.bn_v n) | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.NatMod.nat_mod"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val a_spec : n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} -> Type0 | [] | Hacl.Bignum.AlmostMontExponentiation.a_spec | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} -> Type0 | {
"end_col": 32,
"end_line": 38,
"start_col": 2,
"start_line": 38
} |
|
Prims.Tot | val linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len) | val linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0
let linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 = | false | null | false | BD.bn_v a < pow2 (bits t * len) | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val linv (#t: limb_t) (#len: SN.bn_len t) (n a: BD.lbignum t len) : Type0 | [] | Hacl.Bignum.AlmostMontExponentiation.linv | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len
-> Type0 | {
"end_col": 33,
"end_line": 42,
"start_col": 2,
"start_line": 42
} |
Prims.Tot | val refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n | val refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n
let refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n = | false | null | false | BD.bn_v a % BD.bn_v n | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Bignum.AlmostMontExponentiation.linv",
"Prims.op_Modulus",
"Hacl.Bignum.AlmostMontExponentiation.a_spec"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val refl
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len {0 < BD.bn_v n})
(a: BD.lbignum t len {linv n a})
: a_spec n | [] | Hacl.Bignum.AlmostMontExponentiation.refl | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len {0 < Hacl.Spec.Bignum.Definitions.bn_v n} ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len {Hacl.Bignum.AlmostMontExponentiation.linv n a}
-> Hacl.Bignum.AlmostMontExponentiation.a_spec n | {
"end_col": 23,
"end_line": 46,
"start_col": 2,
"start_line": 46
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) | let bn_exp_almost_mont_st (t: limb_t) (len: BN.meta_len t) = | false | null | false |
n: lbignum t len ->
mu: limb t ->
r2: lbignum t len ->
aM: lbignum t len ->
bBits: size_t ->
b: lbignum t (blocks0 bBits (size (bits t))) ->
resM: lbignum t len
-> Stack unit
(requires
fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\ disjoint resM aM /\
disjoint resM b /\ disjoint resM n /\ disjoint n aM /\ disjoint resM r2 /\ disjoint aM r2 /\
disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures
fun h0 _ h1 ->
modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b))) | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_pre",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.loc",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Bignum.Definitions.bn_v",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"Lib.Exponentiation.Definition.comm_monoid",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.SEC"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | {
"end_col": 68,
"end_line": 214,
"start_col": 4,
"start_line": 198
} |
|
Prims.Tot | val mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
} | val mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len)
let mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) = | false | null | false | {
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n
} | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"Hacl.Impl.Exponentiation.Definitions.Mkto_comm_monoid",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.a_spec",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Hacl.Bignum.AlmostMontExponentiation.linv_ctx",
"Hacl.Bignum.AlmostMontExponentiation.linv",
"Hacl.Bignum.AlmostMontExponentiation.refl",
"Hacl.Impl.Exponentiation.Definitions.to_comm_monoid"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) = | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_to_nat_mont_ll_comm_monoid
(t: limb_t)
(len: BN.meta_len t)
(n: BD.lbignum t (v len))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) | [] | Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t: Hacl.Bignum.Definitions.limb_t ->
len: Hacl.Bignum.meta_len t ->
n: Hacl.Spec.Bignum.Definitions.lbignum t (Lib.IntTypes.v len) ->
mu: Hacl.Bignum.Definitions.limb t {Hacl.Spec.Bignum.Montgomery.bn_mont_pre n mu}
-> Hacl.Impl.Exponentiation.Definitions.to_comm_monoid t len (len +! len) | {
"end_col": 19,
"end_line": 68,
"start_col": 2,
"start_line": 64
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n | let bn_exp_almost_mont_pre
(#t: limb_t)
(#len: SN.bn_len t)
(n: BD.lbignum t len)
(mu: limb t)
(r2 aM: BD.lbignum t len)
(bBits: size_nat)
(b: BD.lbignum t (BD.blocks0 bBits (bits t)))
= | false | null | false | SM.bn_mont_pre n mu /\ BD.bn_v r2 == pow2 ((2 * bits t) * len) % BD.bn_v n /\ BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.logical"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t))) | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_pre : n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
aM: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_pre | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
aM: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | {
"end_col": 25,
"end_line": 193,
"start_col": 3,
"start_line": 190
} |
|
Prims.Tot | val linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n | val linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0
let linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 = | false | null | false | let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\ 0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 ((2 * bits t) * len) % BD.bn_v n | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Addition",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val linv_ctx (#t: limb_t) (#len: SN.bn_len t) (n: BD.lbignum t len) (ctx: BD.lbignum t (len + len))
: Type0 | [] | Hacl.Bignum.AlmostMontExponentiation.linv_ctx | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
ctx: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Type0 | {
"end_col": 71,
"end_line": 53,
"start_col": 105,
"start_line": 49
} |
Prims.Tot | val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_vartime_threshold then
bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM | val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM = | false | null | false | if bBits <. size ME.bn_exp_mont_vartime_threshold
then bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Less_Dot",
"Lib.IntTypes.U32",
"Hacl.Spec.Bignum.MontExponentiation.bn_exp_mont_vartime_threshold",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_vartime",
"Prims.unit",
"Prims.bool",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_vartime",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
///////////////////////////////////////////////
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_vartime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 63,
"end_line": 309,
"start_col": 2,
"start_line": 306
} |
Prims.Tot | val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_consttime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_consttime_threshold then
bn_exp_almost_mont_bm_consttime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_consttime k 4ul n mu r2 aM bBits b resM | val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_consttime #t k n mu r2 aM bBits b resM = | false | null | false | if bBits <. size ME.bn_exp_mont_consttime_threshold
then bn_exp_almost_mont_bm_consttime k n mu r2 aM bBits b resM
else bn_exp_almost_mont_fw_consttime k 4ul n mu r2 aM bBits b resM | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Less_Dot",
"Lib.IntTypes.U32",
"Hacl.Spec.Bignum.MontExponentiation.bn_exp_mont_consttime_threshold",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_consttime",
"Prims.unit",
"Prims.bool",
"Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_consttime",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
///////////////////////////////////////////////
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_vartime #t k n mu r2 aM bBits b resM =
if bBits <. size ME.bn_exp_mont_vartime_threshold then
bn_exp_almost_mont_bm_vartime k n mu r2 aM bBits b resM
else
bn_exp_almost_mont_fw_vartime k 4ul n mu r2 aM bBits b resM
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_consttime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 65,
"end_line": 319,
"start_col": 2,
"start_line": 316
} |
Prims.Tot | val mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
} | val mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
let mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) = | false | null | false | {
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu
} | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"FStar.Ghost.erased",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"FStar.Ghost.reveal",
"Hacl.Impl.Exponentiation.Definitions.Mkconcrete_ops",
"Lib.IntTypes.op_Plus_Bang",
"FStar.Ghost.hide",
"Hacl.Impl.Exponentiation.Definitions.to_comm_monoid",
"Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_one",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_mul",
"Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_sqr",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) = | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_bn_almost_mont_concrete_ops
(t: limb_t)
(k: AM.almost_mont t)
(n: Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu: limb t {SM.bn_mont_pre n mu})
: BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) | [] | Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t: Hacl.Bignum.Definitions.limb_t ->
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
n:
FStar.Ghost.erased (Hacl.Spec.Bignum.Definitions.lbignum t
(Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)))) ->
mu:
Hacl.Bignum.Definitions.limb t
{Hacl.Spec.Bignum.Montgomery.bn_mont_pre (FStar.Ghost.reveal n) mu}
-> Hacl.Impl.Exponentiation.Definitions.concrete_ops t
(Mkbn?.len (Mkalmost_mont?.bn k))
(Mkbn?.len (Mkalmost_mont?.bn k) +! Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 38,
"end_line": 145,
"start_col": 2,
"start_line": 142
} |
Prims.Tot | val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM | val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM = | false | null | false | let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t)
(v k.AM.bn.BN.len)
(BD.bn_v n)
(v mu)
(bn_v h0 aM)
(bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"FStar.Ghost.erased",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"FStar.Ghost.reveal",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__sqr",
"Prims.unit",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul_is_mont_mul_lemma",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_mul_lemma",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_sqr_lemma",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [] | Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_sqr | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
n:
FStar.Ghost.erased (Hacl.Spec.Bignum.Definitions.lbignum t
(Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)))) ->
mu:
Hacl.Bignum.Definitions.limb t
{Hacl.Spec.Bignum.Montgomery.bn_mont_pre (FStar.Ghost.reveal n) mu}
-> Hacl.Impl.Exponentiation.Definitions.lsqr_st t
(Mkbn?.len (Mkalmost_mont?.bn k))
(Mkbn?.len (Mkalmost_mont?.bn k) +! Mkbn?.len (Mkalmost_mont?.bn k))
(Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid t
(Mkbn?.len (Mkalmost_mont?.bn k))
(FStar.Ghost.reveal n)
mu) | {
"end_col": 27,
"end_line": 131,
"start_col": 46,
"start_line": 125
} |
Prims.Tot | val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM | val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM = | false | null | false | let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t)
(v k.AM.bn.BN.len)
(BD.bn_v n)
(v mu)
(bn_v h0 aM)
(bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"FStar.Ghost.erased",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"FStar.Ghost.reveal",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__mul",
"Prims.unit",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_mul_is_mont_mul_lemma",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_mul_lemma",
"Lib.Buffer.as_seq",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [] | Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_mul | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
n:
FStar.Ghost.erased (Hacl.Spec.Bignum.Definitions.lbignum t
(Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)))) ->
mu:
Hacl.Bignum.Definitions.limb t
{Hacl.Spec.Bignum.Montgomery.bn_mont_pre (FStar.Ghost.reveal n) mu}
-> Hacl.Impl.Exponentiation.Definitions.lmul_st t
(Mkbn?.len (Mkalmost_mont?.bn k))
(Mkbn?.len (Mkalmost_mont?.bn k) +! Mkbn?.len (Mkalmost_mont?.bn k))
(Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid t
(Mkbn?.len (Mkalmost_mont?.bn k))
(FStar.Ghost.reveal n)
mu) | {
"end_col": 30,
"end_line": 113,
"start_col": 49,
"start_line": 108
} |
FStar.HyperStack.ST.Stack | val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) | val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx = | true | null | false | let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro (LSeq.sub (as_seq h2 ctx) 0 (v len)) (LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2) | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.Definitions.lbignum",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.v",
"Lib.Sequence.sub",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Prims.unit",
"Lib.Sequence.eq_intro",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.update_sub",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx)) | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx)) | [] | Hacl.Bignum.AlmostMontExponentiation.mk_ctx | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Hacl.Bignum.meta_len t ->
n: Hacl.Bignum.Definitions.lbignum t len ->
r2: Hacl.Bignum.Definitions.lbignum t len ->
ctx: Hacl.Bignum.Definitions.lbignum t (len +! len)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 67,
"end_line": 176,
"start_col": 28,
"start_line": 165
} |
Prims.Tot | val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu)) | val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM = | false | null | false | [@@ inline_let ]let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n == E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu)) | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"FStar.Ghost.erased",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"FStar.Ghost.reveal",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Spec.Exponentiation.Lemmas.mont_one_ll",
"Lib.IntTypes.bits",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Hacl.Bignum.AlmostMontExponentiation.linv",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_one",
"Hacl.Spec.Bignum.Montgomery.bn_mont_one_lemma",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Bignum.Montgomery.bn_mont_one",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__from",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t",
"Lib.Exponentiation.Definition.comm_monoid",
"Lib.NatMod.nat_mod",
"FStar.Ghost.hide",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Hacl.Bignum.meta_len"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu) | [] | Hacl.Bignum.AlmostMontExponentiation.bn_almost_mont_one | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
n:
FStar.Ghost.erased (Hacl.Spec.Bignum.Definitions.lbignum t
(Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)))) ->
mu:
Hacl.Bignum.Definitions.limb t
{Hacl.Spec.Bignum.Montgomery.bn_mont_pre (FStar.Ghost.reveal n) mu}
-> Hacl.Impl.Exponentiation.Definitions.lone_st t
(Mkbn?.len (Mkalmost_mont?.bn k))
(Mkbn?.len (Mkalmost_mont?.bn k) +! Mkbn?.len (Mkalmost_mont?.bn k))
(Hacl.Bignum.AlmostMontExponentiation.mk_to_nat_mont_ll_comm_monoid t
(Mkbn?.len (Mkalmost_mont?.bn k))
(FStar.Ghost.reveal n)
mu) | {
"end_col": 54,
"end_line": 96,
"start_col": 2,
"start_line": 82
} |
Prims.Tot | val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM = | false | null | false | push_frame ();
let h0 = ST.get () in
[@@ inline_let ]let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM
bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.IntTypes.bits",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Lib.IntTypes.max_size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_mod_base",
"Hacl.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Lib.Exponentiation.exp_fw_lemma",
"Lib.NatMod.nat_mod",
"FStar.Ghost.reveal",
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.op_Modulus",
"Hacl.Impl.Exponentiation.lexp_fw_vartime",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops",
"FStar.Ghost.hide",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Bignum.AlmostMontExponentiation.mk_ctx",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.add",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.Buffer.lbuffer",
"FStar.Ghost.erased",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.op_GreaterThan",
"Prims.op_Subtraction",
"Prims.op_Multiply",
"Lib.IntTypes.mk_int",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_vartime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
l:
Lib.IntTypes.size_t
{ 0 < Lib.IntTypes.v l /\ Lib.IntTypes.v l < Lib.IntTypes.bits Lib.IntTypes.U32 /\
Prims.pow2 (Lib.IntTypes.v l) * Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)) <=
Lib.IntTypes.max_size_t }
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 14,
"end_line": 275,
"start_col": 2,
"start_line": 264
} |
Prims.Tot | val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_consttime #t k l n mu r2 aM bBits b resM = | false | null | false | push_frame ();
let h0 = ST.get () in
[@@ inline_let ]let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM
bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.IntTypes.bits",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Lib.IntTypes.max_size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_mod_base",
"Hacl.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Lib.Exponentiation.exp_fw_lemma",
"Lib.NatMod.nat_mod",
"FStar.Ghost.reveal",
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.op_Modulus",
"Hacl.Impl.Exponentiation.lexp_fw_consttime",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops",
"FStar.Ghost.hide",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Bignum.AlmostMontExponentiation.mk_ctx",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.add",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.Buffer.lbuffer",
"FStar.Ghost.erased",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.op_GreaterThan",
"Prims.op_Subtraction",
"Prims.op_Multiply",
"Lib.IntTypes.mk_int",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_vartime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_fw_vartime #t k l n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_fw_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) l ctx aM bLen bBits b resM;
LE.exp_fw_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b) (v l);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_fw_consttime:
#t:limb_t
-> k:AM.almost_mont t
-> l:size_t{0 < v l /\ v l < bits U32 /\ pow2 (v l) * v k.AM.bn.BN.len <= max_size_t} ->
bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_fw_consttime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Hacl.Bignum.AlmostMontgomery.almost_mont t ->
l:
Lib.IntTypes.size_t
{ 0 < Lib.IntTypes.v l /\ Lib.IntTypes.v l < Lib.IntTypes.bits Lib.IntTypes.U32 /\
Prims.pow2 (Lib.IntTypes.v l) * Lib.IntTypes.v (Mkbn?.len (Mkalmost_mont?.bn k)) <=
Lib.IntTypes.max_size_t }
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 14,
"end_line": 298,
"start_col": 2,
"start_line": 287
} |
Prims.Tot | val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_consttime #t k n mu r2 aM bBits b resM = | false | null | false | push_frame ();
let h0 = ST.get () in
[@@ inline_let ]let len = k.AM.bn.BN.len in
[@@ inline_let ]let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BE.lexp_mont_ladder_swap_consttime len
(len +! len)
(mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu)
ctx
aM
bLen
bBits
b
resM;
LE.exp_mont_ladder_swap_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
LE.exp_mont_ladder_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_mod_base",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Lib.Exponentiation.exp_mont_ladder_lemma",
"Lib.NatMod.nat_mod",
"FStar.Ghost.reveal",
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.op_Modulus",
"Lib.Exponentiation.exp_mont_ladder_swap_lemma",
"Hacl.Impl.Exponentiation.lexp_mont_ladder_swap_consttime",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops",
"FStar.Ghost.hide",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Bignum.AlmostMontExponentiation.mk_ctx",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.add",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.Buffer.lbuffer",
"FStar.Ghost.erased",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.IntTypes.mk_int",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame ()
// This function is constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_bm_consttime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_consttime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 14,
"end_line": 252,
"start_col": 2,
"start_line": 240
} |
Prims.Tot | val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.AlmostMontgomery",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "SA"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM =
push_frame ();
let h0 = ST.get () in
[@inline_let] let len = k.AM.bn.BN.len in
[@inline_let] let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len (len +! len) (mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu) ctx aM bLen bBits b resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len
let bn_exp_almost_mont_bm_vartime #t k n mu r2 aM bBits b resM = | false | null | false | push_frame ();
let h0 = ST.get () in
[@@ inline_let ]let len = k.AM.bn.BN.len in
[@@ inline_let ]let bLen = blocks0 bBits (size (bits t)) in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu)) in
let ctx = create (len +! len) (uint #t #SEC 0) in
mk_ctx #t len n r2 ctx;
BD.bn_eval_bound (as_seq h0 aM) (v len);
BE.lexp_rl_vartime len
(len +! len)
(mk_bn_almost_mont_concrete_ops t k (as_seq h0 n) mu)
ctx
aM
bLen
bBits
b
resM;
LE.exp_rl_lemma k1 (bn_v h0 aM % bn_v h0 n) (v bBits) (bn_v h0 b);
E.pow_nat_mont_ll_mod_base (bits t) (v len) (bn_v h0 n) (v mu) (bn_v h0 aM) (bn_v h0 b);
pop_frame () | {
"checked_file": "Hacl.Bignum.AlmostMontExponentiation.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Exponentiation.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.MontExponentiation.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.AlmostMontExponentiation.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Bignum.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.AlmostMontExponentiation.fst"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.AlmostMontgomery.almost_mont",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.__proj__Mkbn__item__len",
"Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__bn",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.blocks0",
"Lib.IntTypes.size",
"Lib.IntTypes.bits",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Spec.Exponentiation.Lemmas.pow_nat_mont_ll_mod_base",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.bn_v",
"Lib.IntTypes.SEC",
"Lib.Exponentiation.exp_rl_lemma",
"Lib.NatMod.nat_mod",
"FStar.Ghost.reveal",
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.op_Modulus",
"Hacl.Impl.Exponentiation.lexp_rl_vartime",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Bignum.AlmostMontExponentiation.mk_bn_almost_mont_concrete_ops",
"FStar.Ghost.hide",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Bignum.AlmostMontExponentiation.mk_ctx",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.add",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.Buffer.lbuffer",
"FStar.Ghost.erased",
"Hacl.Spec.Exponentiation.Lemmas.mk_nat_mont_ll_comm_monoid",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.IntTypes.mk_int",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.AlmostMontExponentiation
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BD = Hacl.Spec.Bignum.Definitions
module SN = Hacl.Spec.Bignum
module SM = Hacl.Spec.Bignum.Montgomery
module SA = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
module AM = Hacl.Bignum.AlmostMontgomery
module LE = Lib.Exponentiation
module BE = Hacl.Impl.Exponentiation
module E = Hacl.Spec.Exponentiation.Lemmas
module A = Hacl.Spec.AlmostMontgomery.Lemmas
module M = Hacl.Spec.Montgomery.Lemmas
module ME = Hacl.Spec.Bignum.MontExponentiation
module S = Hacl.Spec.Bignum.AlmostMontExponentiation
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let a_spec (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) =
Lib.NatMod.nat_mod (BD.bn_v n)
inline_for_extraction noextract
let linv (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (a:BD.lbignum t len) : Type0 =
BD.bn_v a < pow2 (bits t * len)
inline_for_extraction noextract
let refl (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len{0 < BD.bn_v n}) (a:BD.lbignum t len{linv n a}) : a_spec n =
BD.bn_v a % BD.bn_v n
inline_for_extraction noextract
let linv_ctx (#t:limb_t) (#len:SN.bn_len t) (n:BD.lbignum t len) (ctx:BD.lbignum t (len + len)) : Type0 =
let ctx_n = LSeq.sub ctx 0 len in
let ctx_r2 = LSeq.sub ctx len len in
ctx_n == n /\
0 < BD.bn_v n /\ BD.bn_v ctx_r2 = pow2 (2 * bits t * len) % BD.bn_v n
inline_for_extraction noextract
let mk_to_nat_mont_ll_comm_monoid
(t:limb_t)
(len:BN.meta_len t)
(n:BD.lbignum t (v len))
(mu:limb t{SM.bn_mont_pre n mu})
: BE.to_comm_monoid t len (len +! len) =
{
BE.a_spec = a_spec n;
BE.comm_monoid = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu);
BE.linv_ctx = linv_ctx n;
BE.linv = linv n;
BE.refl = refl n;
}
inline_for_extraction noextract
val bn_almost_mont_one:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lone_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_one #t k n mu ctx oneM =
[@inline_let] let len = k.AM.bn.BN.len in
let k1 = Ghost.hide (E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (BD.bn_v n) (v mu)) in
let ctx_n = sub ctx 0ul len in
let ctx_r2 = sub ctx len len in
let h0 = ST.get () in
BM.bn_mont_one len k.AM.from ctx_n mu ctx_r2 oneM;
let h1 = ST.get () in
SM.bn_mont_one_lemma n mu (as_seq h0 ctx_r2);
assert (BD.bn_v (as_seq h1 oneM) == M.mont_one (bits t) (v len) (BD.bn_v n) (v mu));
assert (BD.bn_v (as_seq h1 oneM) < BD.bn_v n);
BD.bn_eval_bound n (v len);
assert (linv n (as_seq h1 oneM));
Math.Lemmas.small_mod (BD.bn_v (as_seq h1 oneM)) (BD.bn_v n);
assert (BD.bn_v (as_seq h1 oneM) % BD.bn_v n ==
E.mont_one_ll (bits t) (v len) (BD.bn_v n) (v mu))
inline_for_extraction noextract
val bn_almost_mont_mul:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lmul_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_mul #t k n mu ctx aM bM resM =
let h0 = ST.get () in
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 bM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 bM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.mul ctx_n mu aM bM resM
inline_for_extraction noextract
val bn_almost_mont_sqr:
#t:limb_t
-> k:AM.almost_mont t
-> n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len))
-> mu:limb t{SM.bn_mont_pre n mu} ->
BE.lsqr_st t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len)
(mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu)
let bn_almost_mont_sqr #t k n mu ctx aM resM =
let h0 = ST.get () in
SA.bn_almost_mont_sqr_lemma n mu (as_seq h0 aM);
SA.bn_almost_mont_mul_lemma n mu (as_seq h0 aM) (as_seq h0 aM);
A.almost_mont_mul_is_mont_mul_lemma (bits t) (v k.AM.bn.BN.len) (BD.bn_v n) (v mu) (bn_v h0 aM) (bn_v h0 aM);
let ctx_n = sub ctx 0ul k.AM.bn.BN.len in
k.AM.sqr ctx_n mu aM resM
inline_for_extraction noextract
let mk_bn_almost_mont_concrete_ops
(t:limb_t)
(k:AM.almost_mont t)
(n:Ghost.erased (BD.lbignum t (v k.AM.bn.BN.len)))
(mu:limb t{SM.bn_mont_pre n mu}) :
BE.concrete_ops t k.AM.bn.BN.len (k.AM.bn.BN.len +! k.AM.bn.BN.len) =
{
BE.to = mk_to_nat_mont_ll_comm_monoid t k.AM.bn.BN.len n mu;
BE.lone = bn_almost_mont_one k n mu;
BE.lmul = bn_almost_mont_mul k n mu;
BE.lsqr = bn_almost_mont_sqr k n mu;
}
///////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val mk_ctx:
#t:limb_t
-> len:BN.meta_len t
-> n:lbignum t len
-> r2:lbignum t len
-> ctx:lbignum t (len +! len) ->
Stack unit
(requires fun h ->
live h n /\ live h r2 /\ live h ctx /\
disjoint n ctx /\ disjoint r2 ctx /\
0 < bn_v h n /\ bn_v h r2 == pow2 (2 * bits t * v len) % bn_v h n)
(ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\
linv_ctx (as_seq h0 n) (as_seq h1 ctx))
let mk_ctx #t len n r2 ctx =
let h0 = ST.get () in
update_sub ctx 0ul len n;
let h1 = ST.get () in
assert (LSeq.sub (as_seq h1 ctx) 0 (v len) == as_seq h0 n);
update_sub ctx len len r2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ctx) 0 (v len))
(LSeq.sub (as_seq h1 ctx) 0 (v len));
assert (LSeq.sub (as_seq h2 ctx) 0 (v len) == as_seq h0 n);
assert (LSeq.sub (as_seq h2 ctx) (v len) (v len) == as_seq h0 r2)
noextract
let bn_exp_almost_mont_pre
(#t:limb_t)
(#len:SN.bn_len t)
(n:BD.lbignum t len)
(mu:limb t)
(r2:BD.lbignum t len)
(aM:BD.lbignum t len)
(bBits:size_nat)
(b:BD.lbignum t (BD.blocks0 bBits (bits t)))
=
SM.bn_mont_pre n mu /\
BD.bn_v r2 == pow2 (2 * bits t * len) % BD.bn_v n /\
BD.bn_v b < pow2 bBits /\
BD.bn_v aM < BD.bn_v n
inline_for_extraction noextract
let bn_exp_almost_mont_st (t:limb_t) (len:BN.meta_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
live h n /\ live h aM /\ live h b /\ live h resM /\ live h r2 /\
disjoint resM aM /\ disjoint resM b /\ disjoint resM n /\ disjoint n aM /\
disjoint resM r2 /\ disjoint aM r2 /\ disjoint n r2 /\ disjoint aM b /\
bn_exp_almost_mont_pre (as_seq h n) mu (as_seq h r2) (as_seq h aM) (v bBits) (as_seq h b))
(ensures fun h0 _ h1 -> modifies (loc aM |+| loc resM) h0 h1 /\
(let k1 = E.mk_nat_mont_ll_comm_monoid (bits t) (v len) (bn_v h0 n) (v mu) in
bn_v h1 resM % bn_v h0 n == LE.pow k1 (bn_v h0 aM) (bn_v h0 b)))
// This function is *NOT* constant-time on the exponent b.
inline_for_extraction noextract
val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | false | false | Hacl.Bignum.AlmostMontExponentiation.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_exp_almost_mont_bm_vartime: #t:limb_t -> k:AM.almost_mont t -> bn_exp_almost_mont_st t k.AM.bn.BN.len | [] | Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_bm_vartime | {
"file_name": "code/bignum/Hacl.Bignum.AlmostMontExponentiation.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Bignum.AlmostMontgomery.almost_mont t
-> Hacl.Bignum.AlmostMontExponentiation.bn_exp_almost_mont_st t (Mkbn?.len (Mkalmost_mont?.bn k)) | {
"end_col": 14,
"end_line": 233,
"start_col": 2,
"start_line": 221
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_u8 = tot_parse_u8 | let parse_u8 = | false | null | false | tot_parse_u8 | {
"checked_file": "LowParse.Tot.Int.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Int.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Int.fst"
} | [
"total"
] | [
"LowParse.Spec.Int.tot_parse_u8"
] | [] | module LowParse.Tot.Int
include LowParse.Spec.Int
include LowParse.Tot.Base | false | true | LowParse.Tot.Int.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_u8 : LowParse.Spec.Base.tot_parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t | [] | LowParse.Tot.Int.parse_u8 | {
"file_name": "src/lowparse/LowParse.Tot.Int.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Spec.Base.tot_parser LowParse.Spec.Int.parse_u8_kind FStar.UInt8.t | {
"end_col": 27,
"end_line": 6,
"start_col": 15,
"start_line": 6
} |
|
Prims.Tot | val serialize_u8 : serializer parse_u8 | [
{
"abbrev": false,
"full_module": "LowParse.Tot.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_u8 =
serialize_ext _ serialize_u8 _ | val serialize_u8 : serializer parse_u8
let serialize_u8 = | false | null | false | serialize_ext _ serialize_u8 _ | {
"checked_file": "LowParse.Tot.Int.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Tot.Base.fst.checked",
"LowParse.Spec.Int.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Tot.Int.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.serialize_ext",
"LowParse.Spec.Int.parse_u8_kind",
"FStar.UInt8.t",
"LowParse.Spec.Int.parse_u8",
"LowParse.Spec.Int.serialize_u8",
"LowParse.Tot.Int.parse_u8"
] | [] | module LowParse.Tot.Int
include LowParse.Spec.Int
include LowParse.Tot.Base
inline_for_extraction
let parse_u8 = tot_parse_u8
val serialize_u8 : serializer parse_u8 | false | true | LowParse.Tot.Int.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_u8 : serializer parse_u8 | [] | LowParse.Tot.Int.serialize_u8 | {
"file_name": "src/lowparse/LowParse.Tot.Int.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.Tot.Base.serializer LowParse.Tot.Int.parse_u8 | {
"end_col": 32,
"end_line": 10,
"start_col": 2,
"start_line": 10
} |
Prims.Pure | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Equals_Hat = gte | let op_Greater_Equals_Hat = | false | null | false | gte | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [] | [
"FStar.PtrdiffT.gte"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Equals_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | [] | FStar.PtrdiffT.op_Greater_Equals_Hat | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | {
"end_col": 38,
"end_line": 112,
"start_col": 35,
"start_line": 112
} |
|
Prims.Pure | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Hat = lt | let op_Less_Hat = | false | null | false | lt | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [] | [
"FStar.PtrdiffT.lt"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Greater_Hat = gt | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | [] | FStar.PtrdiffT.op_Less_Hat | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | {
"end_col": 27,
"end_line": 113,
"start_col": 25,
"start_line": 113
} |
|
Prims.Pure | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Hat = gt | let op_Greater_Hat = | false | null | false | gt | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [] | [
"FStar.PtrdiffT.gt"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *) | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | [] | FStar.PtrdiffT.op_Greater_Hat | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | {
"end_col": 30,
"end_line": 111,
"start_col": 28,
"start_line": 111
} |
|
Prims.Pure | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Equals_Hat = lte | let op_Less_Equals_Hat = | false | null | false | lte | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [] | [
"FStar.PtrdiffT.lte"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Equals_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | [] | FStar.PtrdiffT.op_Less_Equals_Hat | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure Prims.bool | {
"end_col": 35,
"end_line": 114,
"start_col": 32,
"start_line": 114
} |
|
Prims.Pure | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Plus_Hat = add | let op_Plus_Hat = | false | null | false | add | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [] | [
"FStar.PtrdiffT.add"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *)
let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b].
Note, according to the C standard, this operation is only defined
if a/b is representable.
To avoid requiring the precondition `fits (v a / v b)`, we instead
restrict this primitive to positive integers only.
*)
val rem (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures (fun c -> mod_spec (v a) (v b) = v c))
(** Greater than *)
val gt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x > v y)))
(** Greater than or equal *)
val gte (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x >= v y)))
(** Less than *)
val lt (x y:t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x < v y)))
(** Less than or equal *)
val lte (x y: t) : Pure bool
(requires True)
(ensures (fun z -> z == (v x <= v y)))
(** Infix notations *) | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Plus_Hat : x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure FStar.PtrdiffT.t | [] | FStar.PtrdiffT.op_Plus_Hat | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.PtrdiffT.t -> y: FStar.PtrdiffT.t -> Prims.Pure FStar.PtrdiffT.t | {
"end_col": 28,
"end_line": 110,
"start_col": 25,
"start_line": 110
} |
|
Prims.Tot | val zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s | val zero:(zero_ptrdiff: t{v zero_ptrdiff == 0})
let zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) = | false | null | false | mk 0s | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
"total"
] | [
"FStar.PtrdiffT.mk",
"FStar.Int16.__int_to_t"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val zero:(zero_ptrdiff: t{v zero_ptrdiff == 0}) | [] | FStar.PtrdiffT.zero | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | zero_ptrdiff: FStar.PtrdiffT.t{FStar.PtrdiffT.v zero_ptrdiff == 0} | {
"end_col": 7,
"end_line": 48,
"start_col": 2,
"start_line": 48
} |
Prims.GTot | val mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Int16",
"short_module": "I16"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_spec (a:int{fits a}) (b:int{fits b /\ b <> 0}) : GTot (n:int{fits n}) =
let open FStar.Mul in
let res = a - ((a/b) * b) in
fits_lt res b;
res | val mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n})
let mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) = | false | null | false | let open FStar.Mul in
let res = a - ((a / b) * b) in
fits_lt res b;
res | {
"checked_file": "FStar.PtrdiffT.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int16.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.PtrdiffT.fsti"
} | [
"sometrivial"
] | [
"Prims.int",
"FStar.PtrdiffT.fits",
"Prims.l_and",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.unit",
"FStar.PtrdiffT.fits_lt",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.op_Division"
] | [] | module FStar.PtrdiffT
module I16 = FStar.Int16
module US = FStar.SizeT
val t : eqtype
val fits (x: int) : Tot prop
val fits_lt (x y: int) : Lemma
(requires (abs x < abs y /\ fits y))
(ensures (fits x))
[SMTPat (fits x); SMTPat (fits y)]
[@@noextract_to "krml"]
val v (x: t) : Pure int
(requires True)
(ensures (fun y -> fits y))
[@@noextract_to "krml"]
val int_to_t (x: int) : Pure t
(requires (fits x))
(ensures (fun y -> v y == x))
/// v and int_to_t are inverses
val ptrdiff_v_inj (x: t)
: Lemma
(ensures int_to_t (v x) == x)
[SMTPat (v x)]
val ptrdiff_int_to_t_inj (x: int)
: Lemma
(requires fits x)
(ensures v (int_to_t x) == x)
[SMTPat (int_to_t x)]
/// According to the C standard, "the bit width of ptrdiff_t is not less than 17 since c99,
/// 16 since C23"
/// (https://en.cppreference.com/w/c/types/ptrdiff_t)
/// We therefore only offer a function to create a ptrdiff_t when we are sure it fits
noextract inline_for_extraction
val mk (x: I16.t) : Pure t
(requires True)
(ensures (fun y -> v y == I16.v x))
noextract inline_for_extraction
let zero : (zero_ptrdiff: t { v zero_ptrdiff == 0 }) =
mk 0s
(** Cast from ptrdiff_to to size_t.
We restrict the cast to positive integers to avoid reasoning about modular arithmetic *)
val ptrdifft_to_sizet (x:t{v x >= 0}) : Pure US.t
(requires True)
(ensures fun c -> v x == US.v c)
val add (x y: t) : Pure t
(requires (fits (v x + v y)))
(ensures (fun z -> v z == v x + v y))
(** Division primitive
As for rem below, we only provide division on positive signed
integers, to avoid having to reason about possible overflows *)
val div (a:t{v a >= 0}) (b:t{v b > 0}) : Pure t
(requires True)
(ensures fun c -> v a / v b == v c)
(** Modulo specification, similar to FStar.Int.mod *) | false | false | FStar.PtrdiffT.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_spec (a: int{fits a}) (b: int{fits b /\ b <> 0}) : GTot (n: int{fits n}) | [] | FStar.PtrdiffT.mod_spec | {
"file_name": "ulib/FStar.PtrdiffT.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int{FStar.PtrdiffT.fits a} -> b: Prims.int{FStar.PtrdiffT.fits b /\ b <> 0}
-> Prims.GTot (n: Prims.int{FStar.PtrdiffT.fits n}) | {
"end_col": 5,
"end_line": 74,
"start_col": 2,
"start_line": 71
} |
Prims.Tot | val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_codegen_success_InnerMemcpy () =
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_pbool_and
(va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx) 8 Secret) (va_pbool_and (va_codegen_success_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rRax) 0
Secret) (va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8 Secret) (va_ttrue ()))))) | val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
let va_codegen_success_InnerMemcpy () = | false | null | false | (va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx)
0
Secret)
(va_pbool_and (va_codegen_success_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx)
8
Secret)
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_pbool_and (va_codegen_success_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9)
8
Secret)
(va_ttrue ()))))) | {
"checked_file": "Vale.Test.X64.Vale_memcpy.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
"total"
] | [
"Prims.unit",
"Vale.X64.Decls.va_pbool_and",
"Vale.X64.InsMem.va_codegen_success_Load64_buffer",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rR9",
"Vale.X64.InsMem.va_codegen_success_Store64_buffer",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Decls.va_ttrue",
"Vale.X64.Decls.va_pbool"
] | [] | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr]
let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ()))))))
val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool
[@ "opaque_to_smt" va_qattr] | false | true | Vale.Test.X64.Vale_memcpy.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_codegen_success_InnerMemcpy : va_dummy:unit -> Tot va_pbool | [] | Vale.Test.X64.Vale_memcpy.va_codegen_success_InnerMemcpy | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool | {
"end_col": 88,
"end_line": 36,
"start_col": 2,
"start_line": 30
} |
Prims.Tot | val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Test.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_code_InnerMemcpy () =
(va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64
rRax) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CCons (va_code_Load64_buffer
(va_op_heaplet_mem_heaplet 0) (va_op_dst_opr64_reg64 rR9) (va_op_reg_opr64_reg64 rRdx) 8
Secret) (va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64
rRcx) (va_op_reg_opr64_reg64 rRax) 0 Secret) (va_CCons (va_code_Store64_buffer
(va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_reg_opr64_reg64 rR9) 8
Secret) (va_CNil ())))))) | val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
let va_code_InnerMemcpy () = | false | null | false | (va_Block (va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rRax)
(va_op_reg_opr64_reg64 rRdx)
0
Secret)
(va_CCons (va_code_Load64_buffer (va_op_heaplet_mem_heaplet 0)
(va_op_dst_opr64_reg64 rR9)
(va_op_reg_opr64_reg64 rRdx)
8
Secret)
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rRax)
0
Secret)
(va_CCons (va_code_Store64_buffer (va_op_heaplet_mem_heaplet 1)
(va_op_reg_opr64_reg64 rRcx)
(va_op_reg_opr64_reg64 rR9)
8
Secret)
(va_CNil ())))))) | {
"checked_file": "Vale.Test.X64.Vale_memcpy.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Test.X64.Vale_memcpy.fst"
} | [
"total"
] | [
"Prims.unit",
"Vale.X64.Decls.va_Block",
"Vale.X64.Decls.va_CCons",
"Vale.X64.InsMem.va_code_Load64_buffer",
"Vale.X64.Decls.va_op_heaplet_mem_heaplet",
"Vale.X64.Decls.va_op_dst_opr64_reg64",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_op_reg_opr64_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Machine_s.rR9",
"Vale.X64.InsMem.va_code_Store64_buffer",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Decls.va_CNil",
"Vale.X64.Decls.va_code"
] | [] | module Vale.Test.X64.Vale_memcpy
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
#set-options "--z3rlimit 20"
//-- InnerMemcpy
val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code
[@ "opaque_to_smt" va_qattr] | false | true | Vale.Test.X64.Vale_memcpy.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_code_InnerMemcpy : va_dummy:unit -> Tot va_code | [] | Vale.Test.X64.Vale_memcpy.va_code_InnerMemcpy | {
"file_name": "obj/Vale.Test.X64.Vale_memcpy.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | va_dummy: Prims.unit -> Vale.X64.Decls.va_code | {
"end_col": 29,
"end_line": 25,
"start_col": 2,
"start_line": 19
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.