effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val update (#a: Type) (x: var) (xa: a) (vm: vmap a) : vmap a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y
val update (#a: Type) (x: var) (xa: a) (vm: vmap a) : vmap a let update (#a: Type) (x: var) (xa: a) (vm: vmap a) : vmap a =
false
null
false
let l, y = vm in (x, xa) :: l, y
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Reflection.V2.Data.var", "FStar.Tactics.CanonCommSemiring.vmap", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update (#a: Type) (x: var) (xa: a) (vm: vmap a) : vmap a
[]
FStar.Tactics.CanonCommSemiring.update
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.V2.Data.var -> xa: a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> FStar.Tactics.CanonCommSemiring.vmap a
{ "end_col": 34, "end_line": 375, "start_col": 58, "start_line": 374 }
FStar.Pervasives.Lemma
val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mult_one_l #a r x = r.cm_mult.identity x
val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x =
false
null
true
r.cm_mult.identity x
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__identity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)]
[]
FStar.Tactics.CanonCommSemiring.mult_one_l
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_mult r) (CM?.unit (CR?.cm_mult r)) x == x) [SMTPat (CM?.mult (CR?.cm_mult r) (CM?.unit (CR?.cm_mult r)) x)]
{ "end_col": 22, "end_line": 470, "start_col": 2, "start_line": 470 }
FStar.Pervasives.Lemma
val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mult_zero_l #a r x = r.mult_zero_l x
val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x =
false
null
true
r.mult_zero_l x
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__mult_zero_l", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)]
[]
FStar.Tactics.CanonCommSemiring.mult_zero_l
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_mult r) (CM?.unit (CR?.cm_add r)) x == CM?.unit (CR?.cm_add r)) [SMTPat (CM?.mult (CR?.cm_mult r) (CM?.unit (CR?.cm_add r)) x)]
{ "end_col": 17, "end_line": 482, "start_col": 2, "start_line": 482 }
Prims.Tot
val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p)
val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a let spolynomial_simplify #a r p =
false
null
false
canonical_sum_simplify r (spolynomial_normalize r p)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[]
FStar.Tactics.CanonCommSemiring.spolynomial_simplify
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 31, "end_line": 357, "start_col": 2, "start_line": 356 }
Prims.Tot
val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p)
val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a let polynomial_simplify #a r p =
false
null
false
canonical_sum_simplify r (polynomial_normalize r p)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
[]
FStar.Tactics.CanonCommSemiring.polynomial_simplify
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 30, "end_line": 1390, "start_col": 2, "start_line": 1389 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ddump m = if debugging () then dump m
let ddump m =
true
null
false
if debugging () then dump m
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "Prims.string", "FStar.Tactics.V2.Builtins.dump", "Prims.unit", "Prims.bool", "FStar.Tactics.V2.Builtins.debugging" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition ///
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ddump : m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.CanonCommSemiring.ddump
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 41, "end_line": 1498, "start_col": 14, "start_line": 1498 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let find = find_aux 0
let find =
true
null
false
find_aux 0
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.CanonCommSemiring.find_aux" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs'
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find : x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat)
[]
FStar.Tactics.CanonCommSemiring.find
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat)
{ "end_col": 21, "end_line": 1509, "start_col": 11, "start_line": 1509 }
FStar.Tactics.Effect.Tac
val canon_norm: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let canon_norm () : Tac unit = norm steps
val canon_norm: Prims.unit -> Tac unit let canon_norm () : Tac unit =
true
null
false
norm steps
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V2.Builtins.norm", "FStar.Tactics.CanonCommSemiring.steps" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canon_norm: Prims.unit -> Tac unit
[]
FStar.Tactics.CanonCommSemiring.canon_norm
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 41, "end_line": 1576, "start_col": 31, "start_line": 1576 }
FStar.Tactics.Effect.Tac
val canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality")
val canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit let canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit =
true
null
false
focus (fun () -> norm []; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> if term_eq t ta then match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | [e1 ; e2], vm -> let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in let te2 = quote_polynomial ta quotea e2 in mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); canon_norm (); later (); canon_norm (); trefl (); canon_norm (); trefl () | _ -> fail "Unexpected" else fail "Found equality, but terms do not have the expected type" | _ -> fail "Goal should be an equality")
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.focus", "Prims.unit", "FStar.Reflection.Types.typ", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.V2.Derived.trefl", "FStar.Tactics.CanonCommSemiring.canon_norm", "FStar.Tactics.V2.Derived.later", "FStar.Tactics.MApply.mapply", "FStar.Reflection.Types.term", "FStar.Tactics.MApply.termable_term", "FStar.Tactics.CanonCommSemiring.quote_polynomial", "FStar.Tactics.CanonCommSemiring.quote_vm", "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.CanonCommSemiring.reification", "Prims.Cons", "Prims.Nil", "Prims.bool", "FStar.Tactics.CanonCommSemiring.term_eq", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Tactics.V2.Builtins.norm", "FStar.Pervasives.norm_step" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit
[]
FStar.Tactics.CanonCommSemiring.canon_semiring_aux
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> ta: FStar.Tactics.NamedView.term -> unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> tr: FStar.Tactics.NamedView.term -> tadd: FStar.Tactics.NamedView.term -> topp: FStar.Tactics.NamedView.term -> tmone: FStar.Tactics.NamedView.term -> tmult: FStar.Tactics.NamedView.term -> munit: a -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 43, "end_line": 1673, "start_col": 2, "start_line": 1627 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z)
let distribute_left_lemma (a: Type) (cm_add cm_mult: cm a) =
false
null
false
let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x: a -> y: a -> z: a -> Lemma (x * (y + z) == x * y + x * z)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.cm", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory ///
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val distribute_left_lemma : a: Type -> cm_add: FStar.Algebra.CommMonoid.cm a -> cm_mult: FStar.Algebra.CommMonoid.cm a -> Type
[]
FStar.Tactics.CanonCommSemiring.distribute_left_lemma
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> cm_add: FStar.Algebra.CommMonoid.cm a -> cm_mult: FStar.Algebra.CommMonoid.cm a -> Type
{ "end_col": 59, "end_line": 63, "start_col": 65, "start_line": 60 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vmap a = list (var * a) * a
let vmap a =
false
null
false
list (var * a) * a
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.Reflection.V2.Data.var" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure.
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vmap : a: Type -> Type
[]
FStar.Tactics.CanonCommSemiring.vmap
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 31, "end_line": 371, "start_col": 13, "start_line": 371 }
FStar.Pervasives.Lemma
val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_zero_l #a r x = r.cm_add.identity x
val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x =
false
null
true
r.cm_add.identity x
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__identity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)]
[]
FStar.Tactics.CanonCommSemiring.add_zero_l
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_add r) (CM?.unit (CR?.cm_add r)) x == x) [SMTPat (CM?.mult (CR?.cm_add r) (CM?.unit (CR?.cm_add r)) x)]
{ "end_col": 22, "end_line": 494, "start_col": 2, "start_line": 494 }
FStar.Tactics.Effect.Tac
val quote_vm (#a: Type) (ta: term) (quotea: (a -> Tac term)) (vm: vmap a) : Tac term
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)]
val quote_vm (#a: Type) (ta: term) (quotea: (a -> Tac term)) (vm: vmap a) : Tac term let quote_vm (#a: Type) (ta: term) (quotea: (a -> Tac term)) (vm: vmap a) : Tac term =
true
null
false
let quote_map_entry (p: (nat * a)) : Tac term = mk_app (`Mktuple2) [ ((`nat), Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit) ] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)]
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Reflection.V2.Derived.mk_app", "Prims.list", "FStar.Reflection.V2.Data.argv", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Data.var", "FStar.Reflection.V2.Derived.mk_e_app", "FStar.Tactics.CanonCommSemiring.quote_list", "FStar.Pervasives.Native.fst", "Prims.nat", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Const", "FStar.Reflection.V2.Data.C_Int" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quote_vm (#a: Type) (ta: term) (quotea: (a -> Tac term)) (vm: vmap a) : Tac term
[]
FStar.Tactics.CanonCommSemiring.quote_vm
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ta: FStar.Tactics.NamedView.term -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 73, "end_line": 396, "start_col": 81, "start_line": 387 }
Prims.Tot
val distribute_right (#a: Type) (r: cr a) : distribute_right_lemma a r.cm_add r.cm_mult
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z
val distribute_right (#a: Type) (r: cr a) : distribute_right_lemma a r.cm_add r.cm_mult let distribute_right (#a: Type) (r: cr a) : distribute_right_lemma a r.cm_add r.cm_mult =
false
null
false
fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "Prims.unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Tactics.CanonCommSemiring.distribute_right_lemma" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val distribute_right (#a: Type) (r: cr a) : distribute_right_lemma a r.cm_add r.cm_mult
[]
FStar.Tactics.CanonCommSemiring.distribute_right
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> FStar.Tactics.CanonCommSemiring.distribute_right_lemma a (CR?.cm_add r) (CR?.cm_mult r)
{ "end_col": 31, "end_line": 94, "start_col": 2, "start_line": 90 }
Prims.Tot
val index:eqtype
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let index: eqtype = nat
val index:eqtype let index:eqtype =
false
null
false
nat
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.nat" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val index:eqtype
[]
FStar.Tactics.CanonCommSemiring.index
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.eqtype
{ "end_col": 23, "end_line": 109, "start_col": 20, "start_line": 109 }
Prims.Tot
val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom
val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a let rec canonical_sum_scalar #a r c0 s =
false
null
false
let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Tactics.CanonCommSemiring.norm_fully", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar", "FStar.Tactics.CanonCommSemiring.Nil_monom", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> c0: a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 26, "end_line": 256, "start_col": 40, "start_line": 251 }
Prims.Tot
val ivl_aux (#a: Type) (r: cr a) (vm: vmap a) (x: index) (t: varlist) : Tot a (decreases t)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t')
val ivl_aux (#a: Type) (r: cr a) (vm: vmap a) (x: index) (t: varlist) : Tot a (decreases t) let rec ivl_aux (#a: Type) (r: cr a) (vm: vmap a) (x: index) (t: varlist) : Tot a (decreases t) =
false
null
false
let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t')
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total", "" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.interp_var", "FStar.Tactics.CanonCommSemiring.ivl_aux", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ivl_aux (#a: Type) (r: cr a) (vm: vmap a) (x: index) (t: varlist) : Tot a (decreases t)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.ivl_aux
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> x: FStar.Tactics.CanonCommSemiring.index -> t: FStar.Tactics.CanonCommSemiring.varlist -> Prims.Tot a
{ "end_col": 66, "end_line": 417, "start_col": 25, "start_line": 413 }
Prims.Tot
val varlist_lt (x y: varlist) : bool
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false
val varlist_lt (x y: varlist) : bool let rec varlist_lt (x y: varlist) : bool =
false
null
false
match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.CanonCommSemiring.index", "Prims.op_LessThan", "Prims.bool", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Tactics.CanonCommSemiring.varlist_lt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr]
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val varlist_lt (x y: varlist) : bool
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.varlist_lt
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Tactics.CanonCommSemiring.varlist -> y: FStar.Tactics.CanonCommSemiring.varlist -> Prims.bool
{ "end_col": 17, "end_line": 141, "start_col": 2, "start_line": 137 }
Prims.Tot
val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s
val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a let rec canonical_sum_scalar3 #a r c0 l0 s =
false
null
false
let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Tactics.CanonCommSemiring.norm_fully", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> c0: a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 18, "end_line": 286, "start_col": 44, "start_line": 277 }
FStar.Pervasives.Lemma
val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x
val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x =
false
null
true
r.cm_mult.commutativity r.cm_mult.unit x
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)]
[]
FStar.Tactics.CanonCommSemiring.mult_one_r
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_mult r) x (CM?.unit (CR?.cm_mult r)) == x) [SMTPat (CM?.mult (CR?.cm_mult r) x (CM?.unit (CR?.cm_mult r)))]
{ "end_col": 42, "end_line": 476, "start_col": 2, "start_line": 476 }
Prims.Tot
val interp_cs (#a: Type) (r: cr a) (vm: vmap a) (s: canonical_sum a) : a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t
val interp_cs (#a: Type) (r: cr a) (vm: vmap a) (s: canonical_sum a) : a let interp_cs (#a: Type) (r: cr a) (vm: vmap a) (s: canonical_sum a) : a =
false
null
false
let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.ics_aux", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.interp_m", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val interp_cs (#a: Type) (r: cr a) (vm: vmap a) (s: canonical_sum a) : a
[]
FStar.Tactics.CanonCommSemiring.interp_cs
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> a
{ "end_col": 58, "end_line": 449, "start_col": 70, "start_line": 444 }
FStar.Pervasives.Lemma
val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x
val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x =
false
null
true
r.cm_add.commutativity r.cm_add.unit x
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)]
[]
FStar.Tactics.CanonCommSemiring.add_zero_r
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_add r) x (CM?.unit (CR?.cm_add r)) == x) [SMTPat (CM?.mult (CR?.cm_add r) x (CM?.unit (CR?.cm_add r)))]
{ "end_col": 40, "end_line": 500, "start_col": 2, "start_line": 500 }
Prims.Tot
val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q)
val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a let rec spolynomial_normalize #a r p =
false
null
false
match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.Cons_varlist", "FStar.Tactics.CanonCommSemiring.Cons_var", "FStar.Tactics.CanonCommSemiring.Nil_var", "FStar.Tactics.CanonCommSemiring.Nil_monom", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "FStar.Tactics.CanonCommSemiring.canonical_sum" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.spolynomial_normalize
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 80, "end_line": 325, "start_col": 2, "start_line": 319 }
Prims.Tot
val ics_aux (#a: Type) (r: cr a) (vm: vmap a) (x: a) (s: canonical_sum a) : Tot a (decreases s)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t)
val ics_aux (#a: Type) (r: cr a) (vm: vmap a) (x: a) (s: canonical_sum a) : Tot a (decreases s) let rec ics_aux (#a: Type) (r: cr a) (vm: vmap a) (x: a) (s: canonical_sum a) : Tot a (decreases s) =
false
null
false
let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total", "" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.ics_aux", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.interp_m", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ics_aux (#a: Type) (r: cr a) (vm: vmap a) (x: a) (s: canonical_sum a) : Tot a (decreases s)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.ics_aux
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> x: a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> Prims.Tot a
{ "end_col": 68, "end_line": 440, "start_col": 25, "start_line": 435 }
FStar.Tactics.Effect.Tac
val quote_list (#a: Type) (ta: term) (quotea: (a -> Tac term)) (xs: list a) : Tac term
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)]
val quote_list (#a: Type) (ta: term) (quotea: (a -> Tac term)) (xs: list a) : Tac term let rec quote_list (#a: Type) (ta: term) (quotea: (a -> Tac term)) (xs: list a) : Tac term =
true
null
false
match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x :: xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)]
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Reflection.V2.Derived.mk_app", "Prims.Cons", "FStar.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "Prims.Nil", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Tactics.CanonCommSemiring.quote_list" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) :
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quote_list (#a: Type) (ta: term) (quotea: (a -> Tac term)) (xs: list a) : Tac term
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.quote_list
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ta: FStar.Tactics.NamedView.term -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> xs: Prims.list a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 68, "end_line": 384, "start_col": 2, "start_line": 380 }
Prims.Tot
val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s
val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a let rec canonical_sum_simplify #a r s =
false
null
false
let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.norm_fully", "Prims.bool", "Prims.op_Equality", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify", "FStar.Tactics.CanonCommSemiring.Cons_varlist", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_simplify
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 18, "end_line": 346, "start_col": 39, "start_line": 334 }
FStar.Pervasives.Lemma
val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; }
val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y =
false
null
true
let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc ( == ) { y; ( == ) { r.add_opp x } y + (x + r.opp x); ( == ) { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; ( == ) { r.cm_add.commutativity x y } zero + r.opp x; ( == ) { () } r.opp x; }
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__add_opp", "Prims.squash", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x)
[]
FStar.Tactics.CanonCommSemiring.opp_unique
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> y: a -> FStar.Pervasives.Lemma (requires CM?.mult (CR?.cm_add r) x y == CM?.unit (CR?.cm_add r)) (ensures y == CR?.opp r x)
{ "end_col": 3, "end_line": 518, "start_col": 25, "start_line": 505 }
FStar.Pervasives.Lemma
val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; }
val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x =
false
null
true
let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc ( == ) { x + r.opp one * x; ( == ) { () } one * x + r.opp one * x; ( == ) { distribute_right r one (r.opp one) x } (one + r.opp one) * x; ( == ) { r.add_opp one } zero * x; ( == ) { () } zero; }
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__add_opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit)
[]
FStar.Tactics.CanonCommSemiring.add_mult_opp
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_add r) x (CM?.mult (CR?.cm_mult r) (CR?.opp r (CM?.unit (CR?.cm_mult r))) x) == CM?.unit (CR?.cm_add r))
{ "end_col": 3, "end_line": 537, "start_col": 25, "start_line": 522 }
Prims.Tot
val interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p)
val interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a let rec interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a =
false
null
false
let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.interp_var", "FStar.Tactics.CanonCommSemiring.interp_p", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.interp_p
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> a
{ "end_col": 37, "end_line": 1414, "start_col": 70, "start_line": 1406 }
FStar.Pervasives.Lemma
val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q
val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p =
false
null
true
match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_normalize r p) == FStar.Tactics.CanonCommSemiring.interp_sp r vm p)
{ "end_col": 35, "end_line": 1340, "start_col": 2, "start_line": 1328 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ]
let steps =
false
null
false
[ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; `%FStar.Algebra.CommMonoid.int_plus_cm; `%FStar.Algebra.CommMonoid.int_multiply_cm; `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append ] ]
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.primops", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **)
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val steps : Prims.list FStar.Pervasives.norm_step
[]
FStar.Tactics.CanonCommSemiring.steps
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.list FStar.Pervasives.norm_step
{ "end_col": 3, "end_line": 1574, "start_col": 2, "start_line": 1552 }
FStar.Pervasives.Lemma
val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> ()
val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s =
false
null
true
let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "Prims.unit", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a ->
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_simplify r s) == FStar.Tactics.CanonCommSemiring.interp_cs r vm s)
{ "end_col": 19, "end_line": 1350, "start_col": 45, "start_line": 1344 }
Prims.Tot
val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p)
val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a let rec polynomial_normalize #a r p =
false
null
false
match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.Cons_varlist", "FStar.Tactics.CanonCommSemiring.Cons_var", "FStar.Tactics.CanonCommSemiring.Nil_var", "FStar.Tactics.CanonCommSemiring.Nil_monom", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.canonical_sum" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.polynomial_normalize
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 85, "end_line": 1383, "start_col": 2, "start_line": 1375 }
FStar.Tactics.Effect.Tac
val make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm)
val make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a) let make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a) =
true
null
false
match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.CanonCommSemiring.vmap", "Prims.nat", "FStar.Pervasives.Native.Mktuple3", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.Pvar", "FStar.Pervasives.Native.tuple3", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.Nil", "FStar.Tactics.CanonCommSemiring.update", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.option", "FStar.Tactics.CanonCommSemiring.find" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a)
[]
FStar.Tactics.CanonCommSemiring.make_fvar
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Tactics.NamedView.term -> unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> ts: Prims.list FStar.Tactics.NamedView.term -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> FStar.Tactics.Effect.Tac ((FStar.Tactics.CanonCommSemiring.polynomial a * Prims.list FStar.Tactics.NamedView.term) * FStar.Tactics.CanonCommSemiring.vmap a)
{ "end_col": 47, "end_line": 1518, "start_col": 2, "start_line": 1513 }
FStar.Tactics.Effect.Tac
val reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm)
val reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a) let reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a) =
true
null
false
let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in let es, _, vm = Tactics.Util.fold_left (fun (es, vs, vm) t -> let e, vs, vm = reification_aux unquotea vs vm add opp mone mult t in (e :: es, vs, vm)) ([], [], ([], munit)) ts in (List.Tot.Base.rev es, vm)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Base.rev", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.tuple3", "FStar.Tactics.Util.fold_left", "FStar.Pervasives.Native.Mktuple3", "Prims.Cons", "FStar.Tactics.CanonCommSemiring.reification_aux", "Prims.Nil", "FStar.Reflection.V2.Data.var", "FStar.Tactics.Util.map", "FStar.Tactics.V2.Derived.norm_term", "FStar.Tactics.CanonCommSemiring.steps" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a)
[]
FStar.Tactics.CanonCommSemiring.reification
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> tadd: FStar.Tactics.NamedView.term -> topp: FStar.Tactics.NamedView.term -> tmone: FStar.Tactics.NamedView.term -> tmult: FStar.Tactics.NamedView.term -> munit: a -> ts: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (Prims.list (FStar.Tactics.CanonCommSemiring.polynomial a) * FStar.Tactics.CanonCommSemiring.vmap a)
{ "end_col": 31, "end_line": 1595, "start_col": 142, "start_line": 1579 }
FStar.Pervasives.Lemma
val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1))
val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p =
false
null
true
match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1))
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.SPconst", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)))
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_normalize r p) == FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_normalize r (FStar.Tactics.CanonCommSemiring.spolynomial_of r p)))
{ "end_col": 53, "end_line": 1472, "start_col": 2, "start_line": 1441 }
FStar.Pervasives.Lemma
val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y
val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p =
false
null
true
match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.spolynomial_of_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.opp_unique", "FStar.Tactics.CanonCommSemiring.add_mult_opp", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.interp_sp", "FStar.Tactics.CanonCommSemiring.spolynomial_of" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p))
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.spolynomial_of_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_p r vm p == FStar.Tactics.CanonCommSemiring.interp_sp r vm (FStar.Tactics.CanonCommSemiring.spolynomial_of r p))
{ "end_col": 20, "end_line": 1434, "start_col": 2, "start_line": 1420 }
FStar.Tactics.Effect.Tac
val quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e]
val quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term let rec quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term =
true
null
false
match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e]
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Reflection.V2.Derived.mk_app", "Prims.list", "FStar.Reflection.V2.Data.argv", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "Prims.Nil", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Tactics.CanonCommSemiring.index", "FStar.Reflection.V2.Derived.mk_e_app", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Const", "FStar.Reflection.V2.Data.C_Int", "FStar.Tactics.CanonCommSemiring.quote_polynomial" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.quote_polynomial
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ta: FStar.Tactics.NamedView.term -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> e: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
{ "end_col": 61, "end_line": 1606, "start_col": 2, "start_line": 1599 }
FStar.Tactics.Effect.Tac
val canon_semiring (#a: eqtype) (r: cr a) : Tac unit
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit
val canon_semiring (#a: eqtype) (r: cr a) : Tac unit let canon_semiring (#a: eqtype) (r: cr a) : Tac unit =
true
null
false
canon_semiring_aux a (quote a) (unquote #a) (fun (x: a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.canon_semiring_aux", "FStar.Tactics.V2.Builtins.unquote", "FStar.Reflection.Types.term", "FStar.Tactics.NamedView.term", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.unit", "FStar.Tactics.V2.Derived.norm_term", "FStar.Tactics.CanonCommSemiring.steps", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality")
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canon_semiring (#a: eqtype) (r: cr a) : Tac unit
[]
FStar.Tactics.CanonCommSemiring.canon_semiring
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 17, "end_line": 1682, "start_col": 2, "start_line": 1676 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t)
let interp_m (#a: Type) (r: cr a) (vm: vmap a) (c: a) (l: varlist) =
false
null
false
let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.ivl_aux", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val interp_m : r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c: a -> l: FStar.Tactics.CanonCommSemiring.varlist -> a
[]
FStar.Tactics.CanonCommSemiring.interp_m
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c: a -> l: FStar.Tactics.CanonCommSemiring.varlist -> a
{ "end_col": 46, "end_line": 431, "start_col": 63, "start_line": 427 }
FStar.Pervasives.Lemma
val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> ()
val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s =
false
null
true
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar r c0 s); ( == ) { () } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); ( == ) { () } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); ( == ) { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar r c0 s); ( == ) { () } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); ( == ) { () } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); ( == ) { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult c0 (interp_cs r vm s); } | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar_ok", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c0: a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar r c0 s) == CM?.mult (CR?.cm_mult r) c0 (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
{ "end_col": 19, "end_line": 1098, "start_col": 46, "start_line": 1052 }
Prims.Tot
val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom
val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a let rec canonical_sum_scalar2 #a r l0 s =
false
null
false
match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2", "FStar.Tactics.CanonCommSemiring.varlist_insert", "FStar.Tactics.CanonCommSemiring.Nil_monom" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 26, "end_line": 269, "start_col": 2, "start_line": 264 }
Prims.Tot
val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1
val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a let rec canonical_sum_prod #a r s1 s2 =
false
null
false
match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_prod
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> s1: FStar.Tactics.CanonCommSemiring.canonical_sum a -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 19, "end_line": 301, "start_col": 2, "start_line": 294 }
Prims.Tot
val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom
val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a let rec monom_insert #a r c1 l1 s2 =
false
null
false
let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "Prims.op_Equality", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Tactics.CanonCommSemiring.norm_fully", "Prims.bool", "FStar.Tactics.CanonCommSemiring.varlist_lt", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Tactics.CanonCommSemiring.Cons_varlist", "FStar.Tactics.CanonCommSemiring.Nil_monom", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.monom_insert
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> c1: a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
{ "end_col": 35, "end_line": 237, "start_col": 36, "start_line": 216 }
FStar.Pervasives.Lemma
val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)]
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit
val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x =
false
null
true
r.cm_mult.commutativity x r.cm_add.unit
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)]
[]
FStar.Tactics.CanonCommSemiring.mult_zero_r
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> x: a -> FStar.Pervasives.Lemma (ensures CM?.mult (CR?.cm_mult r) x (CM?.unit (CR?.cm_add r)) == CM?.unit (CR?.cm_add r)) [SMTPat (CM?.mult (CR?.cm_mult r) x (CM?.unit (CR?.cm_add r)))]
{ "end_col": 41, "end_line": 488, "start_col": 2, "start_line": 488 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t
let interp_vl (#a: Type) (r: cr a) (vm: vmap a) (l: varlist) =
false
null
false
let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.ivl_aux", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t')
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val interp_vl : r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l: FStar.Tactics.CanonCommSemiring.varlist -> a
[]
FStar.Tactics.CanonCommSemiring.interp_vl
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l: FStar.Tactics.CanonCommSemiring.varlist -> a
{ "end_col": 36, "end_line": 424, "start_col": 58, "start_line": 420 }
Prims.Tot
val interp_sp (#a: Type) (r: cr a) (vm: vmap a) (p: spolynomial a) : a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2)
val interp_sp (#a: Type) (r: cr a) (vm: vmap a) (p: spolynomial a) : a let rec interp_sp (#a: Type) (r: cr a) (vm: vmap a) (p: spolynomial a) : a =
false
null
false
let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.interp_var", "FStar.Tactics.CanonCommSemiring.interp_sp", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val interp_sp (#a: Type) (r: cr a) (vm: vmap a) (p: spolynomial a) : a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.interp_sp
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> a
{ "end_col": 65, "end_line": 460, "start_col": 72, "start_line": 453 }
FStar.Pervasives.Lemma
val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t
val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s =
false
null
true
match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma", "" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.ics_aux_ok", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.interp_m", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.ics_aux_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> x: a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.ics_aux r vm x s == CM?.mult (CR?.cm_add r) x (FStar.Tactics.CanonCommSemiring.interp_cs r vm s)) (decreases s)
{ "end_col": 41, "end_line": 622, "start_col": 2, "start_line": 617 }
FStar.Tactics.Effect.Tac
val int_semiring: Prims.unit -> Tac unit
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int_semiring () : Tac unit = (* Check to see if goal is a `nat` equality, change the equality to `int` beforehand *) match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr
val int_semiring: Prims.unit -> Tac unit let int_semiring () : Tac unit =
true
null
false
match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "Prims.unit", "FStar.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "FStar.Tactics.CanonCommSemiring.canon_semiring", "Prims.int", "FStar.Tactics.CanonCommSemiring.int_cr", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.bool", "FStar.Tactics.CanonCommSemiring.term_eq", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers [@@canon_attr] let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ()) private let eq_nat_via_int (a b : nat) (eq : squash (eq2 #int a b)) : Lemma (eq2 #nat a b) = () let int_semiring () : Tac unit =
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int_semiring: Prims.unit -> Tac unit
[]
FStar.Tactics.CanonCommSemiring.int_semiring
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 29, "end_line": 1701, "start_col": 4, "start_line": 1695 }
FStar.Pervasives.Lemma
val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); }
val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z =
false
null
true
let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc ( == ) { aplus (aplus w x) (aplus y z); ( == ) { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); ( == ) { comm x (aplus y z) } aplus w (aplus (aplus y z) x); ( == ) { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; ( == ) { assoc w y z } aplus (aplus (aplus w y) z) x; ( == ) { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); ( == ) { comm z x } aplus (aplus w y) (aplus x z); }
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Prims.l_True", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Pervasives.pattern", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z))
[]
FStar.Tactics.CanonCommSemiring.aplus_assoc_4
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> w: a -> x: a -> y: a -> z: a -> FStar.Pervasives.Lemma (ensures (let aplus = CM?.mult (CR?.cm_add r) in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)))
{ "end_col": 3, "end_line": 649, "start_col": 32, "start_line": 631 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test (a:int) = let open FStar.Mul in assert (a + - a + 2 * a + - a == -a + 2 * a) by (int_semiring ())
let test (a: int) =
false
null
false
let open FStar.Mul in FStar.Tactics.Effect.assert_by_tactic (a + - a + 2 * a + - a == - a + 2 * a) (fun _ -> (); (int_semiring ()))
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.int", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Prims.op_Addition", "Prims.op_Minus", "FStar.Mul.op_Star", "Prims.unit", "FStar.Tactics.CanonCommSemiring.int_semiring" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers [@@canon_attr] let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ()) private let eq_nat_via_int (a b : nat) (eq : squash (eq2 #int a b)) : Lemma (eq2 #nat a b) = () let int_semiring () : Tac unit = (* Check to see if goal is a `nat` equality, change the equality to `int` beforehand *) match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr #set-options "--tactic_trace_d 0 --no_smt"
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": true, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test : a: Prims.int -> Prims.unit
[]
FStar.Tactics.CanonCommSemiring.test
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Prims.int -> Prims.unit
{ "end_col": 67, "end_line": 1707, "start_col": 2, "start_line": 1706 }
FStar.Pervasives.Lemma
val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2
val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 =
false
null
true
let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2))
[]
FStar.Tactics.CanonCommSemiring.varlist_insert_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.varlist_insert r l1 s2) == CM?.mult (CR?.cm_add r) (FStar.Tactics.CanonCommSemiring.interp_vl r vm l1) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
{ "end_col": 33, "end_line": 1045, "start_col": 37, "start_line": 1043 }
FStar.Pervasives.Lemma
val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p
val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p =
false
null
true
canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p)
[]
FStar.Tactics.CanonCommSemiring.spolynomial_simplify_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_simplify r p) == FStar.Tactics.CanonCommSemiring.interp_sp r vm p)
{ "end_col": 33, "end_line": 1356, "start_col": 2, "start_line": 1355 }
FStar.Pervasives.Lemma
val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> ()
val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 =
false
null
true
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc ( == ) { interp_cs r vm (canonical_sum_prod r s1 s2); ( == ) { () } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); ( == ) { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); ( == ) { (canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2) } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { () } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc ( == ) { interp_cs r vm (canonical_sum_prod r s1 s2); ( == ) { () } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); ( == ) { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); ( == ) { (canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2) } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { () } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> s1: FStar.Tactics.CanonCommSemiring.canonical_sum a -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_prod r s1 s2) == CM?.mult (CR?.cm_mult r) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s1) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
{ "end_col": 19, "end_line": 1323, "start_col": 45, "start_line": 1272 }
Prims.Tot
val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p)
val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a let rec spolynomial_of #a r p =
false
null
false
match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p)
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.SPvar", "FStar.Tactics.CanonCommSemiring.SPconst", "FStar.Tactics.CanonCommSemiring.SPplus", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.SPmult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.spolynomial" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr]
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.spolynomial_of
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.CanonCommSemiring.spolynomial a
{ "end_col": 74, "end_line": 1402, "start_col": 2, "start_line": 1397 }
FStar.Pervasives.Lemma
val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; }
val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p =
false
null
true
calc ( == ) { interp_cs r vm (polynomial_simplify r p); ( == ) { () } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); ( == ) { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); ( == ) { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); ( == ) { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); ( == ) { spolynomial_of_ok r vm p } interp_p r vm p; }
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.polynomial_simplify", "FStar.Tactics.CanonCommSemiring.interp_p", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_sp", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_of_ok" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p)
[]
FStar.Tactics.CanonCommSemiring.polynomial_simplify_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r p) == FStar.Tactics.CanonCommSemiring.interp_p r vm p)
{ "end_col": 3, "end_line": 1490, "start_col": 2, "start_line": 1478 }
FStar.Tactics.Effect.Tac
val find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs'
val find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) let rec find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) =
true
null
false
match xs with | [] -> None | x' :: xs' -> if term_eq x x' then Some n else find_aux (n + 1) x xs'
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[]
[ "Prims.nat", "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.Tactics.CanonCommSemiring.find_aux", "Prims.op_Addition", "FStar.Tactics.CanonCommSemiring.term_eq" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat)
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.find_aux
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat)
{ "end_col": 68, "end_line": 1507, "start_col": 2, "start_line": 1505 }
Prims.Tot
val int_cr:cr int
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ())
val int_cr:cr int let int_cr:cr int =
false
null
false
CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ())
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "FStar.Tactics.CanonCommSemiring.CR", "Prims.int", "FStar.Algebra.CommMonoid.int_plus_cm", "FStar.Algebra.CommMonoid.int_multiply_cm", "Prims.op_Minus", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers [@@canon_attr]
false
true
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int_cr:cr int
[]
FStar.Tactics.CanonCommSemiring.int_cr
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Tactics.CanonCommSemiring.cr Prims.int
{ "end_col": 87, "end_line": 1688, "start_col": 2, "start_line": 1688 }
FStar.Pervasives.Lemma
val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> ()
val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s =
false
null
true
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar2 r l0 s); ( == ) { () } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); ( == ) { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar2 r l0 s); ( == ) { () } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); ( == ) { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Tactics.CanonCommSemiring.varlist_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2 r l0 s) == CM?.mult (CR?.cm_mult r) (FStar.Tactics.CanonCommSemiring.interp_vl r vm l0) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
{ "end_col": 19, "end_line": 1175, "start_col": 47, "start_line": 1105 }
Prims.Tot
val semiring_reflect: #a: eqtype -> r: cr a -> vm: vmap a -> e1: polynomial a -> e2: polynomial a -> a1: a -> a2: a -> squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2)) -> squash (a1 == interp_p r vm e1) -> squash (a2 == interp_p r vm e2) -> squash (a1 == a2)
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2
val semiring_reflect: #a: eqtype -> r: cr a -> vm: vmap a -> e1: polynomial a -> e2: polynomial a -> a1: a -> a2: a -> squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2)) -> squash (a1 == interp_p r vm e1) -> squash (a2 == interp_p r vm e2) -> squash (a1 == a2) let semiring_reflect (#a: eqtype) (r: cr a) (vm: vmap a) (e1: polynomial a) (e2: polynomial a) (a1: a) (a2: a) (_: squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_: squash (a1 == interp_p r vm e1)) (_: squash (a2 == interp_p r vm e2)) : squash (a1 == a2) =
false
null
true
polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "Prims.squash", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.polynomial_simplify", "FStar.Tactics.CanonCommSemiring.interp_p", "FStar.Tactics.CanonCommSemiring.polynomial_simplify_ok", "Prims.unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2)
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val semiring_reflect: #a: eqtype -> r: cr a -> vm: vmap a -> e1: polynomial a -> e2: polynomial a -> a1: a -> a2: a -> squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2)) -> squash (a1 == interp_p r vm e1) -> squash (a2 == interp_p r vm e2) -> squash (a1 == a2)
[]
FStar.Tactics.CanonCommSemiring.semiring_reflect
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> e1: FStar.Tactics.CanonCommSemiring.polynomial a -> e2: FStar.Tactics.CanonCommSemiring.polynomial a -> a1: a -> a2: a -> _: Prims.squash (FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r e1) == FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r e2)) -> _: Prims.squash (a1 == FStar.Tactics.CanonCommSemiring.interp_p r vm e1) -> _: Prims.squash (a2 == FStar.Tactics.CanonCommSemiring.interp_p r vm e2) -> Prims.squash (a1 == a2)
{ "end_col": 32, "end_line": 1618, "start_col": 2, "start_line": 1617 }
FStar.Pervasives.Lemma
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> ()
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 =
false
null
true
let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); ( == ) { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); ( == ) { () } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); ( == ) { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); ( == ) { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> let c2 = aone in if l1 = l2 then calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); ( == ) { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); ( == ) { () } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); ( == ) { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); ( == ) { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "Prims.op_Equality", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_m", "FStar.Tactics.CanonCommSemiring.ics_aux", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.ics_aux_ok", "FStar.Tactics.CanonCommSemiring.interp_m_ok", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.bool", "FStar.Tactics.CanonCommSemiring.varlist_lt", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.monom_insert_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c1: a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.monom_insert r c1 l1 s2) == CM?.mult (CR?.cm_add r) (CM?.mult (CR?.cm_mult r) c1 (FStar.Tactics.CanonCommSemiring.interp_vl r vm l1)) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
{ "end_col": 19, "end_line": 1037, "start_col": 42, "start_line": 909 }
FStar.Pervasives.Lemma
val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s))
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> ()
val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s =
false
null
true
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); ( == ) { () } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); ( == ) { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); ( == ) { () } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); ( == ) { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> ()
{ "checked_file": "FStar.Tactics.CanonCommSemiring.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Tactics.CanonCommSemiring.varlist_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) ==
false
false
FStar.Tactics.CanonCommSemiring.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s))
[ "recursion" ]
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c0: a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3 r c0 l0 s) == CM?.mult (CR?.cm_mult r) (CM?.mult (CR?.cm_mult r) c0 (FStar.Tactics.CanonCommSemiring.interp_vl r vm l0)) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
{ "end_col": 19, "end_line": 1266, "start_col": 50, "start_line": 1182 }
Prims.Tot
val gt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
val gt (a b: t) : Tot bool let gt (a b: t) : Tot bool =
false
null
false
gt #n (v a) (v b)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt.gt", "FStar.UInt16.n", "FStar.UInt16.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt (a b: t) : Tot bool
[]
FStar.UInt16.gt
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 49, "end_line": 226, "start_col": 32, "start_line": 226 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Question_Hat = add_underspec
let op_Plus_Question_Hat =
false
null
false
add_underspec
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.add_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *)
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Plus_Question_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 47, "end_line": 316, "start_col": 34, "start_line": 316 }
Prims.Tot
val lt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
val lt (a b: t) : Tot bool let lt (a b: t) : Tot bool =
false
null
false
lt #n (v a) (v b)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt.lt", "FStar.UInt16.n", "FStar.UInt16.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt (a b: t) : Tot bool
[]
FStar.UInt16.lt
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 49, "end_line": 232, "start_col": 32, "start_line": 232 }
Prims.Tot
val gte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
val gte (a b: t) : Tot bool let gte (a b: t) : Tot bool =
false
null
false
gte #n (v a) (v b)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt.gte", "FStar.UInt16.n", "FStar.UInt16.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte (a b: t) : Tot bool
[]
FStar.UInt16.gte
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 51, "end_line": 229, "start_col": 33, "start_line": 229 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Question_Hat = sub_underspec
let op_Subtraction_Question_Hat =
false
null
false
sub_underspec
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.sub_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Subtraction_Question_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 54, "end_line": 319, "start_col": 41, "start_line": 319 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Percent_Hat = mul_mod
let op_Star_Percent_Hat =
false
null
false
mul_mod
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.mul_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Star_Percent_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 40, "end_line": 323, "start_col": 33, "start_line": 323 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Equals_Hat = gte
let op_Greater_Equals_Hat =
false
null
false
gte
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.gte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
[]
FStar.UInt16.op_Greater_Equals_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 38, "end_line": 333, "start_col": 35, "start_line": 333 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n = 16
let n =
false
null
false
16
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n : Prims.int
[]
FStar.UInt16.n
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.int
{ "end_col": 17, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Hat_Hat = logxor
let op_Hat_Hat =
false
null
false
logxor
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.logxor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Hat_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Hat_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 30, "end_line": 326, "start_col": 24, "start_line": 326 }
Prims.Tot
val eq (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
val eq (a b: t) : Tot bool let eq (a b: t) : Tot bool =
false
null
false
eq #n (v a) (v b)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt.eq", "FStar.UInt16.n", "FStar.UInt16.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq (a b: t) : Tot bool
[]
FStar.UInt16.eq
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 49, "end_line": 223, "start_col": 32, "start_line": 223 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Bar_Hat = logor
let op_Bar_Hat =
false
null
false
logor
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.logor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bar_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Bar_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 29, "end_line": 328, "start_col": 24, "start_line": 328 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Hat = add
let op_Plus_Hat =
false
null
false
add
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Plus_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 28, "end_line": 315, "start_col": 25, "start_line": 315 }
Prims.Tot
val lte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
val lte (a b: t) : Tot bool let lte (a b: t) : Tot bool =
false
null
false
lte #n (v a) (v b)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt.lte", "FStar.UInt16.n", "FStar.UInt16.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte (a b: t) : Tot bool
[]
FStar.UInt16.lte
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 51, "end_line": 235, "start_col": 33, "start_line": 235 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Hat = sub
let op_Subtraction_Hat =
false
null
false
sub
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.sub" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Subtraction_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 35, "end_line": 318, "start_col": 32, "start_line": 318 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Percent_Hat = rem
let op_Percent_Hat =
false
null
false
rem
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.rem" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Percent_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
{ "end_col": 31, "end_line": 325, "start_col": 28, "start_line": 325 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Less_Hat = shift_left
let op_Less_Less_Hat =
false
null
false
shift_left
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.shift_left" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Less_Hat : a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Less_Less_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 40, "end_line": 329, "start_col": 30, "start_line": 329 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Hat = gt
let op_Greater_Hat =
false
null
false
gt
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.gt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
[]
FStar.UInt16.op_Greater_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 30, "end_line": 332, "start_col": 28, "start_line": 332 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Amp_Hat = logand
let op_Amp_Hat =
false
null
false
logand
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.logand" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Amp_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Amp_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 30, "end_line": 327, "start_col": 24, "start_line": 327 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Slash_Hat = div
let op_Slash_Hat =
false
null
false
div
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.div" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Slash_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Slash_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
{ "end_col": 29, "end_line": 324, "start_col": 26, "start_line": 324 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Greater_Hat = shift_right
let op_Greater_Greater_Hat =
false
null
false
shift_right
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.shift_right" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Greater_Hat : a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Greater_Greater_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 47, "end_line": 330, "start_col": 36, "start_line": 330 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Equals_Hat = eq
let op_Equals_Hat =
false
null
false
eq
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.eq" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
[]
FStar.UInt16.op_Equals_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 29, "end_line": 331, "start_col": 27, "start_line": 331 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Hat = mul
let op_Star_Hat =
false
null
false
mul
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.mul" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Star_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 28, "end_line": 321, "start_col": 25, "start_line": 321 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Percent_Hat = sub_mod
let op_Subtraction_Percent_Hat =
false
null
false
sub_mod
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.sub_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Subtraction_Percent_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 47, "end_line": 320, "start_col": 40, "start_line": 320 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Hat = lt
let op_Less_Hat =
false
null
false
lt
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.lt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
[]
FStar.UInt16.op_Less_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 27, "end_line": 334, "start_col": 25, "start_line": 334 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Equals_Hat = lte
let op_Less_Equals_Hat =
false
null
false
lte
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.lte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
[]
FStar.UInt16.op_Less_Equals_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
{ "end_col": 35, "end_line": 335, "start_col": 32, "start_line": 335 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Question_Hat = mul_underspec
let op_Star_Question_Hat =
false
null
false
mul_underspec
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.mul_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Star_Question_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 47, "end_line": 322, "start_col": 34, "start_line": 322 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Percent_Hat = add_mod
let op_Plus_Percent_Hat =
false
null
false
add_mod
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.add_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
[]
FStar.UInt16.op_Plus_Percent_Hat
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 40, "end_line": 317, "start_col": 33, "start_line": 317 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
let minus (a: t) =
false
null
false
add_mod (lognot a) (uint_to_t 1)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt16.t", "FStar.UInt16.add_mod", "FStar.UInt16.lognot", "FStar.UInt16.uint_to_t" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val minus : a: FStar.UInt16.t -> FStar.UInt16.t
[]
FStar.UInt16.minus
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> FStar.UInt16.t
{ "end_col": 50, "end_line": 239, "start_col": 18, "start_line": 239 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_minus_one = UInt32.uint_to_t (n - 1)
let n_minus_one =
false
null
false
UInt32.uint_to_t (n - 1)
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ "total" ]
[ "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "FStar.UInt16.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *)
false
true
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_minus_one : FStar.UInt32.t
[]
FStar.UInt16.n_minus_one
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.UInt32.t
{ "end_col": 42, "end_line": 243, "start_col": 18, "start_line": 243 }
Prims.Pure
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) =
false
null
false
let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.t", "Prims.unit", "FStar.UInt.lemma_msb_gte", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt16.lemma_sub_msbs", "FStar.UInt16.sub_mod", "FStar.UInt16.uint_to_t", "FStar.UInt16.shift_right", "FStar.UInt16.n_minus_one", "FStar.UInt16.logxor", "FStar.UInt16.logor", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
[]
FStar.UInt16.gte_mask
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 5, "end_line": 311, "start_col": 3, "start_line": 299 }
Prims.Pure
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) =
false
null
false
let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then (logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n)) else (logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n)); c
{ "checked_file": "FStar.UInt16.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[]
[ "FStar.UInt16.t", "Prims.unit", "Prims.op_Equality", "Prims._assert", "Prims.b2t", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt.ones", "Prims.l_and", "Prims.int", "FStar.UInt.logor_lemma_1", "FStar.UInt.lognot_lemma_1", "FStar.UInt.logxor_self", "Prims.bool", "FStar.UInt.zero", "FStar.UInt.lemma_minus_zero", "FStar.UInt.lemma_msb_pow2", "FStar.UInt16.lognot", "FStar.UInt.logxor_neq_nonzero", "FStar.UInt16.sub_mod", "FStar.UInt16.uint_to_t", "FStar.UInt16.shift_right", "FStar.UInt16.n_minus_one", "FStar.UInt16.logor", "FStar.UInt16.minus", "FStar.UInt16.logxor", "Prims.l_True", "Prims.l_imp", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_disEquality" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
false
false
FStar.UInt16.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
[]
FStar.UInt16.eq_mask
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
{ "end_col": 5, "end_line": 282, "start_col": 3, "start_line": 260 }
Prims.Tot
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len let bn_field_check_modulus #t km n =
false
null
false
let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Prims.bool", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__mont_check" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
[]
Hacl.Bignum.MontArithmetic.bn_field_check_modulus
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_check_modulus_st t (Mkbn?.len (Mkmont?.bn km))
{ "end_col": 26, "end_line": 41, "start_col": 36, "start_line": 39 }
Prims.Tot
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t let bn_field_get_len #t k =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in k1.len
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = ()
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
[]
Hacl.Bignum.MontArithmetic.bn_field_get_len
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.MontArithmetic.bn_field_get_len_st t
{ "end_col": 8, "end_line": 36, "start_col": 2, "start_line": 34 }
Prims.Tot
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len let bn_to_field #t km k a aM =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_to_field", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__to", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
[]
Hacl.Bignum.MontArithmetic.bn_to_field
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_to_field_st t (Mkbn?.len (Mkmont?.bn km))
{ "end_col": 69, "end_line": 85, "start_col": 2, "start_line": 80 }
Prims.Tot
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len let bn_from_field #t km k aM a =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_from_field", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__from", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
[]
Hacl.Bignum.MontArithmetic.bn_from_field
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_from_field_st t (Mkbn?.len (Mkmont?.bn km))
{ "end_col": 71, "end_line": 94, "start_col": 2, "start_line": 89 }
Prims.Tot
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_one #t km k oneM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len let bn_field_one #t km k oneM =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_one", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.bn_mont_one", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__from", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len
[]
Hacl.Bignum.MontArithmetic.bn_field_one
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_one_st t (Mkbn?.len (Mkmont?.bn km))
{ "end_col": 58, "end_line": 139, "start_col": 2, "start_line": 134 }
Prims.Tot
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len let bn_field_sqr #t km k aM cM =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_sqr", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__sqr", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len
[]
Hacl.Bignum.MontArithmetic.bn_field_sqr
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_sqr_st t (Mkbn?.len (Mkmont?.bn km))
{ "end_col": 71, "end_line": 130, "start_col": 2, "start_line": 125 }
Prims.Tot
val bn_field_free: #t:limb_t -> bn_field_free_st t
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
val bn_field_free: #t:limb_t -> bn_field_free_st t let bn_field_free #t k =
false
null
false
let open LowStar.BufferOps in let k1 = !*k in let n:buffer (limb t) = k1.n in let r2:buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
{ "checked_file": "Hacl.Bignum.MontArithmetic.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "LowStar.Monotonic.Buffer.free", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Hacl.Bignum.Definitions.limb", "LowStar.Monotonic.Buffer.freeable_disjoint", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "LowStar.BufferOps.op_Bang_Star" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul
false
false
Hacl.Bignum.MontArithmetic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_free: #t:limb_t -> bn_field_free_st t
[]
Hacl.Bignum.MontArithmetic.bn_field_free
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.MontArithmetic.bn_field_free_st t
{ "end_col": 10, "end_line": 76, "start_col": 2, "start_line": 69 }