effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val _sigma1_lemma (#a #m x: _) : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)]
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x))
val _sigma1_lemma (#a #m x: _) : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] =
false
null
true
LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x))
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Lib.IntVector.vec_t", "Spec.Hash.Definitions.word_t", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec._sigma1", "Lib.Sequence.map", "Hacl.Spec.SHA2._sigma1", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Lib.Sequence.lseq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.Spec.SHA2.Vec.element_t", "Prims.Nil" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)]
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _sigma1_lemma (#a #m x: _) : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)]
[]
Hacl.Spec.SHA2.Equiv._sigma1_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntVector.vec_t (Spec.Hash.Definitions.word_t a) (Hacl.Spec.SHA2.Vec.lanes a m) -> FStar.Pervasives.Lemma (ensures Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec._sigma1 x) == Lib.Sequence.map (Hacl.Spec.SHA2._sigma1 a) (Lib.IntVector.vec_v x)) [SMTPat (Hacl.Spec.SHA2.Vec._sigma1 x)]
{ "end_col": 79, "end_line": 61, "start_col": 2, "start_line": 61 }
FStar.Pervasives.Lemma
val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_lemma_l #a #m b st l = reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 (+|) st1 st in state_spec_v_map2_add #a #m st1 st l
val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l]) let update_lemma_l #a #m b st l =
false
null
true
reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 ( +| ) st1 st in state_spec_v_map2_add #a #m st1 st l
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Hacl.Spec.SHA2.Vec.multiblock_spec", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Equiv.state_spec_v_map2_add", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.element_t", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Lib.Sequence.index", "Hacl.Spec.SHA2.Vec.op_Plus_Bar", "Lib.Sequence.map2", "Prims.unit", "Hacl.Spec.SHA2.Equiv.shuffle_lemma_l", "Hacl.Spec.SHA2.Vec.shuffle", "Hacl.Spec.SHA2.Equiv.load_ws_lemma_l", "Hacl.Spec.SHA2.Vec.ws_spec", "Hacl.Spec.SHA2.Vec.load_ws", "FStar.Pervasives.reveal_opaque", "Hacl.Spec.SHA2.Vec.update" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l])
[]
Hacl.Spec.SHA2.Equiv.update_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Hacl.Spec.SHA2.Vec.multiblock_spec a m -> st: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Hacl.Spec.SHA2.Vec.update b st)).[ l ] == Hacl.Spec.SHA2.update a (( .(||) ) b l) (Hacl.Spec.SHA2.Vec.state_spec_v st).[ l ])
{ "end_col": 38, "end_line": 452, "start_col": 2, "start_line": 444 }
FStar.Pervasives.Lemma
val _Sigma0_lemma (#a #m x: _) : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)]
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x))
val _Sigma0_lemma (#a #m x: _) : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] =
false
null
true
LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x))
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Lib.IntVector.vec_t", "Spec.Hash.Definitions.word_t", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec._Sigma0", "Lib.Sequence.map", "Hacl.Spec.SHA2._Sigma0", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Lib.Sequence.lseq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.Spec.SHA2.Vec.element_t", "Prims.Nil" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)]
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _Sigma0_lemma (#a #m x: _) : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)]
[]
Hacl.Spec.SHA2.Equiv._Sigma0_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntVector.vec_t (Spec.Hash.Definitions.word_t a) (Hacl.Spec.SHA2.Vec.lanes a m) -> FStar.Pervasives.Lemma (ensures Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec._Sigma0 x) == Lib.Sequence.map (Hacl.Spec.SHA2._Sigma0 a) (Lib.IntVector.vec_v x)) [SMTPat (Hacl.Spec.SHA2.Vec._Sigma0 x)]
{ "end_col": 79, "end_line": 43, "start_col": 2, "start_line": 43 }
FStar.Pervasives.Lemma
val _Sigma1_lemma (#a #m x: _) : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)]
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x))
val _Sigma1_lemma (#a #m x: _) : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] =
false
null
true
LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x))
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Lib.IntVector.vec_t", "Spec.Hash.Definitions.word_t", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec._Sigma1", "Lib.Sequence.map", "Hacl.Spec.SHA2._Sigma1", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Lib.Sequence.lseq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.Spec.SHA2.Vec.element_t", "Prims.Nil" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)]
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _Sigma1_lemma (#a #m x: _) : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)]
[]
Hacl.Spec.SHA2.Equiv._Sigma1_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntVector.vec_t (Spec.Hash.Definitions.word_t a) (Hacl.Spec.SHA2.Vec.lanes a m) -> FStar.Pervasives.Lemma (ensures Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec._Sigma1 x) == Lib.Sequence.map (Hacl.Spec.SHA2._Sigma1 a) (Lib.IntVector.vec_v x)) [SMTPat (Hacl.Spec.SHA2.Vec._Sigma1 x)]
{ "end_col": 79, "end_line": 49, "start_col": 2, "start_line": 49 }
FStar.Pervasives.Lemma
val _sigma0_lemma (#a #m x: _) : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)]
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x))
val _sigma0_lemma (#a #m x: _) : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] =
false
null
true
LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x))
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Lib.IntVector.vec_t", "Spec.Hash.Definitions.word_t", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec._sigma0", "Lib.Sequence.map", "Hacl.Spec.SHA2._sigma0", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Lib.Sequence.lseq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.Spec.SHA2.Vec.element_t", "Prims.Nil" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)]
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _sigma0_lemma (#a #m x: _) : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)]
[]
Hacl.Spec.SHA2.Equiv._sigma0_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntVector.vec_t (Spec.Hash.Definitions.word_t a) (Hacl.Spec.SHA2.Vec.lanes a m) -> FStar.Pervasives.Lemma (ensures Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec._sigma0 x) == Lib.Sequence.map (Hacl.Spec.SHA2._sigma0 a) (Lib.IntVector.vec_v x)) [SMTPat (Hacl.Spec.SHA2.Vec._sigma0 x)]
{ "end_col": 79, "end_line": 55, "start_col": 2, "start_line": 55 }
FStar.Pervasives.Lemma
val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st)
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end
val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n =
false
null
true
let ws_v, st_v = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[ l ], (state_spec_v st0).[ l ]) in let ws, st = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then (eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l) else let ws_v1, st_v1 = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let ws1, st1 = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.ws_spec", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Prims.op_LessThanOrEqual", "Hacl.Spec.SHA2.num_rounds16", "Hacl.Spec.SHA2.k_w", "Spec.Hash.Definitions.words_state", "Prims.op_Equality", "Prims.int", "Hacl.Spec.SHA2.Equiv.shuffle_inner_loop_lemma_l", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.SHA2.shuffle_inner_loop", "Hacl.Spec.SHA2.Vec.shuffle_inner_loop", "Prims.bool", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati", "Hacl.Spec.SHA2.Equiv.shuffle_loop_lemma", "Lib.LoopCombinators.repeati", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.word", "Hacl.Spec.SHA2.Vec.ws_spec_v", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st)
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st)
[ "recursion" ]
Hacl.Spec.SHA2.Equiv.shuffle_loop_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ws0: Hacl.Spec.SHA2.Vec.ws_spec a m -> st0: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> n: Prims.nat{n <= Hacl.Spec.SHA2.num_rounds16 a} -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeati n Hacl.Spec.SHA2.Vec.shuffle_inner_loop (ws0, st0) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ ws_v st_v = _ in let _ = Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.shuffle_inner_loop a) ((Hacl.Spec.SHA2.Vec.ws_spec_v ws0).[ l ], (Hacl.Spec.SHA2.Vec.state_spec_v st0).[ l ] ) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ ws st = _ in (Hacl.Spec.SHA2.Vec.ws_spec_v ws_v).[ l ] == ws /\ (Hacl.Spec.SHA2.Vec.state_spec_v st_v).[ l ] == st) <: Type0) <: Type0))
{ "end_col": 65, "end_line": 280, "start_col": 46, "start_line": 264 }
FStar.Pervasives.Lemma
val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a)))
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; }
val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i =
false
null
true
let l = lanes a m in let i_new = (i / l) * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; calc ( == ) { i_new % l; ( == ) { () } ((i / l) * l + j) % l; ( == ) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; ( == ) { Math.Lemmas.small_mod j l } j; }; calc ( == ) { (i_new / l) * l + j_new; ( == ) { () } (((i / l) * l + j) / l) * l + i % l; ( == ) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; ( == ) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } (i / l) * l + (j / l) * l + i % l; ( == ) { Math.Lemmas.euclidean_division_definition i l } i + (j / l) * l; ( == ) { Math.Lemmas.small_div j l } i; }
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.multiblock_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Math.Lemmas.small_div", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Math.Lemmas.small_mod", "Hacl.Spec.SHA2.Equiv.load_blocks_lemma_ij", "Hacl.Spec.SHA2.Vec.lanes_t" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a)))
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a)))
[]
Hacl.Spec.SHA2.Equiv.load_blocks_lemma_ij_subst
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Hacl.Spec.SHA2.Vec.multiblock_spec a m -> j: Prims.nat{j < Hacl.Spec.SHA2.Vec.lanes a m} -> i: Prims.nat{i < 16} -> FStar.Pervasives.Lemma (ensures (let l = Hacl.Spec.SHA2.Vec.lanes a m in (Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec.load_blocks b).[ (i / l) * l + j ]).[ i % l ] == Lib.ByteSequence.uint_from_bytes_be (FStar.Seq.Base.slice (( .(||) ) b j) (i * Spec.Hash.Definitions.word_length a) (i * Spec.Hash.Definitions.word_length a + Spec.Hash.Definitions.word_length a))))
{ "end_col": 5, "end_line": 389, "start_col": 44, "start_line": 358 }
FStar.Pervasives.Lemma
val update_nblocks_loop_lemma: #a:sha2_alg -> #m:m_spec{is_supported a m} -> len:Spec.len_lt_max_a_t a -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= len / block_length a } -> Lemma ((state_spec_v (repeati n (update_block #a #m len b) st)).[l] == repeati n (Spec.update_block a len b.(|l|)) ((state_spec_v st).[l]))
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec update_nblocks_loop_lemma #a #m len b st l n = let lp = repeati n (update_block #a #m len b) st in let f_sc = Spec.update_block a len b.(|l|) in let rp = repeati n f_sc (state_spec_v st).[l] in if n = 0 then begin eq_repeati0 n (update_block #a #m len b) st; eq_repeati0 n f_sc (state_spec_v st).[l] end else begin let lp1 = repeati (n - 1) (update_block #a #m len b) st in let rp1 = repeati (n - 1) f_sc (state_spec_v st).[l] in update_nblocks_loop_lemma #a #m len b st l (n - 1); assert ((state_spec_v lp1).[l] == rp1); unfold_repeati n (update_block #a #m len b) st (n - 1); unfold_repeati n f_sc (state_spec_v st).[l] (n - 1); update_block_lemma_l #a #m len b (n - 1) lp1 l end
val update_nblocks_loop_lemma: #a:sha2_alg -> #m:m_spec{is_supported a m} -> len:Spec.len_lt_max_a_t a -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= len / block_length a } -> Lemma ((state_spec_v (repeati n (update_block #a #m len b) st)).[l] == repeati n (Spec.update_block a len b.(|l|)) ((state_spec_v st).[l])) let rec update_nblocks_loop_lemma #a #m len b st l n =
false
null
true
let lp = repeati n (update_block #a #m len b) st in let f_sc = Spec.update_block a len b.(| l |) in let rp = repeati n f_sc (state_spec_v st).[ l ] in if n = 0 then (eq_repeati0 n (update_block #a #m len b) st; eq_repeati0 n f_sc (state_spec_v st).[ l ]) else let lp1 = repeati (n - 1) (update_block #a #m len b) st in let rp1 = repeati (n - 1) f_sc (state_spec_v st).[ l ] in update_nblocks_loop_lemma #a #m len b st l (n - 1); assert ((state_spec_v lp1).[ l ] == rp1); unfold_repeati n (update_block #a #m len b) st (n - 1); unfold_repeati n f_sc (state_spec_v st).[ l ] (n - 1); update_block_lemma_l #a #m len b (n - 1) lp1 l
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Hacl.Spec.SHA2.len_lt_max_a_t", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Spec.Hash.Definitions.block_length", "Prims.op_Equality", "Prims.int", "Lib.LoopCombinators.eq_repeati0", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.unit", "Hacl.Spec.SHA2.Vec.update_block", "Prims.bool", "Hacl.Spec.SHA2.Equiv.update_block_lemma_l", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "Hacl.Spec.SHA2.Vec.word", "Prims.l_or", "Prims.l_and", "FStar.Seq.Base.length", "Spec.Hash.Definitions.state_word_length", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Spec.Hash.Definitions.word", "Hacl.Spec.SHA2.Equiv.update_nblocks_loop_lemma", "Lib.LoopCombinators.repeati", "Hacl.Spec.SHA2.update_block", "Lib.NTuple.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l]) let update_lemma_l #a #m b st l = reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 (+|) st1 st in state_spec_v_map2_add #a #m st1 st l val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1) let load_last_lemma_l #a #m totlen_seq fin len b l = reveal_opaque (`%load_last) (load_last #a #m); allow_inversion sha2_alg; allow_inversion m_spec val update_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen:len_t a -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update_last totlen len b st)).[l] == Spec.update_last a totlen len b.(|l|) ((state_spec_v st).[l])) let update_last_lemma_l #a #m totlen len b st0 l = let blocks = padded_blocks a len in let fin : nat = blocks * block_length a in let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in let (b0,b1) = load_last #a #m totlen_seq fin len b in load_last_lemma_l #a #m totlen_seq fin len b l; let st = update b0 st0 in update_lemma_l b0 st0 l; update_lemma_l b1 st l val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]) let store_state_lemma_ij #a #m st j i = let st1 = transpose_state st in let j_v = j * (8 * word_length a) + i in let blocksize_v = word_length a * lanes a m in calc (==) { // j_v % blocksize_v / word_length a (j * (8 * word_length a) + i) % blocksize_v / word_length a; (==) { Math.Lemmas.modulo_division_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a % lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) % lanes a m; }; calc (==) { // j_v / blocksize_v (j * (8 * word_length a) + i) / (word_length a * lanes a m); (==) { Math.Lemmas.division_multiplication_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a / lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) / lanes a m; }; calc (==) { Seq.index (store_state st) j_v; (==) { index_vecs_to_bytes_be #(word_t a) #(lanes a m) #8 st1 j_v } (BSeq.uints_to_bytes_be (vec_v st1.[j_v / blocksize_v])).[j_v % blocksize_v]; (==) { BSeq.index_uints_to_bytes_be (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[(j_v % blocksize_v) % word_length a]; (==) { Math.Lemmas.modulo_modulo_lemma j_v (word_length a) (lanes a m) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[j_v % word_length a]; (==) { Lemmas.transpose_state_lemma_ij #a #m st j i } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[j_v % word_length a]; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.modulo_addition_lemma i (word_length a) (j * 8) } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]; } val store_state_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a) == Spec.store_state a (state_spec_v st).[l]) let store_state_lemma_l #a #m st l = let st_l : words_state a = (state_spec_v st).[l] in let rp = Spec.store_state a st_l in let lp = store_state st in let aux (i:nat{i < 8 * word_length a}) : Lemma (lp.[l * (8 * word_length a) + i] == rp.[i]) = //assert (rp == BSeq.uints_to_bytes_be #(word_t a) #SEC #8 st_l); BSeq.index_uints_to_bytes_be #(word_t a) #SEC #8 st_l i; store_state_lemma_ij #a #m st l i in Classical.forall_intro aux; eq_intro (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a)) (Spec.store_state a (state_spec_v st).[l]) // val emit_lemma_l: // #a:sha2_alg // -> #m:m_spec // -> hseq:lseq uint8 (lanes a m * 8 * word_length a) // -> l:nat{l < lanes a m} -> // Lemma ((emit hseq).(|l|) == Spec.emit a (sub hseq (l * (8 * word_length a)) (8 * word_length a))) // let emit_lemma_l #a #m hseq l = () val finish_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((finish st).(|l|) == Spec.finish a (state_spec_v st).[l]) let finish_lemma_l #a #m st l = store_state_lemma_l #a #m st l val update_block_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> len:Spec.len_lt_max_a_t a -> b:multiseq (lanes a m) len -> i:nat{i < len / block_length a} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update_block len b i st)).[l] == Spec.update_block a len b.(|l|) i (state_spec_v st).[l]) let update_block_lemma_l #a #m len b i st l = let mb = get_multiblock_spec len b i in update_lemma_l mb st l val update_nblocks_loop_lemma: #a:sha2_alg -> #m:m_spec{is_supported a m} -> len:Spec.len_lt_max_a_t a -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= len / block_length a } -> Lemma ((state_spec_v (repeati n (update_block #a #m len b) st)).[l] == repeati n (Spec.update_block a len b.(|l|)) ((state_spec_v st).[l]))
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_nblocks_loop_lemma: #a:sha2_alg -> #m:m_spec{is_supported a m} -> len:Spec.len_lt_max_a_t a -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= len / block_length a } -> Lemma ((state_spec_v (repeati n (update_block #a #m len b) st)).[l] == repeati n (Spec.update_block a len b.(|l|)) ((state_spec_v st).[l]))
[ "recursion" ]
Hacl.Spec.SHA2.Equiv.update_nblocks_loop_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Spec.SHA2.len_lt_max_a_t a -> b: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes a m) len -> st: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> n: Prims.nat{n <= len / Spec.Hash.Definitions.block_length a} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.Vec.update_block len b) st)).[ l ] == Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.update_block a len (( .(||) ) b l)) (Hacl.Spec.SHA2.Vec.state_spec_v st).[ l ])
{ "end_col": 54, "end_line": 638, "start_col": 54, "start_line": 623 }
FStar.Pervasives.Lemma
val store_state_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a) == Spec.store_state a (state_spec_v st).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_state_lemma_l #a #m st l = let st_l : words_state a = (state_spec_v st).[l] in let rp = Spec.store_state a st_l in let lp = store_state st in let aux (i:nat{i < 8 * word_length a}) : Lemma (lp.[l * (8 * word_length a) + i] == rp.[i]) = //assert (rp == BSeq.uints_to_bytes_be #(word_t a) #SEC #8 st_l); BSeq.index_uints_to_bytes_be #(word_t a) #SEC #8 st_l i; store_state_lemma_ij #a #m st l i in Classical.forall_intro aux; eq_intro (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a)) (Spec.store_state a (state_spec_v st).[l])
val store_state_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a) == Spec.store_state a (state_spec_v st).[l]) let store_state_lemma_l #a #m st l =
false
null
true
let st_l:words_state a = (state_spec_v st).[ l ] in let rp = Spec.store_state a st_l in let lp = store_state st in let aux (i: nat{i < 8 * word_length a}) : Lemma (lp.[ l * (8 * word_length a) + i ] == rp.[ i ]) = BSeq.index_uints_to_bytes_be #(word_t a) #SEC #8 st_l i; store_state_lemma_ij #a #m st l i in Classical.forall_intro aux; eq_intro (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a)) (Spec.store_state a (state_spec_v st).[ l ])
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint8", "FStar.Mul.op_Star", "Spec.Hash.Definitions.word_length", "Lib.Sequence.sub", "Hacl.Spec.SHA2.Vec.store_state", "Hacl.Spec.SHA2.store_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Prims.op_Addition", "Prims.op_Multiply", "Prims.l_True", "Prims.squash", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.index", "Prims.Nil", "FStar.Pervasives.pattern", "Hacl.Spec.SHA2.Equiv.store_state_lemma_ij", "Lib.ByteSequence.index_uints_to_bytes_be", "Spec.Hash.Definitions.word_t", "Lib.Sequence.lseq", "Spec.Hash.Definitions.words_state" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l]) let update_lemma_l #a #m b st l = reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 (+|) st1 st in state_spec_v_map2_add #a #m st1 st l val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1) let load_last_lemma_l #a #m totlen_seq fin len b l = reveal_opaque (`%load_last) (load_last #a #m); allow_inversion sha2_alg; allow_inversion m_spec val update_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen:len_t a -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update_last totlen len b st)).[l] == Spec.update_last a totlen len b.(|l|) ((state_spec_v st).[l])) let update_last_lemma_l #a #m totlen len b st0 l = let blocks = padded_blocks a len in let fin : nat = blocks * block_length a in let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in let (b0,b1) = load_last #a #m totlen_seq fin len b in load_last_lemma_l #a #m totlen_seq fin len b l; let st = update b0 st0 in update_lemma_l b0 st0 l; update_lemma_l b1 st l val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]) let store_state_lemma_ij #a #m st j i = let st1 = transpose_state st in let j_v = j * (8 * word_length a) + i in let blocksize_v = word_length a * lanes a m in calc (==) { // j_v % blocksize_v / word_length a (j * (8 * word_length a) + i) % blocksize_v / word_length a; (==) { Math.Lemmas.modulo_division_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a % lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) % lanes a m; }; calc (==) { // j_v / blocksize_v (j * (8 * word_length a) + i) / (word_length a * lanes a m); (==) { Math.Lemmas.division_multiplication_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a / lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) / lanes a m; }; calc (==) { Seq.index (store_state st) j_v; (==) { index_vecs_to_bytes_be #(word_t a) #(lanes a m) #8 st1 j_v } (BSeq.uints_to_bytes_be (vec_v st1.[j_v / blocksize_v])).[j_v % blocksize_v]; (==) { BSeq.index_uints_to_bytes_be (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[(j_v % blocksize_v) % word_length a]; (==) { Math.Lemmas.modulo_modulo_lemma j_v (word_length a) (lanes a m) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[j_v % word_length a]; (==) { Lemmas.transpose_state_lemma_ij #a #m st j i } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[j_v % word_length a]; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.modulo_addition_lemma i (word_length a) (j * 8) } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]; } val store_state_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a) == Spec.store_state a (state_spec_v st).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_state_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma (sub (store_state st) (l * (8 * word_length a)) (8 * word_length a) == Spec.store_state a (state_spec_v st).[l])
[]
Hacl.Spec.SHA2.Equiv.store_state_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures Lib.Sequence.sub (Hacl.Spec.SHA2.Vec.store_state st) (l * (8 * Spec.Hash.Definitions.word_length a)) (8 * Spec.Hash.Definitions.word_length a) == Hacl.Spec.SHA2.store_state a (Hacl.Spec.SHA2.Vec.state_spec_v st).[ l ])
{ "end_col": 46, "end_line": 570, "start_col": 36, "start_line": 557 }
FStar.Pervasives.Lemma
val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end
val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n =
false
null
true
let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[ l ] in if n = 0 then (eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[ l ]; ws_next_inner_lemma_l 0 ws l) else let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[ l ] in ws_next_lemma_loop #a #m ws l (n - 1); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[ l ] (n - 1); ws_next_inner_lemma_l (n - 1) lp0 l; ()
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.ws_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Hacl.Spec.SHA2.Equiv.ws_next_inner_lemma_l", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "Hacl.Spec.SHA2.k_w", "Hacl.Spec.SHA2.ws_next_inner", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.word", "Hacl.Spec.SHA2.Vec.ws_spec_v", "Hacl.Spec.SHA2.Vec.ws_next_inner", "Prims.bool", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati", "Hacl.Spec.SHA2.Equiv.ws_next_lemma_loop", "Lib.LoopCombinators.repeati" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l])
[ "recursion" ]
Hacl.Spec.SHA2.Equiv.ws_next_lemma_loop
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ws: Hacl.Spec.SHA2.Vec.ws_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> n: Prims.nat{n <= 16} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.ws_spec_v (Lib.LoopCombinators.repeati n Hacl.Spec.SHA2.Vec.ws_next_inner ws)).[ l ] == Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.ws_next_inner a) (Hacl.Spec.SHA2.Vec.ws_spec_v ws).[ l ])
{ "end_col": 10, "end_line": 173, "start_col": 41, "start_line": 155 }
FStar.Pervasives.Lemma
val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l])
val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l =
false
null
true
eq_intro (state_spec_v (map2 ( +| ) st1 st2)).[ l ] (map2 #_ #_ #_ #8 ( +. ) (state_spec_v st1).[ l ] (state_spec_v st2).[ l ])
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Hacl.Spec.SHA2.Vec.word", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Lib.Sequence.map2", "Hacl.Spec.SHA2.Vec.element_t", "Hacl.Spec.SHA2.Vec.op_Plus_Bar", "Lib.IntTypes.op_Plus_Dot", "Spec.Hash.Definitions.word_t", "Lib.IntTypes.SEC", "Prims.unit" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l])
[]
Hacl.Spec.SHA2.Equiv.state_spec_v_map2_add
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st1: Hacl.Spec.SHA2.Vec.state_spec a m -> st2: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Lib.Sequence.map2 Hacl.Spec.SHA2.Vec.op_Plus_Bar st1 st2)).[ l ] == Lib.Sequence.map2 Lib.IntTypes.op_Plus_Dot (Hacl.Spec.SHA2.Vec.state_spec_v st1).[ l ] (Hacl.Spec.SHA2.Vec.state_spec_v st2).[ l ])
{ "end_col": 73, "end_line": 431, "start_col": 2, "start_line": 429 }
FStar.Pervasives.Lemma
val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l
val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l =
false
null
true
let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[ j ] in shuffle_core_spec_lemma_l k_t ws_t st l
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.ws_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.num_rounds16", "Hacl.Spec.SHA2.Vec.state_spec", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Equiv.shuffle_core_spec_lemma_l", "Hacl.Spec.SHA2.Vec.element_t", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Spec.Hash.Definitions.word", "Hacl.Spec.SHA2.k0", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l])
[]
Hacl.Spec.SHA2.Equiv.shuffle_inner_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ws: Hacl.Spec.SHA2.Vec.ws_spec a m -> i: Prims.nat{i < Hacl.Spec.SHA2.num_rounds16 a} -> j: Prims.nat{j < 16} -> st: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Hacl.Spec.SHA2.Vec.shuffle_inner ws i j st)).[ l ] == Hacl.Spec.SHA2.shuffle_inner a (Hacl.Spec.SHA2.Vec.ws_spec_v ws).[ l ] i j (Hacl.Spec.SHA2.Vec.state_spec_v st).[ l ])
{ "end_col": 41, "end_line": 201, "start_col": 45, "start_line": 198 }
FStar.Pervasives.Lemma
val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l]
val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l =
false
null
true
eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[ l ] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[ l ] (state_spec_v st).[ l ]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[ l ] (state_spec_v st).[ l ]
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.word", "Hacl.Spec.SHA2.Vec.element_t", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Equiv.shuffle_core_pre_create8_lemma", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "Spec.Hash.Definitions.word_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.unit", "Lib.Sequence.eq_intro", "Spec.Hash.Definitions.state_word_length", "Hacl.Spec.SHA2.Vec.shuffle_core_spec", "Hacl.Spec.SHA2.Equiv.shuffle_core_pre_create8" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l])
[]
Hacl.Spec.SHA2.Equiv.shuffle_core_spec_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k_t: Hacl.Spec.SHA2.Vec.word a -> ws_t: Hacl.Spec.SHA2.Vec.element_t a m -> st: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Hacl.Spec.SHA2.Vec.shuffle_core_spec k_t ws_t st)).[ l ] == Hacl.Spec.SHA2.shuffle_core_pre a k_t (Lib.IntVector.vec_v ws_t).[ l ] (Hacl.Spec.SHA2.Vec.state_spec_v st).[ l ])
{ "end_col": 77, "end_line": 127, "start_col": 2, "start_line": 124 }
FStar.Pervasives.Lemma
val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end
val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n =
false
null
true
let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[ l ] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[ l ] in if n = 0 then (eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[ l ]; shuffle_inner_lemma_l #a #m ws0 i n st0 l) else let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[ l ] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[ l ] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[ l ] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.num_rounds16", "Hacl.Spec.SHA2.Vec.ws_spec", "Hacl.Spec.SHA2.Vec.state_spec", "Hacl.Spec.SHA2.Vec.lanes", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Hacl.Spec.SHA2.Equiv.shuffle_inner_lemma_l", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Hacl.Spec.SHA2.Vec.shuffle_inner", "Prims.bool", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "Hacl.Spec.SHA2.Vec.word", "Prims.l_or", "Prims.l_and", "FStar.Seq.Base.length", "Spec.Hash.Definitions.state_word_length", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Spec.Hash.Definitions.word", "Hacl.Spec.SHA2.Equiv.shuffle_inner_loop_lemma", "Lib.LoopCombinators.repeati", "Hacl.Spec.SHA2.shuffle_inner", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.ws_spec_v" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l])
[ "recursion" ]
Hacl.Spec.SHA2.Equiv.shuffle_inner_loop_lemma
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Prims.nat{i < Hacl.Spec.SHA2.num_rounds16 a} -> ws0: Hacl.Spec.SHA2.Vec.ws_spec a m -> st0: Hacl.Spec.SHA2.Vec.state_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> n: Prims.nat{n <= 16} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.state_spec_v (Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.Vec.shuffle_inner ws0 i) st0)).[ l ] == Lib.LoopCombinators.repeati n (Hacl.Spec.SHA2.shuffle_inner a (Hacl.Spec.SHA2.Vec.ws_spec_v ws0).[ l ] i) (Hacl.Spec.SHA2.Vec.state_spec_v st0).[ l ])
{ "end_col": 55, "end_line": 232, "start_col": 54, "start_line": 216 }
FStar.Pervasives.Lemma
val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1)
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_last_lemma_l #a #m totlen_seq fin len b l = reveal_opaque (`%load_last) (load_last #a #m); allow_inversion sha2_alg; allow_inversion m_spec
val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1) let load_last_lemma_l #a #m totlen_seq fin len b l =
false
null
true
reveal_opaque (`%load_last) (load_last #a #m); allow_inversion sha2_alg; allow_inversion m_spec
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.Hash.Definitions.len_length", "Prims.nat", "Prims.l_or", "Prims.eq2", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_disEquality", "Spec.Hash.Definitions.block_length", "FStar.Mul.op_Star", "Prims.op_LessThanOrEqual", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Prims.op_LessThan", "FStar.Pervasives.allow_inversion", "Prims.unit", "FStar.Pervasives.reveal_opaque", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.SHA2.Vec.load_last" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l]) let update_lemma_l #a #m b st l = reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 (+|) st1 st in state_spec_v_map2_add #a #m st1 st l val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1)
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1)
[]
Hacl.Spec.SHA2.Equiv.load_last_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
totlen_seq: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Hash.Definitions.len_length a) -> fin: Prims.nat { fin == Spec.Hash.Definitions.block_length a \/ fin == 2 * Spec.Hash.Definitions.block_length a } -> len: Prims.nat{len <= Spec.Hash.Definitions.block_length a} -> b: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes a m) len -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.SHA2.Vec.load_last totlen_seq fin len b in (let FStar.Pervasives.Native.Mktuple2 #_ #_ b0_v b1_v = _ in let _ = Hacl.Spec.SHA2.load_last a totlen_seq fin len (( .(||) ) b l) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ b0 b1 = _ in ( .(||) ) b0_v l == b0 /\ ( .(||) ) b1_v l == b1) <: Type0) <: Type0))
{ "end_col": 24, "end_line": 471, "start_col": 2, "start_line": 469 }
FStar.Pervasives.Lemma
val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a)))
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize)))
val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i =
false
null
true
let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(| idx_i |) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in assert (vec_v ((load_blocks b).[ i ]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[ i ])).[ j ] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc ( == ) { idx_j * blocksize_l + j * blocksize; ( == ) { (Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize) } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(| idx_i |) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[ i ])).[ j ] == BSeq.uint_from_bytes_be (Seq.slice b.(| idx_i |) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize)))
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.multiblock_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Prims._assert", "Prims.eq2", "Lib.IntTypes.uint_t", "Spec.Hash.Definitions.word_t", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec.element_t", "Hacl.Spec.SHA2.Vec.load_blocks", "Lib.ByteSequence.uint_from_bytes_be", "FStar.Seq.Base.slice", "Lib.IntTypes.uint8", "Lib.NTuple.op_Lens_Access", "FStar.Seq.Properties.lseq", "Spec.Hash.Definitions.block_length", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.unit", "FStar.Seq.Properties.slice_slice", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "Lib.ByteSequence.index_uints_from_bytes_be", "Lib.Sequence.lseq", "Lib.ByteSequence.uints_from_bytes_be", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Spec.Hash.Definitions.word_length", "Prims.op_Division", "Prims.op_Modulus", "Hacl.Spec.SHA2.Vec.lanes_t" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a)))
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a)))
[]
Hacl.Spec.SHA2.Equiv.load_blocks_lemma_ij
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Hacl.Spec.SHA2.Vec.multiblock_spec a m -> j: Prims.nat{j < Hacl.Spec.SHA2.Vec.lanes a m} -> i: Prims.nat{i < 16} -> FStar.Pervasives.Lemma (ensures (let l = Hacl.Spec.SHA2.Vec.lanes a m in let ind = ((i / l) * l + j) * Spec.Hash.Definitions.word_length a in (Lib.IntVector.vec_v (Hacl.Spec.SHA2.Vec.load_blocks b).[ i ]).[ j ] == Lib.ByteSequence.uint_from_bytes_be (FStar.Seq.Base.slice (( .(||) ) b (i % l)) ind (ind + Spec.Hash.Definitions.word_length a))))
{ "end_col": 51, "end_line": 344, "start_col": 38, "start_line": 315 }
FStar.Pervasives.Lemma
val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_state_lemma_ij #a #m st j i = let st1 = transpose_state st in let j_v = j * (8 * word_length a) + i in let blocksize_v = word_length a * lanes a m in calc (==) { // j_v % blocksize_v / word_length a (j * (8 * word_length a) + i) % blocksize_v / word_length a; (==) { Math.Lemmas.modulo_division_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a % lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) % lanes a m; }; calc (==) { // j_v / blocksize_v (j * (8 * word_length a) + i) / (word_length a * lanes a m); (==) { Math.Lemmas.division_multiplication_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a / lanes a m; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j) } (8 * j + i / word_length a) / lanes a m; }; calc (==) { Seq.index (store_state st) j_v; (==) { index_vecs_to_bytes_be #(word_t a) #(lanes a m) #8 st1 j_v } (BSeq.uints_to_bytes_be (vec_v st1.[j_v / blocksize_v])).[j_v % blocksize_v]; (==) { BSeq.index_uints_to_bytes_be (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[(j_v % blocksize_v) % word_length a]; (==) { Math.Lemmas.modulo_modulo_lemma j_v (word_length a) (lanes a m) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[j_v / blocksize_v]) (j_v % blocksize_v / word_length a))).[j_v % word_length a]; (==) { Lemmas.transpose_state_lemma_ij #a #m st j i } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[j_v % word_length a]; (==) { Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.modulo_addition_lemma i (word_length a) (j * 8) } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]; }
val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a]) let store_state_lemma_ij #a #m st j i =
false
null
true
let st1 = transpose_state st in let j_v = j * (8 * word_length a) + i in let blocksize_v = word_length a * lanes a m in calc ( == ) { (j * (8 * word_length a) + i) % blocksize_v / word_length a; ( == ) { Math.Lemmas.modulo_division_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a % lanes a m; ( == ) { (Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j)) } (8 * j + i / word_length a) % lanes a m; }; calc ( == ) { (j * (8 * word_length a) + i) / (word_length a * lanes a m); ( == ) { Math.Lemmas.division_multiplication_lemma (j * (8 * word_length a) + i) (word_length a) (lanes a m) } (j * (8 * word_length a) + i) / word_length a / lanes a m; ( == ) { (Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.division_addition_lemma i (word_length a) (8 * j)) } (8 * j + i / word_length a) / lanes a m; }; calc ( == ) { Seq.index (store_state st) j_v; ( == ) { index_vecs_to_bytes_be #(word_t a) #(lanes a m) #8 st1 j_v } (BSeq.uints_to_bytes_be (vec_v st1.[ j_v / blocksize_v ])).[ j_v % blocksize_v ]; ( == ) { BSeq.index_uints_to_bytes_be (vec_v st1.[ j_v / blocksize_v ]) (j_v % blocksize_v) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[ j_v / blocksize_v ]) (j_v % blocksize_v / word_length a))).[ (j_v % blocksize_v) % word_length a ]; ( == ) { Math.Lemmas.modulo_modulo_lemma j_v (word_length a) (lanes a m) } (BSeq.uint_to_bytes_be (Seq.index (vec_v st1.[ j_v / blocksize_v ]) (j_v % blocksize_v / word_length a))).[ j_v % word_length a ]; ( == ) { Lemmas.transpose_state_lemma_ij #a #m st j i } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[ j ] (i / word_length a))).[ j_v % word_length a ]; ( == ) { (Math.Lemmas.paren_mul_right j 8 (word_length a); Math.Lemmas.modulo_addition_lemma i (word_length a) (j * 8)) } (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[ j ] (i / word_length a))).[ i % word_length a ]; }
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "FStar.Mul.op_Star", "Spec.Hash.Definitions.word_length", "FStar.Calc.calc_finish", "Lib.IntTypes.uint8", "Prims.eq2", "FStar.Seq.Base.index", "Hacl.Spec.SHA2.Vec.store_state", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.numbytes", "Spec.Hash.Definitions.word_t", "Lib.ByteSequence.uint_to_bytes_be", "Hacl.Spec.SHA2.Vec.word", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.op_Division", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Lib.IntVector.vec_v", "Hacl.Spec.SHA2.Vec.element_t", "Lib.ByteSequence.uints_to_bytes_be", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.IntVector.Serialize.index_vecs_to_bytes_be", "Prims.squash", "Lib.ByteSequence.index_uints_to_bytes_be", "FStar.Math.Lemmas.modulo_modulo_lemma", "Hacl.Spec.SHA2.Lemmas.transpose_state_lemma_ij", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Math.Lemmas.paren_mul_right", "Prims.int", "Prims.op_Addition", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.modulo_division_lemma", "Hacl.Spec.SHA2.Vec.transpose_state" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp #pop-options val state_spec_v_map2_add: #a:sha2_alg -> #m:m_spec -> st1:state_spec a m -> st2:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (map2 (+|) st1 st2)).[l] == map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) let state_spec_v_map2_add #a #m st1 st2 l = eq_intro (state_spec_v (map2 (+|) st1 st2)).[l] (map2 #_ #_ #_ #8 (+.) (state_spec_v st1).[l] (state_spec_v st2).[l]) val update_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update b st)).[l] == Spec.update a b.(|l|) (state_spec_v st).[l]) let update_lemma_l #a #m b st l = reveal_opaque (`%update) (update #a #m); let ws = load_ws b in load_ws_lemma_l b l; let st1 = shuffle ws st in shuffle_lemma_l ws st l; let res = map2 (+|) st1 st in state_spec_v_map2_add #a #m st1 st l val load_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen_seq:lseq uint8 (len_length a) -> fin:nat{fin == block_length a \/ fin == 2 * block_length a} -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> l:nat{l < lanes a m} -> Lemma (let (b0_v, b1_v) = load_last totlen_seq fin len b in let (b0, b1) = Spec.load_last a totlen_seq fin len b.(|l|) in b0_v.(|l|) == b0 /\ b1_v.(|l|) == b1) let load_last_lemma_l #a #m totlen_seq fin len b l = reveal_opaque (`%load_last) (load_last #a #m); allow_inversion sha2_alg; allow_inversion m_spec val update_last_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> totlen:len_t a -> len:nat{len <= block_length a} -> b:multiseq (lanes a m) len -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (update_last totlen len b st)).[l] == Spec.update_last a totlen len b.(|l|) ((state_spec_v st).[l])) let update_last_lemma_l #a #m totlen len b st0 l = let blocks = padded_blocks a len in let fin : nat = blocks * block_length a in let total_len_bits = secret (shift_left #(len_int_type a) totlen 3ul) in let totlen_seq = Lib.ByteSequence.uint_to_bytes_be #(len_int_type a) total_len_bits in let (b0,b1) = load_last #a #m totlen_seq fin len b in load_last_lemma_l #a #m totlen_seq fin len b l; let st = update b0 st0 in update_lemma_l b0 st0 l; update_lemma_l b1 st l val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_state_lemma_ij: #a:sha2_alg -> #m:m_spec{is_supported a m} -> st:state_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 8 * word_length a} -> Lemma ((store_state st).[j * (8 * word_length a) + i] == (BSeq.uint_to_bytes_be (Seq.index (state_spec_v st).[j] (i / word_length a))).[i % word_length a])
[]
Hacl.Spec.SHA2.Equiv.store_state_lemma_ij
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st: Hacl.Spec.SHA2.Vec.state_spec a m -> j: Prims.nat{j < Hacl.Spec.SHA2.Vec.lanes a m} -> i: Prims.nat{i < 8 * Spec.Hash.Definitions.word_length a} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.store_state st).[ j * (8 * Spec.Hash.Definitions.word_length a) + i ] == (Lib.ByteSequence.uint_to_bytes_be (FStar.Seq.Base.index (Hacl.Spec.SHA2.Vec.state_spec_v st).[ j ] (i / Spec.Hash.Definitions.word_length a))).[ i % Spec.Hash.Definitions.word_length a ])
{ "end_col": 5, "end_line": 545, "start_col": 39, "start_line": 507 }
FStar.Pervasives.Lemma
val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l])
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l])
val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l =
false
null
true
eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[ l ] (Spec.ws_next_inner a i (ws_spec_v ws).[ l ])
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.ws_spec", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Hacl.Spec.SHA2.Vec.word", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.ws_spec_v", "Hacl.Spec.SHA2.Vec.ws_next_inner", "Hacl.Spec.SHA2.ws_next_inner", "Prims.unit" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l])
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l])
[]
Hacl.Spec.SHA2.Equiv.ws_next_inner_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Prims.nat{i < 16} -> ws: Hacl.Spec.SHA2.Vec.ws_spec a m -> l: Prims.nat{l < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.ws_spec_v (Hacl.Spec.SHA2.Vec.ws_next_inner i ws)).[ l ] == Hacl.Spec.SHA2.ws_next_inner a i (Hacl.Spec.SHA2.Vec.ws_spec_v ws).[ l ])
{ "end_col": 47, "end_line": 142, "start_col": 2, "start_line": 140 }
FStar.Pervasives.Lemma
val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|))
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2", "short_module": "Spec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector.Serialize", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_ws_lemma_l #a #m b j = let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) in let aux (i:nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(|j|) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp
val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|)) let load_ws_lemma_l #a #m b j =
false
null
true
let lp = Seq.index (ws_spec_v (load_ws b)) j in let rp = BSeq.uints_from_bytes_be #(word_t a) #SEC #16 b.(| j |) in let aux (i: nat{i < 16}) : Lemma (Seq.index lp i == Seq.index rp i) = let l = lanes a m in BSeq.index_uints_from_bytes_be #(word_t a) #SEC #16 b.(| j |) i; assert (Seq.index rp i == BSeq.uint_from_bytes_be (Seq.slice b.(| j |) (i * word_length a) (i * word_length a + word_length a))); assert (Seq.index lp i == Seq.index (Seq.index (ws_spec_v (transpose_ws (load_blocks b))) j) i); Lemmas.transpose_ws_lemma_ij (load_blocks b) j i; load_blocks_lemma_ij_subst #a #m b j i in Classical.forall_intro aux; eq_intro lp rp
{ "checked_file": "Hacl.Spec.SHA2.Equiv.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.Serialize.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.Lemmas.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.SHA2.Equiv.fst" }
[ "lemma" ]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.Spec.SHA2.Vec.m_spec", "Hacl.Spec.SHA2.Vec.is_supported", "Hacl.Spec.SHA2.Vec.multiblock_spec", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.SHA2.Vec.lanes", "Lib.Sequence.eq_intro", "Hacl.Spec.SHA2.Vec.word", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "Lib.IntTypes.uint_t", "Spec.Hash.Definitions.word_t", "Lib.IntTypes.SEC", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Lib.IntTypes.int_t", "Prims.Nil", "FStar.Pervasives.pattern", "Hacl.Spec.SHA2.Equiv.load_blocks_lemma_ij_subst", "Hacl.Spec.SHA2.Lemmas.transpose_ws_lemma_ij", "Hacl.Spec.SHA2.Vec.load_blocks", "Prims._assert", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.ws_spec_v", "Hacl.Spec.SHA2.Vec.transpose_ws", "Lib.ByteSequence.uint_from_bytes_be", "FStar.Seq.Base.slice", "Lib.IntTypes.uint8", "Lib.NTuple.op_Lens_Access", "FStar.Seq.Properties.lseq", "Spec.Hash.Definitions.block_length", "FStar.Mul.op_Star", "Spec.Hash.Definitions.word_length", "Prims.op_Addition", "Lib.ByteSequence.index_uints_from_bytes_be", "Hacl.Spec.SHA2.Vec.lanes_t", "Lib.ByteSequence.uints_from_bytes_be", "Hacl.Spec.SHA2.Vec.load_ws" ]
[]
module Hacl.Spec.SHA2.Equiv open FStar.Mul open Lib.IntTypes open Lib.NTuple open Lib.Sequence open Lib.IntVector open Lib.IntVector.Serialize open Lib.LoopCombinators open Spec.Hash.Definitions open Hacl.Spec.SHA2.Vec module Spec = Hacl.Spec.SHA2 module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Lemmas = Hacl.Spec.SHA2.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _Ch_lemma #a #m x y z : Lemma (vec_v (_Ch #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Ch x y z)] = LSeq.eq_intro (vec_v (_Ch #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Ch a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Maj_lemma #a #m x y z : Lemma (vec_v (_Maj #a #m x y z) == LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) [SMTPat (_Maj x y z)] = LSeq.eq_intro (vec_v (_Maj #a #m x y z)) (LSeq.createi (lanes a m) (fun i -> Spec._Maj a (vec_v x).[i] (vec_v y).[i] (vec_v z).[i])) let _Sigma0_lemma #a #m x : Lemma (vec_v (_Sigma0 #a #m x) == LSeq.map (Spec._Sigma0 a) (vec_v x)) [SMTPat (_Sigma0 x)] = LSeq.eq_intro (vec_v (_Sigma0 #a #m x)) (LSeq.map (Spec._Sigma0 a) (vec_v x)) let _Sigma1_lemma #a #m x : Lemma (vec_v (_Sigma1 #a #m x) == LSeq.map (Spec._Sigma1 a) (vec_v x)) [SMTPat (_Sigma1 x)] = LSeq.eq_intro (vec_v (_Sigma1 #a #m x)) (LSeq.map (Spec._Sigma1 a) (vec_v x)) let _sigma0_lemma #a #m x : Lemma (vec_v (_sigma0 #a #m x) == LSeq.map (Spec._sigma0 a) (vec_v x)) [SMTPat (_sigma0 x)] = LSeq.eq_intro (vec_v (_sigma0 #a #m x)) (LSeq.map (Spec._sigma0 a) (vec_v x)) let _sigma1_lemma #a #m x : Lemma (vec_v (_sigma1 #a #m x) == LSeq.map (Spec._sigma1 a) (vec_v x)) [SMTPat (_sigma1 x)] = LSeq.eq_intro (vec_v (_sigma1 #a #m x)) (LSeq.map (Spec._sigma1 a) (vec_v x)) val seq_of_list_is_create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> Lemma (create8 x0 x1 x2 x3 x4 x5 x6 x7 == Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7]) let seq_of_list_is_create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = let rp = Seq.seq_of_list [x0; x1; x2; x3; x4; x5; x6; x7] in assert_norm (length rp == 8); let lp = create8 x0 x1 x2 x3 x4 x5 x6 x7 in let aux (i:nat{i < 8}) : Lemma (Seq.index lp i == Seq.index rp i) = assert_norm (Seq.index lp i == Seq.index rp i) in Classical.forall_intro aux; eq_intro rp lp val shuffle_core_pre_create8: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> words_state' a let shuffle_core_pre_create8 a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_pre_create8_lemma: a:sha2_alg -> k_t:word a -> ws_t:word a -> hash:words_state' a -> Lemma (Spec.shuffle_core_pre a k_t ws_t hash == shuffle_core_pre_create8 a k_t ws_t hash) let shuffle_core_pre_create8_lemma a k_t ws_t hash = let a0 = Seq.index hash 0 in let b0 = Seq.index hash 1 in let c0 = Seq.index hash 2 in let d0 = Seq.index hash 3 in let e0 = Seq.index hash 4 in let f0 = Seq.index hash 5 in let g0 = Seq.index hash 6 in let h0 = Seq.index hash 7 in let t1 = h0 +. (Spec._Sigma1 a e0) +. (Spec._Ch a e0 f0 g0) +. k_t +. ws_t in let t2 = (Spec._Sigma0 a a0) +. (Spec._Maj a a0 b0 c0) in seq_of_list_is_create8 (t1 +. t2) a0 b0 c0 (d0 +. t1) e0 f0 g0 val shuffle_core_spec_lemma_l: #a:sha2_alg -> #m:m_spec -> k_t:word a -> ws_t:element_t a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_core_spec k_t ws_t st)).[l] == Spec.shuffle_core_pre a k_t (vec_v ws_t).[l] (state_spec_v st).[l]) let shuffle_core_spec_lemma_l #a #m k_t ws_t st l = eq_intro #(word a) #(state_word_length a) (state_spec_v (shuffle_core_spec k_t ws_t st)).[l] (shuffle_core_pre_create8 a k_t (vec_v ws_t).[l] (state_spec_v st).[l]); shuffle_core_pre_create8_lemma a k_t (vec_v ws_t).[l] (state_spec_v st).[l] #push-options "--z3rlimit 100" val ws_next_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < 16} -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next_inner i ws)).[l] == Spec.ws_next_inner a i (ws_spec_v ws).[l]) let ws_next_inner_lemma_l #a #m i ws l = eq_intro #(word a) #16 (ws_spec_v (ws_next_inner i ws)).[l] (Spec.ws_next_inner a i (ws_spec_v ws).[l]) #pop-options val ws_next_lemma_loop: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((ws_spec_v (repeati n (ws_next_inner #a #m) ws)).[l] == repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l]) let rec ws_next_lemma_loop #a #m ws l n = let lp = repeati n (ws_next_inner #a #m) ws in let rp = repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] in if n = 0 then begin eq_repeati0 n (ws_next_inner #a #m) ws; eq_repeati0 n (Spec.ws_next_inner a) (ws_spec_v ws).[l]; ws_next_inner_lemma_l 0 ws l end else begin let lp0 = repeati (n - 1) (ws_next_inner #a #m) ws in let rp0 = repeati (n - 1) (Spec.ws_next_inner a) (ws_spec_v ws).[l] in ws_next_lemma_loop #a #m ws l (n - 1); //assert ((ws_spec_v lp0).[l] == rp0); unfold_repeati n (ws_next_inner #a #m) ws (n - 1); unfold_repeati n (Spec.ws_next_inner a) (ws_spec_v ws).[l] (n - 1); //assert (lp == ws_next_inner #a #m (n - 1) lp0); //assert (rp == Spec.ws_next_inner a (n - 1) rp0); ws_next_inner_lemma_l (n - 1) lp0 l; () end val ws_next_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> l:nat{l < lanes a m} -> Lemma ((ws_spec_v (ws_next #a #m ws)).[l] == Spec.ws_next a (ws_spec_v ws).[l]) let ws_next_lemma_l #a #m ws l = ws_next_lemma_loop #a #m ws l 16 val shuffle_inner_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> i:nat{i < Spec.num_rounds16 a} -> j:nat{j < 16} -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle_inner ws i j st)).[l] == Spec.shuffle_inner a (ws_spec_v ws).[l] i j (state_spec_v st).[l]) let shuffle_inner_lemma_l #a #m ws i j st l = let k_t = Seq.index (Spec.k0 a) (16 * i + j) in let ws_t = ws.[j] in shuffle_core_spec_lemma_l k_t ws_t st l val shuffle_inner_loop_lemma: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= 16} -> Lemma ((state_spec_v (repeati n (shuffle_inner ws0 i) st0)).[l] == repeati n (Spec.shuffle_inner a (ws_spec_v ws0).[l] i) (state_spec_v st0).[l]) let rec shuffle_inner_loop_lemma #a #m i ws0 st0 l n = let f_sc = Spec.shuffle_inner a (ws_spec_v ws0).[l] i in let lp = repeati n (shuffle_inner ws0 i) st0 in let rp = repeati n f_sc (state_spec_v st0).[l] in if n = 0 then begin eq_repeati0 n (shuffle_inner ws0 i) st0; eq_repeati0 n f_sc (state_spec_v st0).[l]; shuffle_inner_lemma_l #a #m ws0 i n st0 l end else begin let lp0 = repeati (n - 1) (shuffle_inner ws0 i) st0 in let rp0 = repeati (n - 1) f_sc (state_spec_v st0).[l] in shuffle_inner_loop_lemma #a #m i ws0 st0 l (n - 1); assert ((state_spec_v lp0).[l] == rp0); unfold_repeati n (shuffle_inner ws0 i) st0 (n - 1); unfold_repeati n f_sc (state_spec_v st0).[l] (n - 1); shuffle_inner_lemma_l #a #m ws0 i (n - 1) lp0 l end val shuffle_inner_loop_lemma_l: #a:sha2_alg -> #m:m_spec -> i:nat{i < Spec.num_rounds16 a} -> ws_st:tuple2 (ws_spec a m) (state_spec a m) -> l:nat{l < lanes a m} -> Lemma (let (ws1, st1) = shuffle_inner_loop i ws_st in let (ws0, st0) = ws_st in let (ws, st) = Spec.shuffle_inner_loop a i ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws1).[l] == ws /\ (state_spec_v st1).[l] == st) let shuffle_inner_loop_lemma_l #a #m i (ws0, st0) l = shuffle_inner_loop_lemma #a #m i ws0 st0 l 16; ws_next_lemma_l ws0 l val shuffle_loop_lemma: #a:sha2_alg -> #m:m_spec -> ws0:ws_spec a m -> st0:state_spec a m -> l:nat{l < lanes a m} -> n:nat{n <= Spec.num_rounds16 a} -> Lemma (let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in (ws_spec_v ws_v).[l] == ws /\ (state_spec_v st_v).[l] == st) let rec shuffle_loop_lemma #a #m ws0 st0 l n = let (ws_v, st_v) = repeati n (shuffle_inner_loop #a #m) (ws0, st0) in let acc0 = ((ws_spec_v ws0).[l], (state_spec_v st0).[l]) in let (ws, st) = repeati n (Spec.shuffle_inner_loop a) acc0 in if n = 0 then begin eq_repeati0 n (shuffle_inner_loop #a #m) (ws0, st0); eq_repeati0 n (Spec.shuffle_inner_loop a) acc0; shuffle_inner_loop_lemma_l #a #m n (ws0, st0) l end else begin let (ws_v1, st_v1) = repeati (n - 1) (shuffle_inner_loop #a #m) (ws0, st0) in let (ws1, st1) = repeati (n - 1) (Spec.shuffle_inner_loop a) acc0 in shuffle_loop_lemma #a #m ws0 st0 l (n - 1); //assert ((ws_spec_v ws_v1).[l] == ws1 /\ (state_spec_v st_v1).[l] == st1); unfold_repeati n (shuffle_inner_loop #a #m) (ws0, st0) (n - 1); unfold_repeati n (Spec.shuffle_inner_loop a) acc0 (n - 1); shuffle_inner_loop_lemma_l #a #m (n - 1) (ws_v1, st_v1) l end val shuffle_lemma_l: #a:sha2_alg -> #m:m_spec -> ws:ws_spec a m -> st:state_spec a m -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (shuffle ws st)).[l] == Spec.shuffle a (ws_spec_v ws).[l] (state_spec_v st).[l]) let shuffle_lemma_l #a #m ws st l = shuffle_loop_lemma #a #m ws st l (Spec.num_rounds16 a) val init_lemma_l: a:sha2_alg -> m:m_spec -> l:nat{l < lanes a m} -> Lemma ((state_spec_v (init a m)).[l] == Spec.init a) let init_lemma_l a m l = eq_intro #(word a) #(state_word_length a) (state_spec_v (init a m)).[l] (Spec.init a) val load_blocks_lemma_ij: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in let ind = (i / l * l + j) * word_length a in (vec_v (load_blocks b).[i]).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|i % l|) ind (ind + word_length a))) let load_blocks_lemma_ij #a #m b j i = let l = lanes a m in let idx_i = i % l in let idx_j = i / l in let blocksize = word_length a in let blocksize_l = l * blocksize in let b_j = Seq.slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) in //assert ((load_blocks b).[i] == vec_from_bytes_be (word_t a) l b_j); assert (vec_v ((load_blocks b).[i]) == BSeq.uints_from_bytes_be b_j); BSeq.index_uints_from_bytes_be #(word_t a) #SEC #(lanes a m) b_j j; assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b_j (j * blocksize) (j * blocksize + blocksize))); calc (==) { idx_j * blocksize_l + j * blocksize; (==) { Math.Lemmas.paren_mul_right idx_j l blocksize; Math.Lemmas.distributivity_add_left (idx_j * l) j blocksize } (idx_j * l + j) * blocksize; }; Seq.Properties.slice_slice b.(|idx_i|) (idx_j * blocksize_l) (idx_j * blocksize_l + blocksize_l) (j * blocksize) (j * blocksize + blocksize); assert ((vec_v ((load_blocks b).[i])).[j] == BSeq.uint_from_bytes_be (Seq.slice b.(|idx_i|) ((idx_j * l + j) * blocksize) ((idx_j * l + j) * blocksize + blocksize))) val load_blocks_lemma_ij_subst: #a:sha2_alg -> #m:m_spec -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> i:nat{i < 16} -> Lemma (let l = lanes a m in (vec_v (load_blocks b).[i / l * l + j]).[i % l] == BSeq.uint_from_bytes_be (Seq.slice b.(|j|) (i * word_length a) (i * word_length a + word_length a))) let load_blocks_lemma_ij_subst #a #m b j i = let l = lanes a m in let i_new = i / l * l + j in let j_new = i % l in load_blocks_lemma_ij #a #m b j_new i_new; //assert ( //(vec_v (load_blocks b).[i_new]).[j_new] == //BSeq.uint_from_bytes_be (sub b.(|i_new % l|) ((i_new / l * l + j_new) * word_length a) (word_length a))); calc (==) { i_new % l; (==) { } (i / l * l + j) % l; (==) { Math.Lemmas.modulo_addition_lemma j l (i / l) } j % l; (==) { Math.Lemmas.small_mod j l } j; }; calc (==) { i_new / l * l + j_new; (==) { } (i / l * l + j) / l * l + i % l; (==) { Math.Lemmas.division_addition_lemma j l (i / l) } (i / l + j / l) * l + i % l; (==) { Math.Lemmas.distributivity_add_left (i / l) (j / l) l } i / l * l + j / l * l + i % l; (==) { Math.Lemmas.euclidean_division_definition i l } i + j / l * l; (==) { Math.Lemmas.small_div j l } i; } #push-options "--z3rlimit 150" val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|))
false
false
Hacl.Spec.SHA2.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_ws_lemma_l: #a:sha2_alg -> #m:m_spec{is_supported a m} -> b:multiblock_spec a m -> j:nat{j < lanes a m} -> Lemma ((ws_spec_v (load_ws b)).[j] == BSeq.uints_from_bytes_be #(word_t a) #SEC #(block_word_length a) b.(|j|))
[]
Hacl.Spec.SHA2.Equiv.load_ws_lemma_l
{ "file_name": "code/sha2-mb/Hacl.Spec.SHA2.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Hacl.Spec.SHA2.Vec.multiblock_spec a m -> j: Prims.nat{j < Hacl.Spec.SHA2.Vec.lanes a m} -> FStar.Pervasives.Lemma (ensures (Hacl.Spec.SHA2.Vec.ws_spec_v (Hacl.Spec.SHA2.Vec.load_ws b)).[ j ] == Lib.ByteSequence.uints_from_bytes_be (( .(||) ) b j))
{ "end_col": 16, "end_line": 415, "start_col": 31, "start_line": 400 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_key = 32
let size_key =
false
null
false
32
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100"
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_key : Prims.int
[]
Spec.Salsa20.size_key
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 17, "end_line": 13, "start_col": 15, "start_line": 13 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_block = 64
let size_block =
false
null
false
64
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_block : Prims.int
[]
Spec.Salsa20.size_block
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 19, "end_line": 14, "start_col": 17, "start_line": 14 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_At f g = fun x -> g (f x)
let op_At f g =
false
null
false
fun x -> g (f x)
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_At : f: (_: _ -> _) -> g: (_: _ -> _) -> x: _ -> _
[]
Spec.Salsa20.op_At
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: (_: _ -> _) -> g: (_: _ -> _) -> x: _ -> _
{ "end_col": 32, "end_line": 29, "start_col": 16, "start_line": 29 }
Prims.Tot
val rounds:shuffle
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rounds : shuffle = repeat 10 double_round
val rounds:shuffle let rounds:shuffle =
false
null
false
repeat 10 double_round
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Lib.LoopCombinators.repeat", "Spec.Salsa20.state", "Spec.Salsa20.double_round" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rounds:shuffle
[]
Spec.Salsa20.rounds
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Salsa20.shuffle
{ "end_col": 24, "end_line": 58, "start_col": 2, "start_line": 58 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_nonce = 8
let size_nonce =
false
null
false
8
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_nonce : Prims.int
[]
Spec.Salsa20.size_nonce
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 18, "end_line": 15, "start_col": 17, "start_line": 15 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_xnonce = 16
let size_xnonce =
false
null
false
16
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_xnonce : Prims.int
[]
Spec.Salsa20.size_xnonce
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 20, "end_line": 16, "start_col": 18, "start_line": 16 }
Prims.Tot
val double_round:shuffle
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let double_round: shuffle = column_round @ row_round
val double_round:shuffle let double_round:shuffle =
false
null
false
column_round @ row_round
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.op_At", "Spec.Salsa20.state", "Spec.Salsa20.column_round", "Spec.Salsa20.row_round" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val double_round:shuffle
[]
Spec.Salsa20.double_round
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Salsa20.shuffle
{ "end_col": 26, "end_line": 55, "start_col": 2, "start_line": 55 }
Prims.Tot
val salsa20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = salsa20_core incr st0 in xor_block k b
val salsa20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block let salsa20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block =
false
null
false
let k = salsa20_core incr st0 in xor_block k b
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Spec.Salsa20.counter", "Spec.Salsa20.block", "Spec.Salsa20.xor_block", "Spec.Salsa20.salsa20_core" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block
[]
Spec.Salsa20.salsa20_encrypt_block
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st0: Spec.Salsa20.state -> incr: Spec.Salsa20.counter -> b: Spec.Salsa20.block -> Spec.Salsa20.block
{ "end_col": 15, "end_line": 140, "start_col": 76, "start_line": 138 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant1 = u32 0x3320646e
let constant1 =
false
null
false
u32 0x3320646e
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant1 : u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x3320646e}
[]
Spec.Salsa20.constant1
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x3320646e}
{ "end_col": 30, "end_line": 73, "start_col": 16, "start_line": 73 }
Prims.Tot
val salsa20_core (ctr: counter) (s: state) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr
val salsa20_core (ctr: counter) (s: state) : Tot state let salsa20_core (ctr: counter) (s: state) : Tot state =
false
null
false
let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 ( +. ) s' s in salsa20_add_counter s' ctr
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.counter", "Spec.Salsa20.state", "Spec.Salsa20.salsa20_add_counter", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.add_mod", "Lib.Sequence.map2", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Plus_Dot", "Spec.Salsa20.rounds" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_core (ctr: counter) (s: state) : Tot state
[]
Spec.Salsa20.salsa20_core
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ctr: Spec.Salsa20.counter -> s: Spec.Salsa20.state -> Spec.Salsa20.state
{ "end_col": 28, "end_line": 67, "start_col": 54, "start_line": 63 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant2 = u32 0x79622d32
let constant2 =
false
null
false
u32 0x79622d32
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant2 : u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x79622d32}
[]
Spec.Salsa20.constant2
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x79622d32}
{ "end_col": 30, "end_line": 75, "start_col": 16, "start_line": 75 }
Prims.Tot
val salsa20_init (k: key) (n: nonce) (ctr0: counter) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
val salsa20_init (k: key) (n: nonce) (ctr0: counter) : Tot state let salsa20_init (k: key) (n: nonce) (ctr0: counter) : Tot state =
false
null
false
let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.nonce", "Spec.Salsa20.counter", "Spec.Salsa20.state", "Spec.Salsa20.setup", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint32", "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_init (k: key) (n: nonce) (ctr0: counter) : Tot state
[]
Spec.Salsa20.salsa20_init
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.nonce -> ctr0: Spec.Salsa20.counter -> Spec.Salsa20.state
{ "end_col": 4, "end_line": 97, "start_col": 63, "start_line": 94 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant0 = u32 0x61707865
let constant0 =
false
null
false
u32 0x61707865
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *)
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant0 : u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x61707865}
[]
Spec.Salsa20.constant0
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x61707865}
{ "end_col": 30, "end_line": 71, "start_col": 16, "start_line": 71 }
Prims.Tot
val salsa20_key_block0 (k: key) (n: nonce) : Tot block
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st
val salsa20_key_block0 (k: key) (n: nonce) : Tot block let salsa20_key_block0 (k: key) (n: nonce) : Tot block =
false
null
false
let st = salsa20_init k n 0 in salsa20_key_block st
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.nonce", "Spec.Salsa20.salsa20_key_block", "Spec.Salsa20.state", "Spec.Salsa20.salsa20_init", "Spec.Salsa20.block" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st'
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_key_block0 (k: key) (n: nonce) : Tot block
[]
Spec.Salsa20.salsa20_key_block0
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.nonce -> Spec.Salsa20.block
{ "end_col": 22, "end_line": 131, "start_col": 54, "start_line": 129 }
Prims.Tot
val xor_block (k: state) (b: block) : block
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob
val xor_block (k: state) (b: block) : block let xor_block (k: state) (b: block) : block =
false
null
false
let ib = uints_from_bytes_le b in let ob = map2 ( ^. ) ib k in uints_to_bytes_le ob
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Spec.Salsa20.block", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.uint_t", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Hat_Dot", "Lib.ByteSequence.uints_from_bytes_le" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xor_block (k: state) (b: block) : block
[]
Spec.Salsa20.xor_block
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.state -> b: Spec.Salsa20.block -> Spec.Salsa20.block
{ "end_col": 22, "end_line": 136, "start_col": 44, "start_line": 133 }
Prims.Tot
val row_round:shuffle
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14
val row_round:shuffle let row_round:shuffle =
false
null
false
quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.op_At", "Spec.Salsa20.state", "Spec.Salsa20.quarter_round" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val row_round:shuffle
[]
Spec.Salsa20.row_round
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Salsa20.shuffle
{ "end_col": 27, "end_line": 52, "start_col": 2, "start_line": 49 }
Prims.Tot
val hsalsa20_init (k: key) (n: xnonce) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st
val hsalsa20_init (k: key) (n: xnonce) : Tot state let hsalsa20_init (k: key) (n: xnonce) : Tot state =
false
null
false
let st = create 16 (u32 0) in let st = xsetup k n st in st
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.xnonce", "Spec.Salsa20.state", "Spec.Salsa20.xsetup", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint32", "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hsalsa20_init (k: key) (n: xnonce) : Tot state
[]
Spec.Salsa20.hsalsa20_init
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.xnonce -> Spec.Salsa20.state
{ "end_col": 4, "end_line": 114, "start_col": 50, "start_line": 111 }
Prims.Tot
val salsa20_add_counter (s: state) (ctr: counter) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr)
val salsa20_add_counter (s: state) (ctr: counter) : Tot state let salsa20_add_counter (s: state) (ctr: counter) : Tot state =
false
null
false
s.[ 8 ] <- s.[ 8 ] +. (u32 ctr)
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Spec.Salsa20.counter", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_add_counter (s: state) (ctr: counter) : Tot state
[]
Spec.Salsa20.salsa20_add_counter
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Spec.Salsa20.state -> ctr: Spec.Salsa20.counter -> Spec.Salsa20.state
{ "end_col": 29, "end_line": 61, "start_col": 2, "start_line": 61 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let constant3 = u32 0x6b206574
let constant3 =
false
null
false
u32 0x6b206574
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Lib.IntTypes.u32" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val constant3 : u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x6b206574}
[]
Spec.Salsa20.constant3
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u19: Lib.IntTypes.uint32{Lib.IntTypes.v u19 == 0x6b206574}
{ "end_col": 30, "end_line": 77, "start_col": 16, "start_line": 77 }
Prims.Tot
val line (a b d: idx) (s: rotval U32) (m: state) : state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m
val line (a b d: idx) (s: rotval U32) (m: state) : state let line (a b d: idx) (s: rotval U32) (m: state) : state =
false
null
false
let m = m.[ a ] <- (m.[ a ] ^. ((m.[ b ] +. m.[ d ]) <<<. s)) in m
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.idx", "Lib.IntTypes.rotval", "Lib.IntTypes.U32", "Spec.Salsa20.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logxor", "Lib.Sequence.index", "Lib.IntTypes.rotate_left", "Lib.IntTypes.add_mod", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.op_String_Access", "Lib.IntTypes.op_Less_Less_Less_Dot", "Lib.IntTypes.op_Plus_Dot" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val line (a b d: idx) (s: rotval U32) (m: state) : state
[]
Spec.Salsa20.line
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Salsa20.idx -> b: Spec.Salsa20.idx -> d: Spec.Salsa20.idx -> s: Lib.IntTypes.rotval Lib.IntTypes.U32 -> m: Spec.Salsa20.state -> Spec.Salsa20.state
{ "end_col": 3, "end_line": 34, "start_col": 67, "start_line": 32 }
Prims.Tot
val column_round:shuffle
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11
val column_round:shuffle let column_round:shuffle =
false
null
false
quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.op_At", "Spec.Salsa20.state", "Spec.Salsa20.quarter_round" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18)
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val column_round:shuffle
[]
Spec.Salsa20.column_round
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Salsa20.shuffle
{ "end_col": 25, "end_line": 46, "start_col": 2, "start_line": 43 }
Prims.Tot
val salsa20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_encrypt_bytes key nonce ctr0 msg = let st0 = salsa20_init key nonce ctr0 in salsa20_update st0 msg
val salsa20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let salsa20_encrypt_bytes key nonce ctr0 msg =
false
null
false
let st0 = salsa20_init key nonce ctr0 in salsa20_update st0 msg
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.nonce", "Spec.Salsa20.counter", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Salsa20.size_block", "Lib.IntTypes.max_size_t", "Spec.Salsa20.salsa20_update", "Spec.Salsa20.state", "Spec.Salsa20.salsa20_init", "Prims.eq2", "Prims.nat" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let salsa20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = salsa20_core incr st0 in xor_block k b let salsa20_encrypt_last (st0:state) (incr:counter) (len:size_nat{len < size_block}) (b:lbytes len) : lbytes len = let plain = create size_block (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = salsa20_encrypt_block st0 incr plain in sub cipher 0 len val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let salsa20_update ctx msg = let cipher = msg in map_blocks size_block cipher (salsa20_encrypt_block ctx) (salsa20_encrypt_last ctx) val salsa20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
[]
Spec.Salsa20.salsa20_encrypt_bytes
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.nonce -> c: Spec.Salsa20.counter -> msg: Lib.ByteSequence.bytes {Lib.Sequence.length msg / Spec.Salsa20.size_block <= Lib.IntTypes.max_size_t} -> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
{ "end_col": 24, "end_line": 171, "start_col": 46, "start_line": 169 }
Prims.Tot
val salsa20_key_block (st: state) : Tot block
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st'
val salsa20_key_block (st: state) : Tot block let salsa20_key_block (st: state) : Tot block =
false
null
false
let st' = salsa20_core 0 st in uints_to_bytes_le st'
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Spec.Salsa20.salsa20_core", "Spec.Salsa20.block" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_key_block (st: state) : Tot block
[]
Spec.Salsa20.salsa20_key_block
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st: Spec.Salsa20.state -> Spec.Salsa20.block
{ "end_col": 23, "end_line": 127, "start_col": 46, "start_line": 125 }
Prims.Tot
val salsa20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_decrypt_bytes key nonce ctr0 cipher = let st0 = salsa20_init key nonce ctr0 in salsa20_update st0 cipher
val salsa20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg} let salsa20_decrypt_bytes key nonce ctr0 cipher =
false
null
false
let st0 = salsa20_init key nonce ctr0 in salsa20_update st0 cipher
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.nonce", "Spec.Salsa20.counter", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Salsa20.size_block", "Lib.IntTypes.max_size_t", "Spec.Salsa20.salsa20_update", "Spec.Salsa20.state", "Spec.Salsa20.salsa20_init", "Prims.eq2", "Prims.nat" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let salsa20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = salsa20_core incr st0 in xor_block k b let salsa20_encrypt_last (st0:state) (incr:counter) (len:size_nat{len < size_block}) (b:lbytes len) : lbytes len = let plain = create size_block (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = salsa20_encrypt_block st0 incr plain in sub cipher 0 len val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let salsa20_update ctx msg = let cipher = msg in map_blocks size_block cipher (salsa20_encrypt_block ctx) (salsa20_encrypt_last ctx) val salsa20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let salsa20_encrypt_bytes key nonce ctr0 msg = let st0 = salsa20_init key nonce ctr0 in salsa20_update st0 msg val salsa20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
[]
Spec.Salsa20.salsa20_decrypt_bytes
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.nonce -> c: Spec.Salsa20.counter -> cipher: Lib.ByteSequence.bytes {Lib.Sequence.length cipher / Spec.Salsa20.size_block <= Lib.IntTypes.max_size_t} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
{ "end_col": 27, "end_line": 183, "start_col": 49, "start_line": 181 }
Prims.Tot
val salsa20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : lbytes len
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_encrypt_last (st0:state) (incr:counter) (len:size_nat{len < size_block}) (b:lbytes len) : lbytes len = let plain = create size_block (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = salsa20_encrypt_block st0 incr plain in sub cipher 0 len
val salsa20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : lbytes len let salsa20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : lbytes len =
false
null
false
let plain = create size_block (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = salsa20_encrypt_block st0 incr plain in sub cipher 0 len
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Spec.Salsa20.counter", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan", "Spec.Salsa20.size_block", "Lib.ByteSequence.lbytes", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Salsa20.block", "Spec.Salsa20.salsa20_encrypt_block", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "Lib.Sequence.length", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let salsa20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = salsa20_core incr st0 in xor_block k b let salsa20_encrypt_last (st0:state) (incr:counter)
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : lbytes len
[]
Spec.Salsa20.salsa20_encrypt_last
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st0: Spec.Salsa20.state -> incr: Spec.Salsa20.counter -> len: Lib.IntTypes.size_nat{len < Spec.Salsa20.size_block} -> b: Lib.ByteSequence.lbytes len -> Lib.ByteSequence.lbytes len
{ "end_col": 18, "end_line": 148, "start_col": 34, "start_line": 144 }
Prims.Tot
val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let salsa20_update ctx msg = let cipher = msg in map_blocks size_block cipher (salsa20_encrypt_block ctx) (salsa20_encrypt_last ctx)
val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let salsa20_update ctx msg =
false
null
false
let cipher = msg in map_blocks size_block cipher (salsa20_encrypt_block ctx) (salsa20_encrypt_last ctx)
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.state", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Salsa20.size_block", "Lib.IntTypes.max_size_t", "Lib.Sequence.map_blocks", "Spec.Salsa20.salsa20_encrypt_block", "Spec.Salsa20.salsa20_encrypt_last", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Prims.op_Subtraction", "Prims.pow2", "Prims.eq2", "Prims.nat" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res let salsa20_key_block (st:state) : Tot block = let st' = salsa20_core 0 st in uints_to_bytes_le st' let salsa20_key_block0 (k:key) (n:nonce) : Tot block = let st = salsa20_init k n 0 in salsa20_key_block st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let salsa20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = salsa20_core incr st0 in xor_block k b let salsa20_encrypt_last (st0:state) (incr:counter) (len:size_nat{len < size_block}) (b:lbytes len) : lbytes len = let plain = create size_block (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = salsa20_encrypt_block st0 incr plain in sub cipher 0 len val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val salsa20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
[]
Spec.Salsa20.salsa20_update
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ctx: Spec.Salsa20.state -> msg: Lib.ByteSequence.bytes {Lib.Sequence.length msg / Spec.Salsa20.size_block <= Lib.IntTypes.max_size_t} -> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
{ "end_col": 30, "end_line": 159, "start_col": 28, "start_line": 155 }
Prims.Tot
val hsalsa20 (k: key) (n: xnonce) : Tot (lbytes 32)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hsalsa20 (k:key) (n:xnonce) : Tot (lbytes 32) = let st = hsalsa20_init k n in let st = rounds st in [@inline_let] let res_l = [st.[0]; st.[5]; st.[10]; st.[15]; st.[6]; st.[7]; st.[8]; st.[9]] in assert_norm(List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res
val hsalsa20 (k: key) (n: xnonce) : Tot (lbytes 32) let hsalsa20 (k: key) (n: xnonce) : Tot (lbytes 32) =
false
null
false
let st = hsalsa20_init k n in let st = rounds st in [@@ inline_let ]let res_l = [st.[ 0 ]; st.[ 5 ]; st.[ 10 ]; st.[ 15 ]; st.[ 6 ]; st.[ 7 ]; st.[ 8 ]; st.[ 9 ]] in assert_norm (List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le res
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.xnonce", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "FStar.List.Tot.Base.length", "Lib.IntTypes.uint_t", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Properties.seq_of_list", "Lib.Sequence.createL", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.int", "Prims.list", "Prims.Cons", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint32", "Prims.Nil", "Spec.Salsa20.state", "Spec.Salsa20.rounds", "Spec.Salsa20.hsalsa20_init", "Lib.ByteSequence.lbytes" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let hsalsa20_init (k:key) (n:xnonce) : Tot state = let st = create 16 (u32 0) in let st = xsetup k n st in st
false
false
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hsalsa20 (k: key) (n: xnonce) : Tot (lbytes 32)
[]
Spec.Salsa20.hsalsa20
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.xnonce -> Lib.ByteSequence.lbytes 32
{ "end_col": 23, "end_line": 123, "start_col": 51, "start_line": 116 }
Prims.Tot
val xsetup (k: key) (n: xnonce) (st: state) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xsetup (k:key) (n:xnonce) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st
val xsetup (k: key) (n: xnonce) (st: state) : Tot state let xsetup (k: key) (n: xnonce) (st: state) : Tot state =
false
null
false
let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #4 n in let st = st.[ 0 ] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[ 5 ] <- constant1 in let st = update_sub st 6 4 ns in let st = st.[ 10 ] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[ 15 ] <- constant3 in st
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.xnonce", "Spec.Salsa20.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Salsa20.constant3", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.Sequence.sub", "Lib.Sequence.slice", "Prims.op_Addition", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "Spec.Salsa20.constant2", "Spec.Salsa20.constant1", "Spec.Salsa20.constant0", "Lib.ByteSequence.uints_from_bytes_le" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574 let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st let salsa20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xsetup (k: key) (n: xnonce) (st: state) : Tot state
[]
Spec.Salsa20.xsetup
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.xnonce -> st: Spec.Salsa20.state -> Spec.Salsa20.state
{ "end_col": 4, "end_line": 109, "start_col": 54, "start_line": 99 }
Prims.Tot
val setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[0] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[5] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[8] <- u32 ctr0 in let st = st.[9] <- u32 0 in let st = st.[10] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[15] <- constant3 in st
val setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state let setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state =
false
null
false
let ks = uints_from_bytes_le #U32 #SEC #8 k in let ns = uints_from_bytes_le #U32 #SEC #2 n in let st = st.[ 0 ] <- constant0 in let st = update_sub st 1 4 (slice ks 0 4) in let st = st.[ 5 ] <- constant1 in let st = update_sub st 6 2 ns in let st = st.[ 8 ] <- u32 ctr0 in let st = st.[ 9 ] <- u32 0 in let st = st.[ 10 ] <- constant2 in let st = update_sub st 11 4 (slice ks 4 8) in let st = st.[ 15 ] <- constant3 in st
{ "checked_file": "Spec.Salsa20.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Salsa20.fst" }
[ "total" ]
[ "Spec.Salsa20.key", "Spec.Salsa20.nonce", "Spec.Salsa20.counter", "Spec.Salsa20.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Salsa20.constant3", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.Sequence.sub", "Lib.Sequence.slice", "Prims.op_Addition", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "Spec.Salsa20.constant2", "Lib.IntTypes.mk_int", "Lib.IntTypes.u32", "Spec.Salsa20.constant1", "Spec.Salsa20.constant0", "Lib.ByteSequence.uints_from_bytes_le" ]
[]
module Spec.Salsa20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.RawIntTypes open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" (* Constants *) let size_key = 32 (* in bytes *) let size_block = 64 (* in bytes *) let size_nonce = 8 (* in bytes *) let size_xnonce = 16 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type xnonce = lbytes size_xnonce type counter = size_nat type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : state = let m = m.[a] <- (m.[a] ^. ((m.[b] +. m.[d]) <<<. s)) in m let quarter_round a b c d : shuffle = line b a d (size 7) @ line c b a (size 9) @ line d c b (size 13) @ line a d c (size 18) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 5 9 13 1 @ quarter_round 10 14 2 6 @ quarter_round 15 3 7 11 let row_round : shuffle = quarter_round 0 1 2 3 @ quarter_round 5 6 7 4 @ quarter_round 10 11 8 9 @ quarter_round 15 12 13 14 let double_round: shuffle = column_round @ row_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let salsa20_add_counter (s:state) (ctr:counter) : Tot state = s.[8] <- s.[8] +. (u32 ctr) let salsa20_core (ctr:counter) (s:state) : Tot state = let s' = salsa20_add_counter s ctr in let s' = rounds s' in let s' = map2 (+.) s' s in salsa20_add_counter s' ctr (* state initialization *) inline_for_extraction let constant0 = u32 0x61707865 inline_for_extraction let constant1 = u32 0x3320646e inline_for_extraction let constant2 = u32 0x79622d32 inline_for_extraction let constant3 = u32 0x6b206574
false
true
Spec.Salsa20.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state
[]
Spec.Salsa20.setup
{ "file_name": "specs/Spec.Salsa20.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Salsa20.key -> n: Spec.Salsa20.nonce -> ctr0: Spec.Salsa20.counter -> st: Spec.Salsa20.state -> Spec.Salsa20.state
{ "end_col": 4, "end_line": 92, "start_col": 67, "start_line": 80 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blocksize = size_block
let blocksize =
false
null
false
size_block
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "total" ]
[ "Hacl.Spec.Chacha20.Vec.size_block" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
false
true
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blocksize : Prims.int
[]
Hacl.Spec.Chacha20.Equiv.blocksize
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 26, "end_line": 19, "start_col": 16, "start_line": 19 }
Prims.Tot
val scalar_rounds (m: Scalar.state) : Scalar.state
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m)))))))))
val scalar_rounds (m: Scalar.state) : Scalar.state let scalar_rounds (m: Scalar.state) : Scalar.state =
false
null
false
Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round (Scalar.double_round m)))))))))
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "total" ]
[ "Spec.Chacha20.state", "Spec.Chacha20.double_round" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract
false
true
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scalar_rounds (m: Scalar.state) : Scalar.state
[]
Hacl.Spec.Chacha20.Equiv.scalar_rounds
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Spec.Chacha20.state -> Spec.Chacha20.state
{ "end_col": 53, "end_line": 229, "start_col": 2, "start_line": 225 }
FStar.Pervasives.Lemma
val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9
val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m =
false
null
true
let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Spec.Chacha20.state", "Lib.LoopCombinators.unfold_repeat", "Spec.Chacha20.double_round", "Prims.unit", "Lib.LoopCombinators.eq_repeat0" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m)
[]
Hacl.Spec.Chacha20.Equiv.scalar_rounds_unroll_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Spec.Chacha20.state -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Equiv.scalar_rounds m) (Spec.Chacha20.rounds m))
{ "end_col": 42, "end_line": 247, "start_col": 2, "start_line": 236 }
FStar.Pervasives.Lemma
val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i])
val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i =
false
null
true
let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[ i ] (Scalar.quarter_round a b c d (transpose_state m).[ i ])
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.idx", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Vec.quarter_round", "Spec.Chacha20.quarter_round", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.line_lemma_i", "Lib.IntTypes.size", "Prims._assert", "Prims.eq2", "Hacl.Spec.Chacha20.Vec.line" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i])
[]
Hacl.Spec.Chacha20.Equiv.quarter_round_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Chacha20.Vec.idx -> b: Hacl.Spec.Chacha20.Vec.idx -> c: Hacl.Spec.Chacha20.Vec.idx -> d: Hacl.Spec.Chacha20.Vec.idx -> m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.quarter_round a b c d m)).[ i ] (Spec.Chacha20.quarter_round a b c d (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 58, "end_line": 178, "start_col": 42, "start_line": 167 }
FStar.Pervasives.Lemma
val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i
val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i =
false
null
true
let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.diagonal_round_lemma_i", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.column_round_lemma_i", "Hacl.Spec.Chacha20.Vec.diagonal_round", "Hacl.Spec.Chacha20.Vec.column_round" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i])
[]
Hacl.Spec.Chacha20.Equiv.double_round_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.double_round m)).[ i ] (Spec.Chacha20.double_round (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 29, "end_line": 220, "start_col": 33, "start_line": 216 }
FStar.Pervasives.Lemma
val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i])
val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i =
false
null
true
let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[ i ] (Scalar.column_round (transpose_state m).[ i ])
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Vec.column_round", "Spec.Chacha20.column_round", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.quarter_round_lemma_i", "Prims._assert", "Prims.eq2", "Hacl.Spec.Chacha20.Vec.quarter_round" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i])
[]
Hacl.Spec.Chacha20.Equiv.column_round_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.column_round m)).[ i ] (Spec.Chacha20.column_round (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 98, "end_line": 194, "start_col": 33, "start_line": 184 }
FStar.Pervasives.Lemma
val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; }
val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i =
false
null
true
let bs = w * 4 in calc ( == ) { (i / bs) * bs + (i % bs / 4) * 4; ( == ) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } (i / bs) * bs + i % bs - i % bs % 4; ( == ) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; ( == ) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; ( == ) { Math.Lemmas.euclidean_division_definition i 4 } (i / 4) * 4; }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.modulo_modulo_lemma" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} ->
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4)
[]
Hacl.Spec.Chacha20.Equiv.lemma_i_div_w4
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Prims.pos -> i: Prims.nat{i < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let bs = w * 4 in (i / bs) * bs + (i % bs / 4) * 4 == (i / 4) * 4))
{ "end_col": 5, "end_line": 356, "start_col": 24, "start_line": 344 }
FStar.Pervasives.Lemma
val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i])
val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i =
false
null
true
let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[ i ] (Scalar.diagonal_round (transpose_state m).[ i ])
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Vec.diagonal_round", "Spec.Chacha20.diagonal_round", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.quarter_round_lemma_i", "Prims._assert", "Prims.eq2", "Hacl.Spec.Chacha20.Vec.quarter_round" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i])
[]
Hacl.Spec.Chacha20.Equiv.diagonal_round_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.diagonal_round m)).[ i ] (Spec.Chacha20.diagonal_round (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 102, "end_line": 210, "start_col": 35, "start_line": 200 }
FStar.Pervasives.Lemma
val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32)
val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b =
false
null
true
let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32)
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.counter", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Addition", "Prims.nat", "Prims.op_LessThan", "Lib.IntTypes.uint32", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.IntTypes.modulus", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.u32" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c))
[]
Hacl.Spec.Chacha20.Equiv.add_counter_lemma_aux
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Hacl.Spec.Chacha20.Vec.lanes -> c0: Hacl.Spec.Chacha20.Vec.counter -> c: Hacl.Spec.Chacha20.Vec.counter {w * c <= Lib.IntTypes.max_size_t /\ c0 + w <= Lib.IntTypes.max_size_t} -> i: Prims.nat{i < w} -> b: Lib.IntTypes.uint32 -> FStar.Pervasives.Lemma (ensures b +. Lib.IntTypes.u32 c0 +. Lib.IntTypes.u32 (w * c + i) == b +. Lib.IntTypes.u32 (c0 + i) +. Lib.IntTypes.u32 (w * c))
{ "end_col": 73, "end_line": 83, "start_col": 38, "start_line": 77 }
FStar.Pervasives.Lemma
val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; }
val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i =
false
null
true
calc ( == ) { (i / blocksize) * blocksize + (i % blocksize / 4) * 4; ( == ) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } (i / blocksize) * blocksize + i % blocksize - i % blocksize % 4; ( == ) { Math.Lemmas.modulo_modulo_lemma i 4 16 } (i / blocksize) * blocksize + i % blocksize - i % 4; ( == ) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; ( == ) { Math.Lemmas.euclidean_division_definition i 4 } (i / 4) * 4; }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.modulo_modulo_lemma" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4)
[]
Hacl.Spec.Chacha20.Equiv.lemma_i_div_blocksize
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Prims.pos -> i: Prims.nat{i < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (i / Hacl.Spec.Chacha20.Equiv.blocksize) * Hacl.Spec.Chacha20.Equiv.blocksize + (i % Hacl.Spec.Chacha20.Equiv.blocksize / 4) * 4 == (i / 4) * 4)
{ "end_col": 3, "end_line": 371, "start_col": 2, "start_line": 361 }
FStar.Pervasives.Lemma
val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms
val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i =
false
null
true
let ms = (transpose_state m).[ i ] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[ i ] == scalar_rounds ms); scalar_rounds_unroll_lemma ms
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.scalar_rounds_unroll_lemma", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Sequence.lseq", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Equiv.scalar_rounds", "Hacl.Spec.Chacha20.Equiv.double_round_lemma_i", "Hacl.Spec.Chacha20.Vec.rounds", "Hacl.Spec.Chacha20.Vec.double_round", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "FStar.Seq.Base.index", "Lib.Sequence.to_seq" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i])
[]
Hacl.Spec.Chacha20.Equiv.rounds_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.rounds m) ).[ i ] (Spec.Chacha20.rounds (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 31, "end_line": 277, "start_col": 27, "start_line": 253 }
FStar.Pervasives.Lemma
val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros)
val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v =
false
null
true
let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros)
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.Sequence.eq_intro", "FStar.Seq.Base.append", "Prims.unit", "FStar.Seq.Properties.lemma_split", "Prims.op_Subtraction", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.Sequence.sub", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.update_sub" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros)
[]
Hacl.Spec.Chacha20.Equiv.update_sub_is_append
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
zero: a -> blocksize: Lib.IntTypes.size_pos -> len: Prims.nat{len < blocksize} -> b_v: Lib.Sequence.lseq a len -> FStar.Pervasives.Lemma (ensures (let plain = Lib.Sequence.create blocksize zero in let plain = Lib.Sequence.update_sub plain 0 len b_v in let zeros = Lib.Sequence.create (blocksize - len) zero in plain == FStar.Seq.Base.append b_v zeros))
{ "end_col": 39, "end_line": 594, "start_col": 52, "start_line": 588 }
FStar.Pervasives.Lemma
val chacha20_map_blocks_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_map_blocks_vec_equiv_pre_k #w k n c0 hi_fv rem b_v j = if j < rem / blocksize * blocksize then chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j else chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j
val chacha20_map_blocks_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k #w k n c0 hi_fv rem b_v j =
false
null
true
if j < (rem / blocksize) * blocksize then chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j else chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_nat", "FStar.Mul.op_Star", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.op_Division", "Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k0", "Prims.bool", "Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k1", "Prims.unit" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); } val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain) let update_sub_get_last_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k:nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain #set-options "--using_facts_from '* -FStar.Seq.Properties.slice_slice'" val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_block_s #uint8 #rem blocksize b_v j in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_block_lemma w blocksize (u8 0) rem b_v j } Seq.index (f (w * hi_fv + j / blocksize) b1) (j % blocksize); } val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_last_s #uint8 #rem blocksize b_v in let plain = create blocksize (u8 0) in let plain = update_sub plain 0 (rem % blocksize) b1 in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_last_lemma w blocksize (u8 0) rem b_v j; mod_div_lt blocksize j rem } Seq.index (f (w * hi_fv + j / blocksize) plain) (j % blocksize); (==) { } Seq.index (g (w * hi_fv + j / blocksize) (rem % blocksize) b1) (j % blocksize); } val chacha20_map_blocks_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_map_blocks_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> hi_fv: Lib.IntTypes.size_nat{w * hi_fv + w <= Lib.IntTypes.max_size_t} -> rem: Prims.nat{rem < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> b_v: Lib.Sequence.lseq Lib.IntTypes.uint8 rem -> j: Prims.nat{j < rem} -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in let g_v = Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last st_v0 in let f = Spec.Chacha20.chacha20_encrypt_block st0 in let g = Spec.Chacha20.chacha20_encrypt_last st0 in Lib.Vec.Lemmas.map_blocks_vec_equiv_pre_k w Hacl.Spec.Chacha20.Equiv.blocksize hi_fv f g g_v rem b_v j))
{ "end_col": 66, "end_line": 922, "start_col": 2, "start_line": 919 }
FStar.Pervasives.Lemma
val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i =
false
null
true
eq_intro (transpose_state (sum_state st1 st2)).[ i ] (Scalar.sum_state (transpose_state st1).[ i ] (transpose_state st2).[ i ])
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Vec.sum_state", "Spec.Chacha20.sum_state", "Prims.unit" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i])
[]
Hacl.Spec.Chacha20.Equiv.sum_state_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st1: Hacl.Spec.Chacha20.Vec.state w -> st2: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.sum_state st1 st2)).[ i ] (Spec.Chacha20.sum_state (Hacl.Spec.Chacha20.Vec.transpose_state st1).[ i ] (Hacl.Spec.Chacha20.Vec.transpose_state st2).[ i ]))
{ "end_col": 123, "end_line": 284, "start_col": 2, "start_line": 284 }
FStar.Pervasives.Lemma
val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p
val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j =
false
null
true
let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Prims.op_Division", "Lib.Sequence.eq_intro", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "FStar.Seq.Base.index", "Lib.Sequence.Lemmas.get_block_s", "Lib.Sequence.update_sub", "Lib.Sequence.create", "Hacl.Spec.Chacha20.Equiv.update_sub_get_block_lemma_k", "FStar.Math.Lemmas.cancel_mul_div", "Lib.Sequence.div_mul_lt", "Prims.l_and", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_Addition", "Lib.Sequence.to_seq", "Lib.Sequence.index", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Prims.l_imp", "Prims.int" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j)
[]
Hacl.Spec.Chacha20.Equiv.update_sub_get_block_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Lib.IntTypes.size_pos -> blocksize: Lib.IntTypes.size_pos{w * blocksize <= Lib.IntTypes.max_size_t} -> zero: a -> len: Prims.nat{len < w * blocksize} -> b_v: Lib.Sequence.lseq a len -> j: Prims.nat{j < (len / blocksize) * blocksize} -> FStar.Pervasives.Lemma (ensures (let blocksize_v = w * blocksize in let plain_v = Lib.Sequence.create blocksize_v zero in let plain_v = Lib.Sequence.update_sub plain_v 0 len b_v in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_mul_lt blocksize j w in [@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_div w blocksize in Lib.Sequence.Lemmas.get_block_s blocksize plain_v j == Lib.Sequence.Lemmas.get_block_s blocksize b_v j))
{ "end_col": 16, "end_line": 680, "start_col": 62, "start_line": 670 }
FStar.Pervasives.Lemma
val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_sub_get_last_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k:nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain
val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain) let update_sub_get_last_lemma #a w blocksize zero len b_v j =
false
null
true
let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k: nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Prims.l_and", "Prims.op_Division", "Lib.Sequence.eq_intro", "Prims.unit", "FStar.Classical.forall_intro", "Prims.eq2", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma_plain_v_k", "Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma_plain_k", "Lib.Sequence.Lemmas.get_block_s", "Prims.op_Modulus", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_Addition", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Prims.l_imp", "Lib.Sequence.create", "Lib.Sequence.Lemmas.get_last_s", "FStar.Math.Lemmas.cancel_mul_div", "Lib.Sequence.div_mul_lt", "Prims.int" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); } val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain)
[]
Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Lib.IntTypes.size_pos -> blocksize: Lib.IntTypes.size_pos{w * blocksize <= Lib.IntTypes.max_size_t} -> zero: a -> len: Prims.nat{len < w * blocksize} -> b_v: Lib.Sequence.lseq a len -> j: Prims.nat{(len / blocksize) * blocksize <= j /\ j < len} -> FStar.Pervasives.Lemma (ensures (let blocksize_v = w * blocksize in let plain_v = Lib.Sequence.create blocksize_v zero in let plain_v = Lib.Sequence.update_sub plain_v 0 len b_v in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_mul_lt blocksize j w in [@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_div w blocksize in let block_l = Lib.Sequence.Lemmas.get_last_s blocksize b_v in let plain = Lib.Sequence.create blocksize zero in let plain = Lib.Sequence.update_sub plain 0 (len % blocksize) block_l in Lib.Sequence.Lemmas.get_block_s blocksize plain_v j == plain))
{ "end_col": 18, "end_line": 808, "start_col": 61, "start_line": 791 }
FStar.Pervasives.Lemma
val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); }
val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i =
false
null
true
let ib = uints_from_bytes_le b in let ob = map2 ( ^. ) ib k in let b_i = sub b ((i / 4) * 4) 4 in calc ( == ) { Seq.index (uints_to_bytes_le ob) i; ( == ) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[ i / 4 ]) (i % 4); ( == ) { () } Seq.index (uint_to_bytes_le (ib.[ i / 4 ] ^. k.[ i / 4 ])) (i % 4); ( == ) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[ i / 4 ])) (i % 4); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Spec.Chacha20.state", "Spec.Chacha20.block", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.ByteSequence.uint_to_bytes_le", "Lib.IntTypes.op_Hat_Dot", "Lib.ByteSequence.uint_from_bytes_le", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint32", "Prims.op_Division", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.ByteSequence.index_uints_to_bytes_le", "Prims.squash", "Lib.ByteSequence.index_uints_from_bytes_le", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Spec.Chacha20.size_block", "Prims.op_Multiply", "Prims.op_Addition", "Prims.l_Forall", "Prims.l_or", "Lib.Sequence.index", "Lib.Sequence.sub", "FStar.Mul.op_Star", "Prims.l_imp", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.ByteSequence.uints_from_bytes_le" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4])
[]
Hacl.Spec.Chacha20.Equiv.xor_block_scalar_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.Chacha20.state -> b: Spec.Chacha20.block -> i: Prims.nat{i < Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (Spec.Chacha20.xor_block k b).[ i ] == (Lib.ByteSequence.uint_to_bytes_le (Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b ((i / 4) * 4) 4) ^. k.[ i / 4 ])).[ i % 4 ])
{ "end_col": 5, "end_line": 425, "start_col": 36, "start_line": 412 }
FStar.Pervasives.Lemma
val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i
val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i =
false
null
true
let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Addition", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.chacha20_core_scalar_lemma", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.chacha20_init_scalar_lemma", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
[]
Hacl.Spec.Chacha20.Equiv.kb_equiv_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter -> c: Hacl.Spec.Chacha20.Vec.counter {w * c <= Lib.IntTypes.max_size_t /\ c0 + w <= Lib.IntTypes.max_size_t} -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures (let st1 = Spec.Chacha20.chacha20_init k n c0 in let st2 = Spec.Chacha20.chacha20_init k n (c0 + i) in FStar.Seq.Base.equal (Spec.Chacha20.chacha20_core (w * c + i) st1) (Spec.Chacha20.chacha20_core (w * c) st2)))
{ "end_col": 45, "end_line": 136, "start_col": 34, "start_line": 131 }
FStar.Pervasives.Lemma
val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i =
false
null
true
Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[ i ] (Scalar.chacha20_add_counter (transpose_state st).[ i ] (w * c))
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Hacl.Spec.Chacha20.Vec.add_counter", "Spec.Chacha20.chacha20_add_counter", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.U32", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u32", "FStar.Math.Lemmas.modulo_lemma", "Prims.pow2" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c))
[]
Hacl.Spec.Chacha20.Equiv.add_counter_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st: Hacl.Spec.Chacha20.Vec.state w -> c: Hacl.Spec.Chacha20.Vec.counter{w * c <= Lib.IntTypes.max_size_t} -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.add_counter c st)).[ i ] (Spec.Chacha20.chacha20_add_counter (Hacl.Spec.Chacha20.Vec.transpose_state st).[ i ] (w * c)))
{ "end_col": 117, "end_line": 293, "start_col": 2, "start_line": 291 }
FStar.Pervasives.Lemma
val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else ()
val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k =
false
null
true
let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then calc ( == ) { Seq.index plain k; ( == ) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; ( == ) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); ( == ) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v ((len / blocksize) * blocksize + k); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Prims.l_and", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Seq.Base.lemma_index_app1", "Prims.squash", "FStar.Seq.Base.lemma_index_slice", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.bool", "Prims._assert", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "Hacl.Spec.Chacha20.Equiv.update_sub_is_append", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.Sequence.sub", "Prims.l_or", "Lib.Sequence.update_sub", "Lib.Sequence.Lemmas.get_last_s" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
[]
Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma_plain_k
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Lib.IntTypes.size_pos -> blocksize: Lib.IntTypes.size_pos{w * blocksize <= Lib.IntTypes.max_size_t} -> zero: a -> len: Prims.nat{len < w * blocksize} -> b_v: Lib.Sequence.lseq a len -> j: Prims.nat{(len / blocksize) * blocksize <= j /\ j < len} -> k: Prims.nat{k < blocksize} -> FStar.Pervasives.Lemma (ensures (let block_l = Lib.Sequence.Lemmas.get_last_s blocksize b_v in let plain = Lib.Sequence.create blocksize zero in let plain = Lib.Sequence.update_sub plain 0 (len % blocksize) block_l in FStar.Seq.Base.index plain k == (match k < len % blocksize with | true -> FStar.Seq.Base.index b_v ((len / blocksize) * blocksize + k) | _ -> zero)))
{ "end_col": 9, "end_line": 718, "start_col": 71, "start_line": 699 }
FStar.Pervasives.Lemma
val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); }
val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k =
false
null
true
let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert ((j / blocksize) * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert ((j / blocksize) * blocksize + k == (len / blocksize) * blocksize + k); calc ( == ) { Seq.index (Seq.slice plain_v ((j / blocksize) * blocksize) ((j / blocksize) * blocksize + blocksize)) k; ( == ) { Seq.lemma_index_slice plain_v ((j / blocksize) * blocksize) ((j / blocksize) * blocksize + blocksize) k } Seq.index plain_v ((j / blocksize) * blocksize + k); ( == ) { () } Seq.index plain_v ((len / blocksize) * blocksize + k); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Prims.l_and", "Prims.op_Division", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Seq.Base.lemma_index_slice", "Prims.squash", "Prims._assert", "Prims.int", "Lib.Sequence.div_interval", "FStar.Math.Lemmas.lemma_mult_le_right", "Lib.Sequence.Lemmas.get_block_s", "FStar.Math.Lemmas.cancel_mul_div", "Lib.Sequence.div_mul_lt", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "Hacl.Spec.Chacha20.Equiv.update_sub_is_append", "Prims.op_Subtraction", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.Sequence.sub", "Prims.l_or", "Lib.Sequence.update_sub" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero))
[]
Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma_plain_v_k
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Lib.IntTypes.size_pos -> blocksize: Lib.IntTypes.size_pos{w * blocksize <= Lib.IntTypes.max_size_t} -> zero: a -> len: Prims.nat{len < w * blocksize} -> b_v: Lib.Sequence.lseq a len -> j: Prims.nat{(len / blocksize) * blocksize <= j /\ j < len} -> k: Prims.nat{k < blocksize} -> FStar.Pervasives.Lemma (ensures (let blocksize_v = w * blocksize in let plain_v = Lib.Sequence.create blocksize_v zero in let plain_v = Lib.Sequence.update_sub plain_v 0 len b_v in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_mul_lt blocksize j w in [@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_div w blocksize in let b = Lib.Sequence.Lemmas.get_block_s blocksize plain_v j in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_interval blocksize (len / blocksize) j in FStar.Seq.Base.index b k == (match k < len % blocksize with | true -> FStar.Seq.Base.index b_v ((len / blocksize) * blocksize + k) | _ -> zero)))
{ "end_col": 5, "end_line": 767, "start_col": 73, "start_line": 741 }
FStar.Pervasives.Lemma
val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); }
val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i =
false
null
true
let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[ i / blocksize ] in calc ( == ) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); ( == ) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); ( == ) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); ( == ) { (Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16) } Seq.index ki (i / 4 % 16); ( == ) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Lib.IntVector.vec_v", "Hacl.Spec.Chacha20.Vec.uint32xN", "Hacl.Spec.Chacha20.Vec.transpose", "Prims.op_Division", "Prims.op_Modulus", "Lib.IntTypes.uint32", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.modulo_division_lemma", "Prims.squash", "FStar.Math.Lemmas.division_multiplication_lemma", "Hacl.Spec.Chacha20.Lemmas.transpose_lemma_index", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.Sequence.to_seq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Lib.Sequence.op_String_Access", "Prims.int" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4))
[]
Hacl.Spec.Chacha20.Equiv.transpose_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (Lib.IntVector.vec_v (FStar.Seq.Base.index (Hacl.Spec.Chacha20.Vec.transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == FStar.Seq.Base.index (FStar.Seq.Base.index (Hacl.Spec.Chacha20.Vec.transpose_state k) (i / Hacl.Spec.Chacha20.Equiv.blocksize)) (i % Hacl.Spec.Chacha20.Equiv.blocksize / 4))
{ "end_col": 5, "end_line": 446, "start_col": 30, "start_line": 432 }
FStar.Pervasives.Lemma
val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i
val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i =
false
null
true
let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.add_counter_lemma_i", "Hacl.Spec.Chacha20.Vec.add_counter", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.sum_state_lemma_i", "Hacl.Spec.Chacha20.Vec.sum_state", "Hacl.Spec.Chacha20.Equiv.rounds_lemma_i", "Hacl.Spec.Chacha20.Vec.rounds" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i])
[]
Hacl.Spec.Chacha20.Equiv.chacha20_core_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Hacl.Spec.Chacha20.Vec.counter{w * c <= Lib.IntTypes.max_size_t} -> st_v0: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.chacha20_core c st_v0)).[ i ] (Spec.Chacha20.chacha20_core (w * c) (Hacl.Spec.Chacha20.Vec.transpose_state st_v0).[ i ]))
{ "end_col": 28, "end_line": 307, "start_col": 40, "start_line": 299 }
FStar.Pervasives.Lemma
val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j
val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j =
false
null
true
let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Hacl.Spec.Chacha20.Vec.blocks", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "Hacl.Spec.Chacha20.Equiv.xor_block_lemma_i", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.chacha20_core_lemma_i", "Prims.op_Division", "Hacl.Spec.Chacha20.Vec.chacha20_core" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize])
[]
Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_st0_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st_v0: Hacl.Spec.Chacha20.Vec.state w -> c: Hacl.Spec.Chacha20.Vec.counter{w * c <= Lib.IntTypes.max_size_t} -> b_v: Hacl.Spec.Chacha20.Vec.blocks w -> j: Prims.nat{j < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures ([@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_div w Hacl.Spec.Chacha20.Equiv.blocksize in let b = Lib.Sequence.Lemmas.get_block_s Hacl.Spec.Chacha20.Equiv.blocksize b_v j in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_mul_lt Hacl.Spec.Chacha20.Equiv.blocksize j w in (Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block st_v0 c b_v).[ j ] == (Spec.Chacha20.chacha20_encrypt_block (Hacl.Spec.Chacha20.Vec.transpose_state st_v0).[ j / Hacl.Spec.Chacha20.Equiv.blocksize ] (w * c) b).[ j % Hacl.Spec.Chacha20.Equiv.blocksize ]))
{ "end_col": 30, "end_line": 521, "start_col": 48, "start_line": 518 }
FStar.Pervasives.Lemma
val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2
val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i =
false
null
true
let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[ 12 ] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[ 12 ] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[ 12 ] == v k2.[ 12 ]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[ 12 ] == k.[ 12 ] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[ 12 ] == k.[ 12 ] +. u32 (c0 + i)); assert (forall (j: nat). j < 16 /\ j <> 12 ==> k1.[ j ] == k2.[ j ]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[ 12 ] == k.[ 12 ] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[ 12 ] == k.[ 12 ] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[ 12 ]; eq_intro k1 k2
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Spec.Chacha20.state", "Hacl.Spec.Chacha20.Vec.counter", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Addition", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.add_counter_lemma_aux", "Lib.Sequence.op_String_Access", "Prims._assert", "Prims.eq2", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.u32", "Spec.Chacha20.chacha20_add_counter", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.int", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Spec.Chacha20.sum_state", "Spec.Chacha20.rounds", "Lib.IntTypes.range_t", "Lib.IntTypes.v" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_core_scalar_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Hacl.Spec.Chacha20.Vec.lanes -> st1: Spec.Chacha20.state -> st2: Spec.Chacha20.state -> c0: Hacl.Spec.Chacha20.Vec.counter -> c: Hacl.Spec.Chacha20.Vec.counter {w * c <= Lib.IntTypes.max_size_t /\ c0 + w <= Lib.IntTypes.max_size_t} -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (requires forall (j: Prims.nat). j < 16 /\ j <> 12 ==> st1.[ j ] == st2.[ j ] /\ st1.[ 12 ] == Lib.IntTypes.u32 c0 /\ st2.[ 12 ] == Lib.IntTypes.u32 (c0 + i)) (ensures FStar.Seq.Base.equal (Spec.Chacha20.chacha20_core (w * c + i) st1) (Spec.Chacha20.chacha20_core (w * c) st2))
{ "end_col": 16, "end_line": 117, "start_col": 49, "start_line": 99 }
FStar.Pervasives.Lemma
val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2)
val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 =
false
null
true
let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[ 12 ] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2)
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "FStar.Seq.Properties.lemma_split", "Lib.IntTypes.uint_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.op_Addition", "Prims.unit", "Lib.Sequence.sub", "Lib.Sequence.eq_intro", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "Lib.ByteSequence.uints_from_bytes_le", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "Lib.IntTypes.mk_int", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.u32", "Lib.Sequence.map", "Lib.IntTypes.PUB", "Lib.IntTypes.secret", "Hacl.Spec.Chacha20.Vec.chacha20_constants", "FStar.Seq.Base.create", "Lib.Sequence.create", "FStar.Seq.Base.append", "Lib.Sequence.concat", "Prims.int", "Prims._assert", "Lib.Sequence.op_At_Bar" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_init_scalar_lemma
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter -> FStar.Pervasives.Lemma (ensures (let uc = Lib.Sequence.map Lib.IntTypes.secret Hacl.Spec.Chacha20.Vec.chacha20_constants in let uk = Lib.ByteSequence.uints_from_bytes_le k in let uctr = Lib.Sequence.create 1 (Lib.IntTypes.u32 c0) in let un = Lib.ByteSequence.uints_from_bytes_le n in Spec.Chacha20.chacha20_init k n c0 == uc @| uk @| uctr @| un))
{ "end_col": 54, "end_line": 66, "start_col": 39, "start_line": 32 }
FStar.Pervasives.Lemma
val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i
val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i =
false
null
true
let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[ i ] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Addition", "Spec.Chacha20.block", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.kb_equiv_lemma", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Sequence.lseq", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Hacl.Spec.Chacha20.Vec.transpose_state", "Spec.Chacha20.chacha20_init", "Hacl.Spec.Chacha20.Equiv.chacha20_init_lemma_i", "Spec.Chacha20.state", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.chacha20_init" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i)
[]
Hacl.Spec.Chacha20.Equiv.encrypt_block_scalar_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter -> c: Hacl.Spec.Chacha20.Vec.counter {w * c <= Lib.IntTypes.max_size_t /\ c0 + w <= Lib.IntTypes.max_size_t} -> b_i: Spec.Chacha20.block -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in FStar.Seq.Base.equal (Spec.Chacha20.chacha20_encrypt_block st0 (w * c + i) b_i) (Spec.Chacha20.chacha20_encrypt_block (Hacl.Spec.Chacha20.Vec.transpose_state st_v0).[ i ] (w * c) b_i)))
{ "end_col": 30, "end_line": 502, "start_col": 50, "start_line": 497 }
FStar.Pervasives.Lemma
val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); }
val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i =
false
null
true
let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[ j ] in let b_j = sub b ((i / bs) * bs) bs in let b_i = sub b_j ((i % bs / 4) * 4) 4 in let block = sub b ((i / 4) * 4) 4 in let ob = map2 ( ^. ) (uints_from_bytes_le b_j) kb_j in calc ( == ) { Seq.index (xor_block k b) i; ( == ) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); ( == ) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[ i % bs / 4 ]) (i % bs % 4); ( == ) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[ i % bs / 4 ]) (i % 4); ( == ) { () } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[ i % bs / 4 ] ^. kb_j.[ i % bs / 4 ])) (i % 4); ( == ) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[ i % bs / 4 ])) (i % 4); ( == ) { (lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) ((i % bs / 4) * 4) ((i % bs / 4) * 4 + 4)) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[ i % bs / 4 ])) (i % 4); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.blocks", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Hacl.Spec.Chacha20.Vec.xor_block", "Lib.ByteSequence.uint_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.op_Hat_Dot", "Lib.ByteSequence.uint_from_bytes_le", "Lib.Sequence.op_String_Access", "Prims.op_Division", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Lib.ByteSequence.uints_from_bytes_le", "Lib.ByteSequence.uints_to_bytes_le", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.Sequence.index_map_blocks_multi", "Hacl.Spec.Chacha20.Vec.xor_block_f", "Prims.squash", "Lib.ByteSequence.index_uints_to_bytes_le", "FStar.Math.Lemmas.modulo_modulo_lemma", "Lib.ByteSequence.index_uints_from_bytes_le", "FStar.Seq.Properties.slice_slice", "Prims.op_Addition", "Hacl.Spec.Chacha20.Equiv.lemma_i_div_w4", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_or", "Lib.Sequence.sub", "Lib.IntVector.vec_v_t", "Lib.IntVector.vec_v", "Hacl.Spec.Chacha20.Vec.uint32xN", "Prims.int" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4))
[]
Hacl.Spec.Chacha20.Equiv.xor_block_vec_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.state w -> b: Hacl.Spec.Chacha20.Vec.blocks w -> i: Prims.nat{i < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let bs = w * 4 in let j = i / bs in let block = Lib.Sequence.sub b ((i / 4) * 4) 4 in FStar.Seq.Base.index (Hacl.Spec.Chacha20.Vec.xor_block k b) i == FStar.Seq.Base.index (Lib.ByteSequence.uint_to_bytes_le (Lib.ByteSequence.uint_from_bytes_le block ^. FStar.Seq.Base.index (Lib.IntVector.vec_v k.[ j ]) (i % bs / 4))) (i % 4)))
{ "end_col": 5, "end_line": 406, "start_col": 36, "start_line": 381 }
FStar.Pervasives.Lemma
val lemma_chacha20_vec_equiv: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> msg:seq uint8{length msg <= max_size_t} -> Lemma (chacha20_encrypt_bytes #w k n c0 msg `Seq.equal` Scalar.chacha20_encrypt_bytes k n c0 msg)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_chacha20_vec_equiv #w k n c0 msg = let blocksize_v = w * blocksize in let res = Scalar.chacha20_encrypt_bytes k n c0 msg in let res_v = chacha20_encrypt_bytes #w k n c0 msg in let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in assert (res_v == map_blocks blocksize_v msg f_v g_v); assert (res == map_blocks blocksize msg f g); let hi_fv = length msg / blocksize_v in let hi_f = w * hi_fv in Classical.forall_intro_3 (chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f); Classical.forall_intro_3 (chacha20_map_blocks_vec_equiv_pre_k #w k n c0 hi_fv); VecLemmas.lemma_map_blocks_vec w blocksize msg hi_fv f g f_v g_v
val lemma_chacha20_vec_equiv: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> msg:seq uint8{length msg <= max_size_t} -> Lemma (chacha20_encrypt_bytes #w k n c0 msg `Seq.equal` Scalar.chacha20_encrypt_bytes k n c0 msg) let lemma_chacha20_vec_equiv #w k n c0 msg =
false
null
true
let blocksize_v = w * blocksize in let res = Scalar.chacha20_encrypt_bytes k n c0 msg in let res_v = chacha20_encrypt_bytes #w k n c0 msg in let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in assert (res_v == map_blocks blocksize_v msg f_v g_v); assert (res == map_blocks blocksize msg f g); let hi_fv = length msg / blocksize_v in let hi_f = w * hi_fv in Classical.forall_intro_3 (chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f); Classical.forall_intro_3 (chacha20_map_blocks_vec_equiv_pre_k #w k n c0 hi_fv); VecLemmas.lemma_map_blocks_vec w blocksize msg hi_fv f g f_v g_v
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Lib.Sequence.length", "Lib.Vec.Lemmas.lemma_map_blocks_vec", "Hacl.Spec.Chacha20.Equiv.blocksize", "Prims.unit", "FStar.Classical.forall_intro_3", "Prims.nat", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.Sequence.lseq", "Lib.Vec.Lemmas.map_blocks_vec_equiv_pre_k", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Chacha20.chacha20_encrypt_block", "Spec.Chacha20.chacha20_init", "Spec.Chacha20.chacha20_encrypt_last", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last", "Hacl.Spec.Chacha20.Vec.chacha20_init", "Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k", "Lib.Vec.Lemmas.map_blocks_multi_vec_equiv_pre_k", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block", "Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_multi_vec_equiv_pre_k", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Prims.l_or", "Lib.Sequence.map_blocks", "Spec.Chacha20.counter", "Prims.op_Subtraction", "Prims.pow2", "Spec.Chacha20.size_block", "Lib.IntTypes.int_t", "Spec.Chacha20.block", "Prims.op_Multiply", "Hacl.Spec.Chacha20.Vec.size_block", "Hacl.Spec.Chacha20.Vec.blocks", "Spec.Chacha20.state", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_bytes", "Spec.Chacha20.chacha20_encrypt_bytes" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); } val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain) let update_sub_get_last_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k:nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain #set-options "--using_facts_from '* -FStar.Seq.Properties.slice_slice'" val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_block_s #uint8 #rem blocksize b_v j in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_block_lemma w blocksize (u8 0) rem b_v j } Seq.index (f (w * hi_fv + j / blocksize) b1) (j % blocksize); } val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_last_s #uint8 #rem blocksize b_v in let plain = create blocksize (u8 0) in let plain = update_sub plain 0 (rem % blocksize) b1 in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_last_lemma w blocksize (u8 0) rem b_v j; mod_div_lt blocksize j rem } Seq.index (f (w * hi_fv + j / blocksize) plain) (j % blocksize); (==) { } Seq.index (g (w * hi_fv + j / blocksize) (rem % blocksize) b1) (j % blocksize); } val chacha20_map_blocks_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k #w k n c0 hi_fv rem b_v j = if j < rem / blocksize * blocksize then chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j else chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j //////////////////////// // End of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val lemma_chacha20_vec_equiv: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> msg:seq uint8{length msg <= max_size_t} -> Lemma (chacha20_encrypt_bytes #w k n c0 msg `Seq.equal` Scalar.chacha20_encrypt_bytes k n c0 msg)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_chacha20_vec_equiv: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> msg:seq uint8{length msg <= max_size_t} -> Lemma (chacha20_encrypt_bytes #w k n c0 msg `Seq.equal` Scalar.chacha20_encrypt_bytes k n c0 msg)
[]
Hacl.Spec.Chacha20.Equiv.lemma_chacha20_vec_equiv
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg <= Lib.IntTypes.max_size_t} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.chacha20_encrypt_bytes k n c0 msg) (Spec.Chacha20.chacha20_encrypt_bytes k n c0 msg))
{ "end_col": 66, "end_line": 957, "start_col": 44, "start_line": 936 }
FStar.Pervasives.Lemma
val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i))
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2
val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i =
false
null
true
let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[ 12 ] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[ i ] st1; assert ((transpose_state st).[ i ] == st1); let c = vec_counter U32 w in assert ((vec_v c).[ i ] == u32 i); let res = st.[ 12 ] <- st.[ 12 ] +| c in let res1 = st1.[ 12 ] <- st1.[ 12 ] +. u32 i in eq_intro (transpose_state res).[ i ] res1; assert ((transpose_state res).[ i ] == res1); assert (res1.[ 12 ] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[ 12 ] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Prims.nat", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Prims.unit", "Hacl.Spec.Chacha20.Equiv.chacha20_init_scalar_lemma", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Prims._assert", "Prims.eq2", "Prims.l_or", "Lib.IntTypes.range_t", "Lib.IntTypes.U32", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Lib.IntTypes.u32", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.int_t", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Prims.l_Forall", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Hacl.Spec.Chacha20.Vec.transpose_state", "Lib.IntTypes.add_mod", "Lib.IntTypes.mk_int", "Lib.Sequence.op_String_Assignment", "Hacl.Spec.Chacha20.Vec.uint32xN", "Lib.IntVector.op_Plus_Bar", "Lib.IntTypes.uint_t", "Lib.IntVector.vec_v", "Lib.IntVector.vec_t", "Lib.Sequence.createi", "Lib.IntVector.vec_counter", "Hacl.Spec.Chacha20.Vec.vec_load_i", "Lib.Sequence.map", "Hacl.Spec.Chacha20.Vec.setup1" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i))
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i))
[]
Hacl.Spec.Chacha20.Equiv.chacha20_init_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.chacha20_init k n c0)).[ i ] (Spec.Chacha20.chacha20_init k n (c0 + i)))
{ "end_col": 20, "end_line": 336, "start_col": 39, "start_line": 313 }
FStar.Pervasives.Lemma
val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }
val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i =
false
null
true
let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[ i / blocksize ] in let b_i = sub b ((i / blocksize) * blocksize) blocksize in let block = sub b ((i / 4) * 4) 4 in calc ( == ) { Seq.index (xor_block (transpose k) b) i; ( == ) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[ j ]) (i % bs / 4)))) (i % 4); ( == ) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc ( == ) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); ( == ) { (xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i ((i % blocksize / 4) * 4) 4)) ^. ki.[ i % blocksize / 4 ])) (i % 4); ( == ) { (lemma_i_div_blocksize w i; Seq.Properties.slice_slice b ((i / blocksize) * blocksize) ((i / blocksize) * blocksize + blocksize) ((i % blocksize / 4) * 4) ((i % blocksize / 4) * 4 + 4)) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.blocks", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Equiv.blocksize", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Spec.Chacha20.xor_block", "Prims.op_Modulus", "Lib.ByteSequence.uint_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.op_Hat_Dot", "Lib.ByteSequence.uint_from_bytes_le", "Lib.IntTypes.uint32", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Lib.Sequence.sub", "Lib.Sequence.op_String_Access", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.modulo_modulo_lemma", "Hacl.Spec.Chacha20.Equiv.xor_block_scalar_lemma_i", "Prims.squash", "FStar.Seq.Properties.slice_slice", "Prims.op_Addition", "Hacl.Spec.Chacha20.Equiv.lemma_i_div_blocksize", "Hacl.Spec.Chacha20.Vec.xor_block", "Hacl.Spec.Chacha20.Vec.transpose", "Lib.IntVector.vec_v", "Hacl.Spec.Chacha20.Vec.uint32xN", "Hacl.Spec.Chacha20.Equiv.xor_block_vec_lemma_i", "Hacl.Spec.Chacha20.Equiv.transpose_lemma_i", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.l_or", "Lib.Sequence.index", "Hacl.Spec.Chacha20.Vec.transpose_state", "Prims.int" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize])
[]
Hacl.Spec.Chacha20.Equiv.xor_block_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.state w -> b: Hacl.Spec.Chacha20.Vec.blocks w -> i: Prims.nat{i < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let k_i = (Hacl.Spec.Chacha20.Vec.transpose_state k).[ i / Hacl.Spec.Chacha20.Equiv.blocksize ] in let b_i = Lib.Sequence.sub b ((i / Hacl.Spec.Chacha20.Equiv.blocksize) * Hacl.Spec.Chacha20.Equiv.blocksize) Hacl.Spec.Chacha20.Equiv.blocksize in (Hacl.Spec.Chacha20.Vec.xor_block (Hacl.Spec.Chacha20.Vec.transpose k) b).[ i ] == (Spec.Chacha20.xor_block k_i b_i).[ i % Hacl.Spec.Chacha20.Equiv.blocksize ]))
{ "end_col": 5, "end_line": 477, "start_col": 32, "start_line": 454 }
FStar.Pervasives.Lemma
val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j
val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j =
false
null
true
encrypt_block_lemma_bs_i #w k n c0 i b_v j
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Prims.nat", "Lib.IntTypes.size_nat", "FStar.Mul.op_Star", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Chacha20.Equiv.blocksize", "Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_bs_i", "Prims.unit" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_multi_vec_equiv_pre_k
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> hi_fv: Prims.nat -> hi_f: Lib.IntTypes.size_nat{w * hi_fv <= hi_f} -> i: Prims.nat{i < hi_fv} -> b_v: Lib.Sequence.lseq Lib.IntTypes.uint8 (w * Hacl.Spec.Chacha20.Equiv.blocksize) -> j: Prims.nat{j < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in let f_v = Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block st_v0 in let f = Spec.Chacha20.chacha20_encrypt_block st0 in Lib.Vec.Lemmas.map_blocks_multi_vec_equiv_pre_k w Hacl.Spec.Chacha20.Equiv.blocksize hi_fv hi_f f f_v i b_v j))
{ "end_col": 44, "end_line": 569, "start_col": 2, "start_line": 569 }
FStar.Pervasives.Lemma
val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_block_s #uint8 #rem blocksize b_v j in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_block_lemma w blocksize (u8 0) rem b_v j } Seq.index (f (w * hi_fv + j / blocksize) b1) (j % blocksize); }
val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j =
false
null
true
let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_block_s #uint8 #rem blocksize b_v j in calc ( == ) { Seq.index (g_v hi_fv rem b_v) j; ( == ) { (encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w) } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); ( == ) { update_sub_get_block_lemma w blocksize (u8 0) rem b_v j } Seq.index (f (w * hi_fv + j / blocksize) b1) (j % blocksize); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_nat", "FStar.Mul.op_Star", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.op_Division", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.Sequence.div_mul_lt", "Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_bs_i", "Prims.squash", "Hacl.Spec.Chacha20.Equiv.update_sub_get_block_lemma", "Lib.IntTypes.u8", "Lib.IntTypes.int_t", "Lib.Sequence.Lemmas.get_block_s", "FStar.Math.Lemmas.cancel_mul_div", "Prims.l_and", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Prims.int", "Spec.Chacha20.counter", "Prims.op_Subtraction", "Prims.pow2", "Spec.Chacha20.size_block", "Spec.Chacha20.chacha20_encrypt_last", "Spec.Chacha20.block", "Spec.Chacha20.chacha20_encrypt_block", "Prims.op_Multiply", "Hacl.Spec.Chacha20.Vec.size_block", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.chacha20_init" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); } val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain) let update_sub_get_last_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k:nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain #set-options "--using_facts_from '* -FStar.Seq.Properties.slice_slice'" val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k0
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> hi_fv: Lib.IntTypes.size_nat{w * hi_fv + w <= Lib.IntTypes.max_size_t} -> rem: Prims.nat{rem < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> b_v: Lib.Sequence.lseq Lib.IntTypes.uint8 rem -> j: Prims.nat{j < (rem / Hacl.Spec.Chacha20.Equiv.blocksize) * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in let g_v = Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last st_v0 in let f = Spec.Chacha20.chacha20_encrypt_block st0 in let g = Spec.Chacha20.chacha20_encrypt_last st0 in Lib.Vec.Lemmas.map_blocks_vec_equiv_pre_k w Hacl.Spec.Chacha20.Equiv.blocksize hi_fv f g g_v rem b_v j))
{ "end_col": 5, "end_line": 851, "start_col": 68, "start_line": 830 }
FStar.Pervasives.Lemma
val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize)
val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j =
false
null
true
let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize)
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "FStar.Mul.op_Star", "Hacl.Spec.Chacha20.Vec.blocks", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "Hacl.Spec.Chacha20.Equiv.encrypt_block_scalar_lemma_i", "Prims.op_Division", "Prims.unit", "Lib.Sequence.div_mul_lt", "Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_st0_i", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.Lemmas.get_block_s", "Lib.IntTypes.uint8", "FStar.Math.Lemmas.cancel_mul_div", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.chacha20_init" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize])
[]
Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_bs_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> c: Hacl.Spec.Chacha20.Vec.counter{w * c <= Lib.IntTypes.max_size_t} -> b_v: Hacl.Spec.Chacha20.Vec.blocks w -> j: Prims.nat{j < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in [@@ FStar.Pervasives.inline_let ]let _ = FStar.Math.Lemmas.cancel_mul_div w Hacl.Spec.Chacha20.Equiv.blocksize in let b = Lib.Sequence.Lemmas.get_block_s Hacl.Spec.Chacha20.Equiv.blocksize b_v j in [@@ FStar.Pervasives.inline_let ]let _ = Lib.Sequence.div_mul_lt Hacl.Spec.Chacha20.Equiv.blocksize j w in (Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block st_v0 c b_v).[ j ] == (Spec.Chacha20.chacha20_encrypt_block st0 (w * c + j / Hacl.Spec.Chacha20.Equiv.blocksize) b ).[ j % Hacl.Spec.Chacha20.Equiv.blocksize ]))
{ "end_col": 60, "end_line": 548, "start_col": 48, "start_line": 541 }
FStar.Pervasives.Lemma
val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_last_s #uint8 #rem blocksize b_v in let plain = create blocksize (u8 0) in let plain = update_sub plain 0 (rem % blocksize) b1 in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_last_lemma w blocksize (u8 0) rem b_v j; mod_div_lt blocksize j rem } Seq.index (f (w * hi_fv + j / blocksize) plain) (j % blocksize); (==) { } Seq.index (g (w * hi_fv + j / blocksize) (rem % blocksize) b1) (j % blocksize); }
val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k1 #w k n c0 hi_fv rem b_v j =
false
null
true
let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_last_s #uint8 #rem blocksize b_v in let plain = create blocksize (u8 0) in let plain = update_sub plain 0 (rem % blocksize) b1 in calc ( == ) { Seq.index (g_v hi_fv rem b_v) j; ( == ) { (encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w) } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); ( == ) { (update_sub_get_last_lemma w blocksize (u8 0) rem b_v j; mod_div_lt blocksize j rem) } Seq.index (f (w * hi_fv + j / blocksize) plain) (j % blocksize); ( == ) { () } Seq.index (g (w * hi_fv + j / blocksize) (rem % blocksize) b1) (j % blocksize); }
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.key", "Hacl.Spec.Chacha20.Vec.nonce", "Hacl.Spec.Chacha20.Vec.counter", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_nat", "FStar.Mul.op_Star", "Prims.nat", "Prims.op_LessThan", "Hacl.Spec.Chacha20.Equiv.blocksize", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.l_and", "Prims.op_Division", "FStar.Calc.calc_finish", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.eq2", "FStar.Seq.Base.index", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.Sequence.div_mul_lt", "Hacl.Spec.Chacha20.Equiv.encrypt_block_lemma_bs_i", "Prims.squash", "Lib.Sequence.mod_div_lt", "Hacl.Spec.Chacha20.Equiv.update_sub_get_last_lemma", "Lib.IntTypes.u8", "Lib.IntTypes.int_t", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.Sequence.Lemmas.get_last_s", "Lib.Sequence.Lemmas.get_block_s", "FStar.Math.Lemmas.cancel_mul_div", "Prims.int", "Spec.Chacha20.counter", "Prims.op_Subtraction", "Prims.pow2", "Spec.Chacha20.size_block", "Spec.Chacha20.chacha20_encrypt_last", "Spec.Chacha20.block", "Spec.Chacha20.chacha20_encrypt_block", "Prims.op_Multiply", "Hacl.Spec.Chacha20.Vec.size_block", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last", "Hacl.Spec.Chacha20.Vec.blocks", "Hacl.Spec.Chacha20.Vec.chacha20_encrypt_block", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Hacl.Spec.Chacha20.Vec.state", "Hacl.Spec.Chacha20.Vec.chacha20_init" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s val quarter_round_lemma_i: #w:lanes -> a:idx -> b:idx -> c:idx -> d:idx -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (quarter_round #w a b c d m)).[i] `Seq.equal` Scalar.quarter_round a b c d (transpose_state m).[i]) let quarter_round_lemma_i #w a b c d m i = let lp0 = line a b d (size 16) m in let lp1 = line c d b (size 12) lp0 in let lp2 = line a b d (size 8) lp1 in let lp3 = line c d b (size 7) lp2 in assert (quarter_round #w a b c d m == lp3); line_lemma_i a b d (size 16) m i; line_lemma_i c d b (size 12) lp0 i; line_lemma_i a b d (size 8) lp1 i; line_lemma_i c d b (size 7) lp2 i; eq_intro (transpose_state (quarter_round #w a b c d m)).[i] (Scalar.quarter_round a b c d (transpose_state m).[i]) val column_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (column_round #w m)).[i] `Seq.equal` Scalar.column_round (transpose_state m).[i]) let column_round_lemma_i #w m i = let lp0 = quarter_round 0 4 8 12 m in let lp1 = quarter_round 1 5 9 13 lp0 in let lp2 = quarter_round 2 6 10 14 lp1 in let lp3 = quarter_round 3 7 11 15 lp2 in assert (column_round #w m == lp3); quarter_round_lemma_i 0 4 8 12 m i; quarter_round_lemma_i 1 5 9 13 lp0 i; quarter_round_lemma_i 2 6 10 14 lp1 i; quarter_round_lemma_i 3 7 11 15 lp2 i; eq_intro (transpose_state (column_round #w m)).[i] (Scalar.column_round (transpose_state m).[i]) val diagonal_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (diagonal_round #w m)).[i] `Seq.equal` Scalar.diagonal_round (transpose_state m).[i]) let diagonal_round_lemma_i #w m i = let lp0 = quarter_round 0 5 10 15 m in let lp1 = quarter_round 1 6 11 12 lp0 in let lp2 = quarter_round 2 7 8 13 lp1 in let lp3 = quarter_round 3 4 9 14 lp2 in assert (diagonal_round #w m == lp3); quarter_round_lemma_i 0 5 10 15 m i; quarter_round_lemma_i 1 6 11 12 lp0 i; quarter_round_lemma_i 2 7 8 13 lp1 i; quarter_round_lemma_i 3 4 9 14 lp2 i; eq_intro (transpose_state (diagonal_round #w m)).[i] (Scalar.diagonal_round (transpose_state m).[i]) val double_round_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (double_round #w m)).[i] `Seq.equal` Scalar.double_round (transpose_state m).[i]) let double_round_lemma_i #w m i = let m1 = column_round m in let m2 = diagonal_round m1 in column_round_lemma_i m i; diagonal_round_lemma_i m1 i noextract let scalar_rounds (m:Scalar.state) : Scalar.state = Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round ( Scalar.double_round (Scalar.double_round m))))))))) val scalar_rounds_unroll_lemma: m:Scalar.state -> Lemma (scalar_rounds m `Seq.equal` Scalar.rounds m) let scalar_rounds_unroll_lemma m = let open Lib.LoopCombinators in eq_repeat0 Scalar.double_round m; unfold_repeat 10 Scalar.double_round m 0; unfold_repeat 10 Scalar.double_round m 1; unfold_repeat 10 Scalar.double_round m 2; unfold_repeat 10 Scalar.double_round m 3; unfold_repeat 10 Scalar.double_round m 4; unfold_repeat 10 Scalar.double_round m 5; unfold_repeat 10 Scalar.double_round m 6; unfold_repeat 10 Scalar.double_round m 7; unfold_repeat 10 Scalar.double_round m 8; unfold_repeat 10 Scalar.double_round m 9 val rounds_lemma_i: #w:lanes -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (rounds #w m)).[i] `Seq.equal` Scalar.rounds (transpose_state m).[i]) let rounds_lemma_i #w m i = let ms = (transpose_state m).[i] in let m1 = double_round m in let m2 = double_round m1 in let m3 = double_round m2 in let m4 = double_round m3 in let m5 = double_round m4 in let m6 = double_round m5 in let m7 = double_round m6 in let m8 = double_round m7 in let m9 = double_round m8 in let m10 = double_round m9 in assert (rounds m == m10); double_round_lemma_i #w m i; double_round_lemma_i #w m1 i; double_round_lemma_i #w m2 i; double_round_lemma_i #w m3 i; double_round_lemma_i #w m4 i; double_round_lemma_i #w m5 i; double_round_lemma_i #w m6 i; double_round_lemma_i #w m7 i; double_round_lemma_i #w m8 i; double_round_lemma_i #w m9 i; assert ((transpose_state m10).[i] == scalar_rounds ms); scalar_rounds_unroll_lemma ms val sum_state_lemma_i: #w:lanes -> st1:state w -> st2:state w -> i:nat{i < w} -> Lemma ((transpose_state (sum_state st1 st2)).[i] `Seq.equal` Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) let sum_state_lemma_i #w st1 st2 i = eq_intro (transpose_state (sum_state st1 st2)).[i] (Scalar.sum_state (transpose_state st1).[i] (transpose_state st2).[i]) val add_counter_lemma_i: #w:lanes -> st:state w -> c:counter{w * c <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (add_counter #w c st)).[i] `Seq.equal` Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) let add_counter_lemma_i #w st c i = Math.Lemmas.modulo_lemma (w * c) (pow2 32); assert (v (u32 w *! u32 c) == v (u32 (w * c))); eq_intro (transpose_state (add_counter #w c st)).[i] (Scalar.chacha20_add_counter (transpose_state st).[i] (w * c)) //kb_v_i val chacha20_core_lemma_i: #w:lanes -> c:counter{w * c <= max_size_t} -> st_v0:state w -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_core c st_v0)).[i] `Seq.equal` Scalar.chacha20_core (w * c) (transpose_state st_v0).[i]) let chacha20_core_lemma_i #w c st_v0 i = let k0 = add_counter c st_v0 in add_counter_lemma_i st_v0 c i; let k1 = rounds k0 in rounds_lemma_i k0 i; let k2 = sum_state k1 st_v0 in sum_state_lemma_i k1 st_v0 i; let k3 = add_counter c k2 in add_counter_lemma_i k2 c i //init_v_i val chacha20_init_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma ((transpose_state (chacha20_init #w k n c0)).[i] `Seq.equal` Scalar.chacha20_init k n (c0 + i)) let chacha20_init_lemma_i #w k n c0 i = let st1 = setup1 k n c0 in assert (st1 == Scalar.chacha20_init k n c0); assert (st1.[12] == u32 c0); let st = map (vec_load_i w) st1 in eq_intro (transpose_state st).[i] st1; assert ((transpose_state st).[i] == st1); let c = vec_counter U32 w in assert ((vec_v c).[i] == u32 i); let res = st.[12] <- st.[12] +| c in let res1 = st1.[12] <- st1.[12] +. u32 i in eq_intro (transpose_state res).[i] res1; assert ((transpose_state res).[i] == res1); assert (res1.[12] == u32 c0 +. u32 i); assert (v (u32 c0 +. u32 i) == v (u32 (c0 + i))); assert (res1.[12] == u32 (c0 + i)); let res2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); eq_intro res1 res2 /// /// XOR-related lemmas /// val lemma_i_div_w4: w:pos -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in i / bs * bs + i % bs / 4 * 4 == i / 4 * 4) let lemma_i_div_w4 w i = let bs = w * 4 in calc (==) { i / bs * bs + i % bs / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % bs) 4 } i / bs * bs + i % bs - i % bs % 4; (==) { Math.Lemmas.euclidean_division_definition i bs } i - i % bs % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val lemma_i_div_blocksize: w:pos -> i:nat{i < w * blocksize} -> Lemma (i / blocksize * blocksize + i % blocksize / 4 * 4 == i / 4 * 4) let lemma_i_div_blocksize w i = calc (==) { i / blocksize * blocksize + i % blocksize / 4 * 4; (==) { Math.Lemmas.euclidean_division_definition (i % blocksize) 4 } i / blocksize * blocksize + i % blocksize - i % blocksize % 4; (==) { Math.Lemmas.modulo_modulo_lemma i 4 16 } i / blocksize * blocksize + i % blocksize - i % 4; (==) { Math.Lemmas.euclidean_division_definition i blocksize } i - i % 4; (==) { Math.Lemmas.euclidean_division_definition i 4 } i / 4 * 4; } val xor_block_vec_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let bs = w * 4 in let j = i / bs in let block = sub b (i / 4 * 4) 4 in Seq.index (xor_block k b) i == Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v k.[j]) (i % bs / 4)))) (i % 4)) let xor_block_vec_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let kb_j = vec_v k.[j] in let b_j = sub b (i / bs * bs) bs in let b_i = sub b_j (i % bs / 4 * 4) 4 in let block = sub b (i / 4 * 4) 4 in let ob = map2 (^.) (uints_from_bytes_le b_j) kb_j in calc (==) { Seq.index (xor_block k b) i; (==) { index_map_blocks_multi (w * 4) 16 16 b (xor_block_f #w k) i } Seq.index (uints_to_bytes_le ob) (i % bs); (==) { index_uints_to_bytes_le ob (i % bs) } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % bs % 4); (==) { Math.Lemmas.modulo_modulo_lemma i 4 w } Seq.index (uint_to_bytes_le ob.[i % bs / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le ((uints_from_bytes_le #U32 #SEC #w b_j).[i % bs / 4] ^. kb_j.[i % bs / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #w b_j (i % bs / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. kb_j.[i % bs / 4])) (i % 4); (==) { lemma_i_div_w4 w i; Seq.slice_slice b (j * bs) (j * bs + bs) (i % bs / 4 * 4) (i % bs / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. kb_j.[i % bs / 4])) (i % 4); } val xor_block_scalar_lemma_i: k:Scalar.state -> b:Scalar.block -> i:nat{i < blocksize} -> Lemma ((Scalar.xor_block k b).[i] == (uint_to_bytes_le ((uint_from_bytes_le (sub b (i / 4 * 4) 4)) ^. k.[i / 4])).[i % 4]) let xor_block_scalar_lemma_i k b i = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in let b_i = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (uints_to_bytes_le ob) i; (==) { index_uints_to_bytes_le ob i } Seq.index (uint_to_bytes_le ob.[i / 4]) (i % 4); (==) { (* def of xor *) } Seq.index (uint_to_bytes_le (ib.[i / 4] ^. k.[i / 4])) (i % 4); (==) { index_uints_from_bytes_le #U32 #SEC #16 b (i / 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le b_i) ^. k.[i / 4])) (i % 4); } val transpose_lemma_i: #w:lanes -> k:state w -> i:nat{i < w * blocksize} -> Lemma (Seq.index (vec_v (Seq.index (transpose k) (i / (w * 4)))) (i % (w * 4) / 4) == Seq.index (Seq.index (transpose_state k) (i / blocksize)) (i % blocksize / 4)) let transpose_lemma_i #w k i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in calc (==) { Seq.index (vec_v (Seq.index (transpose k) j)) (i % bs / 4); (==) { Math.Lemmas.modulo_division_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) j)) (i / 4 % w); (==) { Math.Lemmas.division_multiplication_lemma i 4 w } Seq.index (vec_v (Seq.index (transpose k) (i / 4 / w))) (i / 4 % w); (==) { Lemmas.transpose_lemma_index #w k (i / 4); Math.Lemmas.division_multiplication_lemma i 4 16 } Seq.index ki (i / 4 % 16); (==) { Math.Lemmas.modulo_division_lemma i 4 16 } Seq.index ki (i % blocksize / 4); } val xor_block_lemma_i: #w:lanes -> k:state w -> b:blocks w -> i:nat{i < w * blocksize} -> Lemma (let k_i = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in (xor_block (transpose k) b).[i] == (Scalar.xor_block k_i b_i).[i % blocksize]) let xor_block_lemma_i #w k b i = let bs = w * 4 in let j = i / bs in let ki = (transpose_state k).[i / blocksize] in let b_i = sub b (i / blocksize * blocksize) blocksize in let block = sub b (i / 4 * 4) 4 in calc (==) { Seq.index (xor_block (transpose k) b) i; (==) { xor_block_vec_lemma_i #w (transpose k) b i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index (vec_v (transpose k).[j]) (i % bs / 4)))) (i % 4); (==) { transpose_lemma_i #w k i } Seq.index (uint_to_bytes_le ((uint_from_bytes_le block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); }; calc (==) { Seq.index (Scalar.xor_block ki b_i) (i % blocksize); (==) { xor_block_scalar_lemma_i ki b_i (i % blocksize); Math.Lemmas.modulo_modulo_lemma i 4 16 } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC (sub b_i (i % blocksize / 4 * 4) 4)) ^. ki.[i % blocksize / 4])) (i % 4); (==) { lemma_i_div_blocksize w i; Seq.Properties.slice_slice b (i / blocksize * blocksize) (i / blocksize * blocksize + blocksize) (i % blocksize / 4 * 4) (i % blocksize / 4 * 4 + 4) } Seq.index (uint_to_bytes_le ((uint_from_bytes_le #U32 #SEC block) ^. (Seq.index ki (i % blocksize / 4)))) (i % 4); } /// /// map_blocks_vec /// val encrypt_block_scalar_lemma_i: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> b_i:Scalar.block -> i:nat{i < w} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Scalar.chacha20_encrypt_block st0 (w * c + i) b_i `Seq.equal` Scalar.chacha20_encrypt_block (transpose_state st_v0).[i] (w * c) b_i) let encrypt_block_scalar_lemma_i #w k n c0 c b i = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in chacha20_init_lemma_i #w k n c0 i; assert ((transpose_state st_v0).[i] == Scalar.chacha20_init k n (c0 + i)); kb_equiv_lemma #w k n c0 c i val encrypt_block_lemma_st0_i: #w:lanes -> st_v0:state w -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block (transpose_state st_v0).[j / blocksize] (w * c) b).[j % blocksize]) let encrypt_block_lemma_st0_i #w st_v0 c b_v j = let k = chacha20_core c st_v0 in chacha20_core_lemma_i #w c st_v0 (j / blocksize); xor_block_lemma_i #w k b_v j val encrypt_block_lemma_bs_i: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> c:counter{w * c <= max_size_t} -> b_v:blocks w -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in div_mul_lt blocksize j w; (chacha20_encrypt_block st_v0 c b_v).[j] == (Scalar.chacha20_encrypt_block st0 (w * c + j / blocksize) b).[j % blocksize]) let encrypt_block_lemma_bs_i #w k n c0 c b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #(w * blocksize) blocksize b_v j in encrypt_block_lemma_st0_i #w st_v0 c b_v j; div_mul_lt blocksize j w; encrypt_block_scalar_lemma_i #w k n c0 c b (j / blocksize) val chacha20_map_blocks_multi_vec_equiv_pre_k: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:nat // n == hi_fv == len / (w * blocksize) -> hi_f:size_nat{w * hi_fv <= hi_f} -> i:nat{i < hi_fv} -> b_v:lseq uint8 (w * blocksize) -> j:nat{j < w * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let f_v = chacha20_encrypt_block st_v0 in let f = Scalar.chacha20_encrypt_block st0 in VecLemmas.map_blocks_multi_vec_equiv_pre_k w blocksize hi_fv hi_f f f_v i b_v j) let chacha20_map_blocks_multi_vec_equiv_pre_k #w k n c0 hi_fv hi_f i b_v j = encrypt_block_lemma_bs_i #w k n c0 i b_v j //////////////////////// // Start of proof of VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j //////////////////////// val update_sub_is_append: #a:Type0 -> zero:a -> blocksize:size_pos -> len:nat{len < blocksize} -> b_v:lseq a len -> Lemma (let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in plain == Seq.append b_v zeros) let update_sub_is_append #a zero blocksize len b_v = let plain = create blocksize zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize - len) zero in Seq.Properties.lemma_split plain len; Seq.Properties.lemma_split (Seq.append b_v zeros) len; eq_intro plain (Seq.append b_v zeros) val update_sub_get_block_lemma_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; Seq.index (SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j) k == Seq.index (SeqLemmas.get_block_s #a #len blocksize b_v j) k) let update_sub_get_block_lemma_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in let zeros = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain == Seq.append b_v zeros); div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; //assert (j / blocksize < w); //assert (j < blocksize_v / blocksize * blocksize); let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in calc (<=) { (j / blocksize + 1) * blocksize; (<=) { div_mul_lt blocksize j (len / blocksize) } len / blocksize * blocksize; (<=) { Math.Lemmas.multiply_fractions len blocksize } len; }; calc (==) { Seq.index b_p k; (==) { } Seq.index (Seq.slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain (j / blocksize * blocksize + k); (==) { Seq.lemma_index_app1 b_v zeros (j / blocksize * blocksize + k) } Seq.index b_v (j / blocksize * blocksize + k); }; Seq.lemma_index_slice b_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k val update_sub_get_block_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{j < len / blocksize * blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == SeqLemmas.get_block_s #a #len blocksize b_v j) let update_sub_get_block_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain = create blocksize_v zero in let plain = update_sub plain 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b_p = SeqLemmas.get_block_s #a #blocksize_v blocksize plain j in let b = SeqLemmas.get_block_s #a #len blocksize b_v j in Classical.forall_intro (update_sub_get_block_lemma_k #a w blocksize zero len b_v j); eq_intro b b_p val update_sub_get_last_lemma_plain_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in Seq.index plain k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k = let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let zeros = create (blocksize - len % blocksize) zero in update_sub_is_append #a zero blocksize (len % blocksize) block_l; assert (plain == Seq.append block_l zeros); if k < len % blocksize then begin calc (==) { Seq.index plain k; (==) { Seq.lemma_index_app1 block_l zeros k } Seq.index block_l k; (==) { Seq.lemma_index_slice b_v (len - len % blocksize) len k } Seq.index b_v (len - len % blocksize + k); (==) { Math.Lemmas.euclidean_division_definition len blocksize } Seq.index b_v (len / blocksize * blocksize + k); } end else () val update_sub_get_last_lemma_plain_v_k: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> k:nat{k < blocksize} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in div_interval blocksize (len / blocksize) j; Seq.index b k == (if k < len % blocksize then Seq.index b_v (len / blocksize * blocksize + k) else zero)) let update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in let zeros_v = create (blocksize_v - len) zero in update_sub_is_append #a zero blocksize_v len b_v; assert (plain_v == Seq.append b_v zeros_v); div_mul_lt blocksize j w; //assert (j / blocksize < w); Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in Math.Lemmas.lemma_mult_le_right blocksize (j / blocksize + 1) w; assert (j / blocksize * blocksize + blocksize <= blocksize_v); div_interval blocksize (len / blocksize) j; assert (j / blocksize * blocksize + k == len / blocksize * blocksize + k); calc (==) { //Seq.index b k; //(==) { } Seq.index (Seq.slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize)) k; (==) { Seq.lemma_index_slice plain_v (j / blocksize * blocksize) (j / blocksize * blocksize + blocksize) k } Seq.index plain_v (j / blocksize * blocksize + k); (==) { } Seq.index plain_v (len / blocksize * blocksize + k); } val update_sub_get_last_lemma: #a:Type -> w:size_pos -> blocksize:size_pos{w * blocksize <= max_size_t} -> zero:a -> len:nat{len < w * blocksize} -> b_v:lseq a len -> j:nat{len / blocksize * blocksize <= j /\ j < len} -> Lemma (let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j == plain) let update_sub_get_last_lemma #a w blocksize zero len b_v j = let blocksize_v = w * blocksize in let plain_v = create blocksize_v zero in let plain_v = update_sub plain_v 0 len b_v in div_mul_lt blocksize j w; Math.Lemmas.cancel_mul_div w blocksize; let block_l = SeqLemmas.get_last_s #a #len blocksize b_v in let plain = create blocksize zero in let plain = update_sub plain 0 (len % blocksize) block_l in let b = SeqLemmas.get_block_s #a #blocksize_v blocksize plain_v j in let aux (k:nat{k < blocksize}) : Lemma (Seq.index b k == Seq.index plain k) = update_sub_get_last_lemma_plain_k #a w blocksize zero len b_v j k; update_sub_get_last_lemma_plain_v_k #a w blocksize zero len b_v j k in Classical.forall_intro aux; eq_intro b plain #set-options "--using_facts_from '* -FStar.Seq.Properties.slice_slice'" val chacha20_map_blocks_vec_equiv_pre_k0: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{j < rem / blocksize * blocksize} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j) let chacha20_map_blocks_vec_equiv_pre_k0 #w k n c0 hi_fv rem b_v j = let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in let blocksize_v = w * blocksize in let plain_v = create blocksize_v (u8 0) in let plain_v = update_sub plain_v 0 rem b_v in Math.Lemmas.cancel_mul_div w blocksize; let b = SeqLemmas.get_block_s #uint8 #blocksize_v blocksize plain_v j in let b1 = SeqLemmas.get_block_s #uint8 #rem blocksize b_v j in calc (==) { Seq.index (g_v hi_fv rem b_v) j; (==) { encrypt_block_lemma_bs_i #w k n c0 hi_fv plain_v j; div_mul_lt blocksize j w } Seq.index (f (w * hi_fv + j / blocksize) b) (j % blocksize); (==) { update_sub_get_block_lemma w blocksize (u8 0) rem b_v j } Seq.index (f (w * hi_fv + j / blocksize) b1) (j % blocksize); } val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val chacha20_map_blocks_vec_equiv_pre_k1: #w:lanes -> k:key -> n:nonce -> c0:counter{c0 + w <= max_size_t} -> hi_fv:size_nat{w * hi_fv + w <= max_size_t} // n == hi_fv == len / (w * blocksize) -> rem:nat{rem < w * blocksize} -> b_v:lseq uint8 rem -> j:nat{rem / blocksize * blocksize <= j /\ j < rem} -> Lemma (let st_v0 = chacha20_init #w k n c0 in let st0 = Scalar.chacha20_init k n c0 in let g_v = chacha20_encrypt_last st_v0 in let f = Scalar.chacha20_encrypt_block st0 in let g = Scalar.chacha20_encrypt_last st0 in VecLemmas.map_blocks_vec_equiv_pre_k w blocksize hi_fv f g g_v rem b_v j)
[]
Hacl.Spec.Chacha20.Equiv.chacha20_map_blocks_vec_equiv_pre_k1
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Hacl.Spec.Chacha20.Vec.key -> n: Hacl.Spec.Chacha20.Vec.nonce -> c0: Hacl.Spec.Chacha20.Vec.counter{c0 + w <= Lib.IntTypes.max_size_t} -> hi_fv: Lib.IntTypes.size_nat{w * hi_fv + w <= Lib.IntTypes.max_size_t} -> rem: Prims.nat{rem < w * Hacl.Spec.Chacha20.Equiv.blocksize} -> b_v: Lib.Sequence.lseq Lib.IntTypes.uint8 rem -> j: Prims.nat { (rem / Hacl.Spec.Chacha20.Equiv.blocksize) * Hacl.Spec.Chacha20.Equiv.blocksize <= j /\ j < rem } -> FStar.Pervasives.Lemma (ensures (let st_v0 = Hacl.Spec.Chacha20.Vec.chacha20_init k n c0 in let st0 = Spec.Chacha20.chacha20_init k n c0 in let g_v = Hacl.Spec.Chacha20.Vec.chacha20_encrypt_last st_v0 in let f = Spec.Chacha20.chacha20_encrypt_block st0 in let g = Spec.Chacha20.chacha20_encrypt_last st0 in Lib.Vec.Lemmas.map_blocks_vec_equiv_pre_k w Hacl.Spec.Chacha20.Equiv.blocksize hi_fv f g g_v rem b_v j))
{ "end_col": 5, "end_line": 898, "start_col": 68, "start_line": 871 }
FStar.Pervasives.Lemma
val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i])
[ { "abbrev": false, "full_module": "Hacl.Spec.Chacha20.Vec", "short_module": null }, { "abbrev": true, "full_module": "Lib.Sequence.Lemmas", "short_module": "SeqLemmas" }, { "abbrev": true, "full_module": "Lib.Vec.Lemmas", "short_module": "VecLemmas" }, { "abbrev": true, "full_module": "Hacl.Spec.Chacha20.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Chacha20", "short_module": "Scalar" }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Chacha20", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let line_lemma_i #w a b d s m0 i = let m0_s = (transpose_state #w m0).[i] in let m1 = m0.[a] <- m0.[a] +| m0.[b] in let m1_s = m0_s.[a] <- m0_s.[a] +. m0_s.[b] in eq_intro (transpose_state m1).[i] m1_s; let m2 = m1.[d] <- (m1.[d] ^| m1.[a]) <<<| s in let m2_s = m1_s.[d] <- (m1_s.[d] ^. m1_s.[a]) <<<. s in eq_intro (transpose_state m2).[i] m2_s
val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i]) let line_lemma_i #w a b d s m0 i =
false
null
true
let m0_s = (transpose_state #w m0).[ i ] in let m1 = m0.[ a ] <- m0.[ a ] +| m0.[ b ] in let m1_s = m0_s.[ a ] <- m0_s.[ a ] +. m0_s.[ b ] in eq_intro (transpose_state m1).[ i ] m1_s; let m2 = m1.[ d ] <- (m1.[ d ] ^| m1.[ a ]) <<<| s in let m2_s = m1_s.[ d ] <- (m1_s.[ d ] ^. m1_s.[ a ]) <<<. s in eq_intro (transpose_state m2).[ i ] m2_s
{ "checked_file": "Hacl.Spec.Chacha20.Equiv.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "prims.fst.checked", "Lib.Vec.Lemmas.fsti.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Spec.Chacha20.Lemmas.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Chacha20.Equiv.fst" }
[ "lemma" ]
[ "Hacl.Spec.Chacha20.Vec.lanes", "Hacl.Spec.Chacha20.Vec.idx", "Lib.IntTypes.rotval", "Lib.IntTypes.U32", "Hacl.Spec.Chacha20.Vec.state", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint32", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Hacl.Spec.Chacha20.Vec.transpose_state", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.rotate_left", "Lib.IntTypes.logxor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Less_Less_Less_Dot", "Lib.IntTypes.op_Hat_Dot", "Hacl.Spec.Chacha20.Vec.uint32xN", "Lib.IntVector.op_Less_Less_Less_Bar", "Lib.IntVector.op_Hat_Bar", "Prims.unit", "Lib.IntTypes.add_mod", "Lib.IntTypes.op_Plus_Dot", "Lib.IntVector.op_Plus_Bar" ]
[]
module Hacl.Spec.Chacha20.Equiv open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.IntVector module Scalar = Spec.Chacha20 module Lemmas = Hacl.Spec.Chacha20.Lemmas module VecLemmas = Lib.Vec.Lemmas module SeqLemmas = Lib.Sequence.Lemmas open Hacl.Spec.Chacha20.Vec #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" let blocksize = size_block /// /// Scalar-related lemmas /// val chacha20_init_scalar_lemma: k:key -> n:nonce -> c0:counter -> Lemma (let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in Scalar.chacha20_init k n c0 == uc @| uk @| uctr @| un) let chacha20_init_scalar_lemma k n c0 = let uc = map secret chacha20_constants in let uk = uints_from_bytes_le #U32 #SEC #8 k in let uctr = create 1 (u32 c0) in let un = uints_from_bytes_le #U32 #SEC #3 n in let res = uc @| uk @| uctr @| un in assert (res == concat uc (concat uk (concat uctr un))); eq_intro res (concat (concat (concat uc uk) uctr) un); let len0 = 4 in let len1 = 8 in let len2 = 1 in let len3 = 3 in let res = concat (concat (concat uc uk) uctr) un in let st = create 16 (u32 0) in let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in eq_intro (sub st 0 4) uc; let st = st.[12] <- u32 c0 in eq_intro (sub st 0 4) uc; eq_intro (sub st 4 8) uk; let res1 = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in eq_intro (sub res1 0 4) uc; eq_intro (sub res1 4 8) uk; eq_intro (sub res1 12 1) uctr; eq_intro (sub res1 13 3) un; Seq.Properties.lemma_split (sub res 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res1 0 (len0 + len1)) len0; Seq.Properties.lemma_split (sub res 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split (sub res1 0 (len0 + len1 + len2)) (len0 + len1); Seq.Properties.lemma_split res (len0 + len1 + len2); Seq.Properties.lemma_split res1 (len0 + len1 + len2) val add_counter_lemma_aux: w:lanes -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> b:uint32 -> Lemma (b +. u32 c0 +. u32 (w * c + i) == b +. u32 (c0 + i) +. u32 (w * c)) let add_counter_lemma_aux w c0 c i b = let lp = b +. u32 c0 +. u32 (w * c + i) in let rp = b +. u32 (c0 + i) +. u32 (w * c) in assert (v lp == ((v b + c0) % modulus U32 + (w * c + i)) % modulus U32); assert (v rp == ((v b + c0 + i) % modulus U32 + (w * c)) % modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0) (w * c + i) (modulus U32); Math.Lemmas.lemma_mod_plus_distr_l (v b + c0 + i) (w * c) (modulus U32) val chacha20_core_scalar_lemma: w:lanes -> st1:Scalar.state -> st2:Scalar.state -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (requires (forall (j:nat). j < 16 /\ j <> 12 ==> st1.[j] == st2.[j] /\ st1.[12] == u32 c0 /\ st2.[12] == u32 (c0 + i))) (ensures Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let chacha20_core_scalar_lemma w st1 st2 c0 c i = let k1 = Scalar.chacha20_add_counter st1 (w * c + i) in assert (k1.[12] == u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter st2 (w * c) in assert (k2.[12] == u32 (c0 + i) +. u32 (w * c)); assert (v k1.[12] == v k2.[12]); eq_intro k1 k2; let k = Scalar.rounds k1 in let k1 = Scalar.sum_state k st1 in assert (k1.[12] == k.[12] +. u32 c0); let k2 = Scalar.sum_state k st2 in assert (k2.[12] == k.[12] +. u32 (c0 + i)); assert (forall (j:nat). j < 16 /\ j <> 12 ==> k1.[j] == k2.[j]); let k1 = Scalar.chacha20_add_counter k1 (w * c + i) in assert (k1.[12] == k.[12] +. u32 c0 +. u32 (w * c + i)); let k2 = Scalar.chacha20_add_counter k2 (w * c) in assert (k2.[12] == k.[12] +. u32 (c0 + i) +. u32 (w * c)); add_counter_lemma_aux w c0 c i k.[12]; eq_intro k1 k2 val kb_equiv_lemma: #w:lanes -> k:key -> n:nonce -> c0:counter -> c:counter{w * c <= max_size_t /\ c0 + w <= max_size_t} -> i:nat{i < w} -> Lemma (let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in Scalar.chacha20_core (w * c + i) st1 `Seq.equal` Scalar.chacha20_core (w * c) st2) let kb_equiv_lemma #w k n c0 c i = let st1 = Scalar.chacha20_init k n c0 in let st2 = Scalar.chacha20_init k n (c0 + i) in chacha20_init_scalar_lemma k n c0; chacha20_init_scalar_lemma k n (c0 + i); chacha20_core_scalar_lemma w st1 st2 c0 c i /// /// Vectorised-related lemmas /// val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i])
false
false
Hacl.Spec.Chacha20.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val line_lemma_i: #w:lanes -> a:idx -> b:idx -> d:idx -> s:rotval U32 -> m:state w -> i:nat{i < w} -> Lemma ((transpose_state (line #w a b d s m)).[i] `Seq.equal` Scalar.line a b d s (transpose_state #w m).[i])
[]
Hacl.Spec.Chacha20.Equiv.line_lemma_i
{ "file_name": "code/chacha20/Hacl.Spec.Chacha20.Equiv.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Chacha20.Vec.idx -> b: Hacl.Spec.Chacha20.Vec.idx -> d: Hacl.Spec.Chacha20.Vec.idx -> s: Lib.IntTypes.rotval Lib.IntTypes.U32 -> m: Hacl.Spec.Chacha20.Vec.state w -> i: Prims.nat{i < w} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (Hacl.Spec.Chacha20.Vec.transpose_state (Hacl.Spec.Chacha20.Vec.line a b d s m)).[ i ] (Spec.Chacha20.line a b d s (Hacl.Spec.Chacha20.Vec.transpose_state m).[ i ]))
{ "end_col": 40, "end_line": 156, "start_col": 34, "start_line": 149 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret})
let t64_no_mod =
false
null
false
TD_Buffer TUInt64 TUInt64 ({ modified = false; strict_disjointness = false; taint = MS.Secret })
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.TD_Buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Vale.Interop.Base.Mkbuffer_qualifiers", "Vale.Arch.HeapTypes_s.Secret" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t64_no_mod : Vale.Interop.Base.td
[]
Vale.Stdcalls.X64.Fmul.t64_no_mod
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.td
{ "end_col": 105, "end_line": 43, "start_col": 17, "start_line": 43 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let code_Fmul1 = FH.va_code_Fmul1_stdcall IA.win
let code_Fmul1 =
false
null
false
FH.va_code_Fmul1_stdcall IA.win
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Curve25519.X64.FastHybrid.va_code_Fmul1_stdcall", "Vale.Interop.Assumptions.win" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma' noextract let code_Fmul = FW.va_code_Fmul_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract let lowstar_fmul_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul2_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul2_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul2_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul2_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul2_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul2_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul2_lemma' has the required type *) noextract let fmul2_lemma = as_t #(VSig.vale_sig_stdcall fmul2_pre fmul2_post) fmul2_lemma' noextract let code_Fmul2 = FW.va_code_Fmul2_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract let lowstar_fmul2_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul2 fmul_dom [] _ _ (W.mk_prediction code_Fmul2 fmul_dom [] (fmul2_lemma code_Fmul2 IA.win)) [@__reduce__] noextract let fmul1_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; tuint64] in assert_norm (List.length y = 3); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul1_pre : VSig.vale_pre fmul1_dom = fun (c:V.va_code) (out:b64) (f1:b64) (f2:uint64) (va_s0:V.va_state) -> FH.va_req_Fmul1_stdcall c va_s0 IA.win (as_vale_buffer out) (as_vale_buffer f1) (UInt64.v f2) [@__reduce__] noextract let fmul1_post : VSig.vale_post fmul1_dom = fun (c:V.va_code) (out:b64) (f1:b64) (f2:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FH.va_ens_Fmul1_stdcall c va_s0 IA.win (as_vale_buffer out) (as_vale_buffer f1) (UInt64.v f2) va_s1 f #set-options "--z3rlimit 50" [@__reduce__] noextract let fmul1_lemma' (code:V.va_code) (_win:bool) (out:b64) (f1:b64) (f2:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul1_pre code out f1 f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul1_post code out f1 f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) ME.loc_none) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FH.va_lemma_Fmul1_stdcall code va_s0 IA.win (as_vale_buffer out) (as_vale_buffer f1) (UInt64.v f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; let s0 = va_s0 in let s1 = va_s1 in let regs_modified = IX64.regs_modified_stdcall in let xmms_modified = IX64.xmms_modified_stdcall in let open MS in let open Vale.AsLowStar.ValeSig in assert (forall (r:MS.reg_64).{:pattern vale_save_reg r s0 s1} not (regs_modified r) ==> vale_save_reg r s0 s1); assert (forall (x:MS.reg_xmm).{:pattern vale_save_xmm x s0 s1} not (xmms_modified x) ==> vale_save_xmm x s0 s1); (va_s1, f) (* Prove that fmul1_lemma' has the required type *) noextract let fmul1_lemma = as_t #(VSig.vale_sig_stdcall fmul1_pre fmul1_post) fmul1_lemma'
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val code_Fmul1 : Vale.X64.Decls.va_code
[]
Vale.Stdcalls.X64.Fmul.code_Fmul1
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Decls.va_code
{ "end_col": 48, "end_line": 280, "start_col": 17, "start_line": 280 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq
let t64_mod =
false
null
false
TD_Buffer TUInt64 TUInt64 default_bq
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.TD_Buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Vale.Interop.Base.default_bq" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t64_mod : Vale.Interop.Base.td
[]
Vale.Stdcalls.X64.Fmul.t64_mod
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.td
{ "end_col": 50, "end_line": 41, "start_col": 14, "start_line": 41 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let b64 = buf_t TUInt64 TUInt64
let b64 =
false
null
false
buf_t TUInt64 TUInt64
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.buf_t", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val b64 : Type0
[]
Vale.Stdcalls.X64.Fmul.b64
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 31, "end_line": 39, "start_col": 10, "start_line": 39 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tuint64 = TD_Base TUInt64
let tuint64 =
false
null
false
TD_Base TUInt64
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret})
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tuint64 : Vale.Interop.Base.td
[]
Vale.Stdcalls.X64.Fmul.tuint64
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.td
{ "end_col": 29, "end_line": 45, "start_col": 14, "start_line": 45 }
Prims.Tot
val fmul_pre:VSig.vale_pre fmul_dom
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2)
val fmul_pre:VSig.vale_pre fmul_dom let fmul_pre:VSig.vale_pre fmul_dom =
false
null
false
fun (c: V.va_code) (tmp: b64) (f1: b64) (out: b64) (f2: b64) (va_s0: V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2)
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.Fmul.b64", "Vale.X64.Decls.va_state", "Vale.Curve25519.X64.FastWide.va_req_Fmul_stdcall", "Vale.Interop.Assumptions.win", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_pre:VSig.vale_pre fmul_dom
[]
Vale.Stdcalls.X64.Fmul.fmul_pre
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.AsLowStar.ValeSig.vale_pre Vale.Stdcalls.X64.Fmul.fmul_dom
{ "end_col": 89, "end_line": 63, "start_col": 2, "start_line": 56 }
Prims.Tot
val fmul_post:VSig.vale_post fmul_dom
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f
val fmul_post:VSig.vale_post fmul_dom let fmul_post:VSig.vale_post fmul_dom =
false
null
false
fun (c: V.va_code) (tmp: b64) (f1: b64) (out: b64) (f2: b64) (va_s0: V.va_state) (va_s1: V.va_state) (f: V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.Fmul.b64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "Vale.Curve25519.X64.FastWide.va_ens_Fmul_stdcall", "Vale.Interop.Assumptions.win", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_post:VSig.vale_post fmul_dom
[]
Vale.Stdcalls.X64.Fmul.fmul_post
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.AsLowStar.ValeSig.vale_post Vale.Stdcalls.X64.Fmul.fmul_dom
{ "end_col": 133, "end_line": 75, "start_col": 2, "start_line": 67 }
Prims.Tot
val fmul2_pre:VSig.vale_pre fmul_dom
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul2_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2)
val fmul2_pre:VSig.vale_pre fmul_dom let fmul2_pre:VSig.vale_pre fmul_dom =
false
null
false
fun (c: V.va_code) (tmp: b64) (f1: b64) (out: b64) (f2: b64) (va_s0: V.va_state) -> FW.va_req_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2)
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.Fmul.b64", "Vale.X64.Decls.va_state", "Vale.Curve25519.X64.FastWide.va_req_Fmul2_stdcall", "Vale.Interop.Assumptions.win", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma' noextract let code_Fmul = FW.va_code_Fmul_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract let lowstar_fmul_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul2_pre:VSig.vale_pre fmul_dom
[]
Vale.Stdcalls.X64.Fmul.fmul2_pre
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.AsLowStar.ValeSig.vale_pre Vale.Stdcalls.X64.Fmul.fmul_dom
{ "end_col": 89, "end_line": 142, "start_col": 2, "start_line": 135 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let code_Fmul = FW.va_code_Fmul_stdcall IA.win
let code_Fmul =
false
null
false
FW.va_code_Fmul_stdcall IA.win
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Curve25519.X64.FastWide.va_code_Fmul_stdcall", "Vale.Interop.Assumptions.win" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma'
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val code_Fmul : Vale.X64.Decls.va_code
[]
Vale.Stdcalls.X64.Fmul.code_Fmul
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Decls.va_code
{ "end_col": 46, "end_line": 118, "start_col": 16, "start_line": 118 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64 = UInt64.t
let uint64 =
false
null
false
UInt64.t
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "FStar.UInt64.t" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64 : Prims.eqtype
[]
Vale.Stdcalls.X64.Fmul.uint64
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.eqtype
{ "end_col": 21, "end_line": 30, "start_col": 13, "start_line": 30 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let code_Fmul2 = FW.va_code_Fmul2_stdcall IA.win
let code_Fmul2 =
false
null
false
FW.va_code_Fmul2_stdcall IA.win
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Curve25519.X64.FastWide.va_code_Fmul2_stdcall", "Vale.Interop.Assumptions.win" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma' noextract let code_Fmul = FW.va_code_Fmul_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract let lowstar_fmul_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul2_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul2_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul2_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul2_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul2_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul2_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul2_lemma' has the required type *) noextract let fmul2_lemma = as_t #(VSig.vale_sig_stdcall fmul2_pre fmul2_post) fmul2_lemma'
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val code_Fmul2 : Vale.X64.Decls.va_code
[]
Vale.Stdcalls.X64.Fmul.code_Fmul2
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Decls.va_code
{ "end_col": 48, "end_line": 197, "start_col": 17, "start_line": 197 }
Prims.Tot
val fmul2_post:VSig.vale_post fmul_dom
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul2_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f
val fmul2_post:VSig.vale_post fmul_dom let fmul2_post:VSig.vale_post fmul_dom =
false
null
false
fun (c: V.va_code) (tmp: b64) (f1: b64) (out: b64) (f2: b64) (va_s0: V.va_state) (va_s1: V.va_state) (f: V.va_fuel) -> FW.va_ens_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.Fmul.b64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "Vale.Curve25519.X64.FastWide.va_ens_Fmul2_stdcall", "Vale.Interop.Assumptions.win", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt64", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma' noextract let code_Fmul = FW.va_code_Fmul_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract let lowstar_fmul_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul2_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul2_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul2_post:VSig.vale_post fmul_dom
[]
Vale.Stdcalls.X64.Fmul.fmul2_post
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.AsLowStar.ValeSig.vale_post Vale.Stdcalls.X64.Fmul.fmul_dom
{ "end_col": 134, "end_line": 154, "start_col": 2, "start_line": 146 }
Prims.Tot
val as_t (#a: Type) (x: normal a) : a
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_t (#a:Type) (x:normal a) : a = x
val as_t (#a: Type) (x: normal a) : a let as_t (#a: Type) (x: normal a) : a =
false
null
false
x
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.normal" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *)
false
false
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_t (#a: Type) (x: normal a) : a
[]
Vale.Stdcalls.X64.Fmul.as_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Interop.Base.normal a -> a
{ "end_col": 39, "end_line": 34, "start_col": 38, "start_line": 34 }
Prims.Tot
val as_normal_t (#a: Type) (x: a) : normal a
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_normal_t (#a:Type) (x:a) : normal a = x
val as_normal_t (#a: Type) (x: a) : normal a let as_normal_t (#a: Type) (x: a) : normal a =
false
null
false
x
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.Base.normal" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x
false
false
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_normal_t (#a: Type) (x: a) : normal a
[]
Vale.Stdcalls.X64.Fmul.as_normal_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a -> Vale.Interop.Base.normal a
{ "end_col": 46, "end_line": 36, "start_col": 45, "start_line": 36 }
Prims.Tot
val fmul_dom:IX64.arity_ok_stdcall td
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y
val fmul_dom:IX64.arity_ok_stdcall td let fmul_dom:IX64.arity_ok_stdcall td =
false
null
false
let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list", "Prims.Cons", "Vale.Stdcalls.X64.Fmul.t64_mod", "Vale.Stdcalls.X64.Fmul.t64_no_mod", "Prims.Nil" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_dom:IX64.arity_ok_stdcall td
[]
Vale.Stdcalls.X64.Fmul.fmul_dom
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.X64.arity_ok_stdcall Vale.Interop.Base.td
{ "end_col": 3, "end_line": 51, "start_col": 40, "start_line": 48 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastWide", "short_module": "FW" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastHybrid", "short_module": "FH" }, { "abbrev": true, "full_module": "Vale.Curve25519.X64.FastUtil", "short_module": "FU" }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lowstar_fmul_t = assert_norm (List.length fmul_dom + List.length ([]<:list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win))
let lowstar_fmul_t =
false
null
false
assert_norm (List.length fmul_dom + List.length ([] <: list arg) <= 4); IX64.as_lowstar_sig_t_weak_stdcall code_Fmul fmul_dom [] _ _ (W.mk_prediction code_Fmul fmul_dom [] (fmul_lemma code_Fmul IA.win))
{ "checked_file": "Vale.Stdcalls.X64.Fmul.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Curve25519.X64.FastWide.fsti.checked", "Vale.Curve25519.X64.FastUtil.fsti.checked", "Vale.Curve25519.X64.FastHybrid.fsti.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.Fmul.fsti" }
[ "total" ]
[ "Vale.Interop.X64.as_lowstar_sig_t_weak_stdcall", "Vale.Stdcalls.X64.Fmul.code_Fmul", "Vale.Stdcalls.X64.Fmul.fmul_dom", "Prims.Nil", "Vale.Interop.Base.arg", "Vale.AsLowStar.Wrapper.pre_rel_generic", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Vale.Stdcalls.X64.Fmul.fmul_pre", "Vale.AsLowStar.Wrapper.post_rel_generic", "Vale.Stdcalls.X64.Fmul.fmul_post", "Vale.AsLowStar.Wrapper.mk_prediction", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall", "Vale.Stdcalls.X64.Fmul.fmul_lemma", "Vale.Interop.Assumptions.win", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list" ]
[]
module Vale.Stdcalls.X64.Fmul open FStar.Mul val z3rlimit_hack (x:nat) : squash (x < x + x + 1) #reset-options "--z3rlimit 50" open FStar.HyperStack.ST module HS = FStar.HyperStack module B = LowStar.Buffer module DV = LowStar.BufferView.Down open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AsLowStar.MemoryHelpers module FU = Vale.Curve25519.X64.FastUtil module FH = Vale.Curve25519.X64.FastHybrid module FW = Vale.Curve25519.X64.FastWide let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b64 = buf_t TUInt64 TUInt64 [@__reduce__] noextract let t64_mod = TD_Buffer TUInt64 TUInt64 default_bq [@__reduce__] noextract let t64_no_mod = TD_Buffer TUInt64 TUInt64 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let fmul_dom: IX64.arity_ok_stdcall td = let y = [t64_mod; t64_no_mod; t64_mod; t64_no_mod] in assert_norm (List.length y = 4); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let fmul_pre : VSig.vale_pre fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) -> FW.va_req_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) [@__reduce__] noextract let fmul_post : VSig.vale_post fmul_dom = fun (c:V.va_code) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> FW.va_ens_Fmul_stdcall c va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) va_s1 f #set-options "--z3rlimit 200" [@__reduce__] noextract let fmul_lemma' (code:V.va_code) (_win:bool) (tmp:b64) (f1:b64) (out:b64) (f2:b64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires fmul_pre code tmp f1 out f2 va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ fmul_post code tmp f1 out f2 va_s0 va_s1 f /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer out) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f1) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer f2) /\ ME.buffer_readable (VS.vs_get_vale_heap va_s1) (as_vale_buffer tmp) /\ ME.buffer_writeable (as_vale_buffer out) /\ ME.buffer_writeable (as_vale_buffer f1) /\ ME.buffer_writeable (as_vale_buffer f2) /\ ME.buffer_writeable (as_vale_buffer tmp) /\ ME.modifies (ME.loc_union (ME.loc_buffer (as_vale_buffer out)) (ME.loc_union (ME.loc_buffer (as_vale_buffer tmp)) ME.loc_none)) (VS.vs_get_vale_heap va_s0) (VS.vs_get_vale_heap va_s1) )) = let va_s1, f = FW.va_lemma_Fmul_stdcall code va_s0 IA.win (as_vale_buffer tmp) (as_vale_buffer f1) (as_vale_buffer out) (as_vale_buffer f2) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 out; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f1; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 f2; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt64 ME.TUInt64 tmp; (va_s1, f) (* Prove that fmul_lemma' has the required type *) noextract let fmul_lemma = as_t #(VSig.vale_sig_stdcall fmul_pre fmul_post) fmul_lemma' noextract let code_Fmul = FW.va_code_Fmul_stdcall IA.win (* Here's the type expected for the fmul wrapper *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.Fmul.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lowstar_fmul_t : Type0
[]
Vale.Stdcalls.X64.Fmul.lowstar_fmul_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Fmul.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 73, "end_line": 130, "start_col": 2, "start_line": 123 }