effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Pervasives.Lemma | val modifies_1_modifies
(#a: Type)
(b: B.buffer a)
(h1 h2: HS.mem)
: Lemma
(requires (B.modifies_1 b h1 h2))
(ensures (modifies (loc_buffer b) h1 h2))
[SMTPat (B.modifies_1 b h1 h2)] | [
{
"abbrev": true,
"full_module": "FStar.ModifiesGen",
"short_module": "MG"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modifies_1_modifies #a b h1 h2 =
B.lemma_reveal_modifies_1 b h1 h2;
MG.modifies_intro (loc_buffer b) h1 h2
(fun _ -> ())
(fun t' pre' b' ->
MG.loc_disjoint_sym (loc_mreference b') (loc_buffer b);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b) true (HS.frameOf b') (Set.singleton (HS.as_addr b'))
)
(fun t' pre' b' -> ())
(fun r n -> ())
(fun r' a' b' ->
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b) #(B.as_addr b) b' (LocBuffer b)
) | val modifies_1_modifies
(#a: Type)
(b: B.buffer a)
(h1 h2: HS.mem)
: Lemma
(requires (B.modifies_1 b h1 h2))
(ensures (modifies (loc_buffer b) h1 h2))
[SMTPat (B.modifies_1 b h1 h2)]
let modifies_1_modifies #a b h1 h2 = | false | null | true | B.lemma_reveal_modifies_1 b h1 h2;
MG.modifies_intro (loc_buffer b)
h1
h2
(fun _ -> ())
(fun t' pre' b' ->
MG.loc_disjoint_sym (loc_mreference b') (loc_buffer b);
MG.loc_disjoint_aloc_addresses_elim #_
#cls
#(B.frameOf b)
#(B.as_addr b)
(LocBuffer b)
true
(HS.frameOf b')
(Set.singleton (HS.as_addr b')))
(fun t' pre' b' -> ())
(fun r n -> ())
(fun r' a' b' ->
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b) #(B.as_addr b) b' (LocBuffer b)) | {
"checked_file": "FStar.Modifies.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Buffer.fst.checked"
],
"interface_file": true,
"source_file": "FStar.Modifies.fst"
} | [
"lemma"
] | [
"FStar.Buffer.buffer",
"FStar.Monotonic.HyperStack.mem",
"FStar.ModifiesGen.modifies_intro",
"FStar.Modifies.aloc",
"FStar.Modifies.cls",
"FStar.Modifies.loc_buffer",
"FStar.Monotonic.HyperHeap.rid",
"Prims.unit",
"FStar.Preorder.preorder",
"FStar.Monotonic.HyperStack.mreference",
"FStar.ModifiesGen.loc_disjoint_aloc_addresses_elim",
"FStar.Buffer.frameOf",
"FStar.Buffer.as_addr",
"FStar.Modifies.LocBuffer",
"FStar.Monotonic.HyperStack.frameOf",
"FStar.Set.singleton",
"Prims.nat",
"FStar.Monotonic.HyperStack.as_addr",
"FStar.ModifiesGen.loc_disjoint_sym",
"FStar.Modifies.loc_mreference",
"FStar.ModifiesGen.loc_disjoint_aloc_elim",
"FStar.Buffer.lemma_reveal_modifies_1"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = FStar.Buffer
module U32 = FStar.UInt32
noeq
type loc_aux : Type =
| LocBuffer:
(#t: Type) ->
(b: B.buffer t) ->
loc_aux
let loc_aux_in_addr
(l: loc_aux)
(r: HS.rid)
(n: nat)
: GTot Type0
= match l with
| LocBuffer b ->
B.frameOf b == r /\
B.as_addr b == n
let aloc (r: HS.rid) (n: nat) : Tot (Type u#1) =
(l: loc_aux { loc_aux_in_addr l r n } )
let loc_aux_includes_buffer
(#a: Type)
(s: loc_aux)
(b: B.buffer a)
: GTot Type0
= match s with
| LocBuffer #a0 b0 -> a == a0 /\ b0 `B.includes` b
let loc_aux_includes
(s1 s2: loc_aux)
: GTot Type0
(decreases s2)
= match s2 with
| LocBuffer b -> loc_aux_includes_buffer s1 b
let loc_aux_includes_refl
(s: loc_aux)
: Lemma
(loc_aux_includes s s)
= ()
let loc_aux_includes_buffer_includes
(#a: Type)
(s: loc_aux)
(b1 b2: B.buffer a)
: Lemma
(requires (loc_aux_includes_buffer s b1 /\ b1 `B.includes` b2))
(ensures (loc_aux_includes_buffer s b2))
= ()
let loc_aux_includes_loc_aux_includes_buffer
(#a: Type)
(s1 s2: loc_aux)
(b: B.buffer a)
: Lemma
(requires (loc_aux_includes s1 s2 /\ loc_aux_includes_buffer s2 b))
(ensures (loc_aux_includes_buffer s1 b))
= match s2 with
| LocBuffer b2 -> loc_aux_includes_buffer_includes s1 b2 b
let loc_aux_includes_trans
(s1 s2 s3: loc_aux)
: Lemma
(requires (loc_aux_includes s1 s2 /\ loc_aux_includes s2 s3))
(ensures (loc_aux_includes s1 s3))
= match s3 with
| LocBuffer b -> loc_aux_includes_loc_aux_includes_buffer s1 s2 b
(* the following is necessary because `decreases` messes up 2nd-order unification with `Classical.forall_intro_3` *)
let loc_aux_includes_trans'
(s1 s2: loc_aux)
(s3: loc_aux)
: Lemma
((loc_aux_includes s1 s2 /\ loc_aux_includes s2 s3) ==> loc_aux_includes s1 s3)
= Classical.move_requires (loc_aux_includes_trans s1 s2) s3
let loc_aux_disjoint_buffer
(l: loc_aux)
(#t: Type)
(p: B.buffer t)
: GTot Type0
= match l with
| LocBuffer b -> B.disjoint b p
let loc_aux_disjoint
(l1 l2: loc_aux)
: GTot Type0
= match l2 with
| LocBuffer b ->
loc_aux_disjoint_buffer l1 b
let loc_aux_disjoint_sym
(l1 l2: loc_aux)
: Lemma
(ensures (loc_aux_disjoint l1 l2 <==> loc_aux_disjoint l2 l1))
= ()
let loc_aux_disjoint_buffer_includes
(l: loc_aux)
(#t: Type)
(p1: B.buffer t)
(p2: B.buffer t)
: Lemma
(requires (loc_aux_disjoint_buffer l p1 /\ p1 `B.includes` p2))
(ensures (loc_aux_disjoint_buffer l p2))
= ()
let loc_aux_disjoint_loc_aux_includes_buffer
(l1 l2: loc_aux)
(#t3: Type)
(b3: B.buffer t3)
: Lemma
(requires (loc_aux_disjoint l1 l2 /\ loc_aux_includes_buffer l2 b3))
(ensures (loc_aux_disjoint_buffer l1 b3))
= match l2 with
| LocBuffer b2 -> loc_aux_disjoint_buffer_includes l1 b2 b3
let loc_aux_disjoint_loc_aux_includes
(l1 l2 l3: loc_aux)
: Lemma
(requires (loc_aux_disjoint l1 l2 /\ loc_aux_includes l2 l3))
(ensures (loc_aux_disjoint l1 l3))
= match l3 with
| LocBuffer b3 ->
loc_aux_disjoint_loc_aux_includes_buffer l1 l2 b3
let loc_aux_preserved (l: loc_aux) (h1 h2: HS.mem) : GTot Type0
= match l with
| LocBuffer b ->
(
B.live h1 b
) ==> (
B.live h2 b /\
B.as_seq h2 b == B.as_seq h1 b
)
module MG = FStar.ModifiesGen
let cls : MG.cls aloc = MG.Cls #aloc
(fun #r #a -> loc_aux_includes)
(fun #r #a x -> ())
(fun #r #a x1 x2 x3 -> ())
(fun #r #a -> loc_aux_disjoint)
(fun #r #a x1 x2 -> ())
(fun #r #a larger1 larger2 smaller1 smaller2 -> ())
(fun #r #a -> loc_aux_preserved)
(fun #r #a x h -> ())
(fun #r #a x h1 h2 h3 -> ())
(fun #r #a b h1 h2 f ->
match b with
| LocBuffer b' ->
let g () : Lemma
(requires (B.live h1 b'))
(ensures (loc_aux_preserved b h1 h2))
= f _ _ (B.content b')
in
Classical.move_requires g ()
)
let loc = MG.loc cls
let loc_none = MG.loc_none
let loc_union = MG.loc_union
let loc_union_idem = MG.loc_union_idem
let loc_union_comm = MG.loc_union_comm
let loc_union_assoc = MG.loc_union_assoc
let loc_union_loc_none_l = MG.loc_union_loc_none_l
let loc_union_loc_none_r = MG.loc_union_loc_none_r
let loc_buffer #t b =
MG.loc_of_aloc #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let loc_addresses = MG.loc_addresses
let loc_regions = MG.loc_regions
let loc_includes = MG.loc_includes
let loc_includes_refl = MG.loc_includes_refl
let loc_includes_trans = MG.loc_includes_trans
let loc_includes_union_r = MG.loc_includes_union_r
let loc_includes_union_l = MG.loc_includes_union_l
let loc_includes_none = MG.loc_includes_none
let loc_includes_buffer #t b1 b2 =
MG.loc_includes_aloc #_ #cls #(B.frameOf b1) #(B.as_addr b1) (LocBuffer b1) (LocBuffer b2)
let loc_includes_gsub_buffer_r l #t b i len =
loc_includes_trans l (loc_buffer b) (loc_buffer (B.sub b i len))
let loc_includes_gsub_buffer_l #t b i1 len1 i2 len2 = ()
let loc_includes_addresses_buffer #t preserve_liveness r s p =
MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(B.as_addr p) (LocBuffer p)
let loc_includes_region_buffer #t preserve_liveness s b =
MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls
let loc_includes_region_region = MG.loc_includes_region_region #_ #cls
let loc_includes_region_union_l = MG.loc_includes_region_union_l
let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses #_ cls
let loc_disjoint = MG.loc_disjoint
let loc_disjoint_sym = MG.loc_disjoint_sym
let loc_disjoint_none_r = MG.loc_disjoint_none_r
let loc_disjoint_union_r = MG.loc_disjoint_union_r
let loc_disjoint_includes = MG.loc_disjoint_includes
let loc_disjoint_buffer #t1 #t2 b1 b2 =
MG.loc_disjoint_aloc_intro #_ #cls #(B.frameOf b1) #(B.as_addr b1) #(B.frameOf b2) #(B.as_addr b2) (LocBuffer b1) (LocBuffer b2)
let loc_disjoint_gsub_buffer #t b i1 len1 i2 len2 = ()
let loc_disjoint_addresses = MG.loc_disjoint_addresses #_ #cls
let loc_disjoint_buffer_addresses #t p preserve_liveness r n =
MG.loc_disjoint_aloc_addresses_intro #_ #cls #(B.frameOf p) #(B.as_addr p) (LocBuffer p) preserve_liveness r n
let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls
let modifies = MG.modifies
let modifies_mreference_elim = MG.modifies_mreference_elim
let modifies_buffer_elim #t1 b p h h' =
MG.modifies_aloc_elim #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b) p h h'
let modifies_refl = MG.modifies_refl
let modifies_loc_includes = MG.modifies_loc_includes
let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _
let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _
let address_liveness_insensitive_buffer #t b =
MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let address_liveness_insensitive_addresses =
MG.loc_includes_address_liveness_insensitive_locs_addresses cls
let region_liveness_insensitive_buffer #t b =
MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let region_liveness_insensitive_addresses =
MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls
let region_liveness_insensitive_regions =
MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls
let region_liveness_insensitive_address_liveness_insensitive =
MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls
let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness
let modifies_liveness_insensitive_buffer l1 l2 h h' #t x =
MG.modifies_preserves_liveness_strong l1 l2 h h' (B.content x) (LocBuffer x)
let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness
let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference
let modifies_liveness_insensitive_region_buffer l1 l2 h h' #t x =
MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(B.frameOf x) #(B.as_addr x) (LocBuffer x)
let modifies_trans = MG.modifies_trans
let modifies_only_live_regions = MG.modifies_only_live_regions
let no_upd_fresh_region = MG.no_upd_fresh_region
let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped
let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls
let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro
let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls
let modifies_salloc_post = MG.modifies_salloc_post #_ #cls
let modifies_free = MG.modifies_free #_ #cls
let modifies_none_modifies = MG.modifies_none_modifies #_ #cls
let modifies_buffer_none_modifies h1 h2 =
MG.modifies_none_intro #_ #cls h1 h2
(fun _ -> ())
(fun _ _ _ -> ())
(fun _ _ -> ())
let modifies_0_modifies h1 h2 =
B.lemma_reveal_modifies_0 h1 h2;
MG.modifies_none_intro #_ #cls h1 h2
(fun _ -> ())
(fun _ _ _ -> ())
(fun _ _ -> ()) | false | false | FStar.Modifies.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modifies_1_modifies
(#a: Type)
(b: B.buffer a)
(h1 h2: HS.mem)
: Lemma
(requires (B.modifies_1 b h1 h2))
(ensures (modifies (loc_buffer b) h1 h2))
[SMTPat (B.modifies_1 b h1 h2)] | [] | FStar.Modifies.modifies_1_modifies | {
"file_name": "ulib/FStar.Modifies.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: FStar.Buffer.buffer a -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma (requires FStar.Buffer.modifies_1 b h1 h2)
(ensures FStar.Modifies.modifies (FStar.Modifies.loc_buffer b) h1 h2)
[SMTPat (FStar.Buffer.modifies_1 b h1 h2)] | {
"end_col": 5,
"end_line": 353,
"start_col": 2,
"start_line": 342
} |
FStar.Pervasives.Lemma | val free_does_not_contain_addr
(#a: Type0)
(#rel: Preorder.preorder a)
(r: HS.mreference a rel)
(m: HS.mem)
(x: HS.rid * nat)
: Lemma
(requires (
HS.is_mm r /\
m `HS.contains` r /\
fst x == HS.frameOf r /\
snd x == HS.as_addr r
))
(ensures (
HS.free r m `does_not_contain_addr` x
))
[SMTPat (HS.free r m `does_not_contain_addr` x)] | [
{
"abbrev": true,
"full_module": "FStar.ModifiesGen",
"short_module": "MG"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let free_does_not_contain_addr = MG.free_does_not_contain_addr | val free_does_not_contain_addr
(#a: Type0)
(#rel: Preorder.preorder a)
(r: HS.mreference a rel)
(m: HS.mem)
(x: HS.rid * nat)
: Lemma
(requires (
HS.is_mm r /\
m `HS.contains` r /\
fst x == HS.frameOf r /\
snd x == HS.as_addr r
))
(ensures (
HS.free r m `does_not_contain_addr` x
))
[SMTPat (HS.free r m `does_not_contain_addr` x)]
let free_does_not_contain_addr = | false | null | true | MG.free_does_not_contain_addr | {
"checked_file": "FStar.Modifies.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.ModifiesGen.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Buffer.fst.checked"
],
"interface_file": true,
"source_file": "FStar.Modifies.fst"
} | [
"lemma"
] | [
"FStar.ModifiesGen.free_does_not_contain_addr"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Modifies
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = FStar.Buffer
module U32 = FStar.UInt32
noeq
type loc_aux : Type =
| LocBuffer:
(#t: Type) ->
(b: B.buffer t) ->
loc_aux
let loc_aux_in_addr
(l: loc_aux)
(r: HS.rid)
(n: nat)
: GTot Type0
= match l with
| LocBuffer b ->
B.frameOf b == r /\
B.as_addr b == n
let aloc (r: HS.rid) (n: nat) : Tot (Type u#1) =
(l: loc_aux { loc_aux_in_addr l r n } )
let loc_aux_includes_buffer
(#a: Type)
(s: loc_aux)
(b: B.buffer a)
: GTot Type0
= match s with
| LocBuffer #a0 b0 -> a == a0 /\ b0 `B.includes` b
let loc_aux_includes
(s1 s2: loc_aux)
: GTot Type0
(decreases s2)
= match s2 with
| LocBuffer b -> loc_aux_includes_buffer s1 b
let loc_aux_includes_refl
(s: loc_aux)
: Lemma
(loc_aux_includes s s)
= ()
let loc_aux_includes_buffer_includes
(#a: Type)
(s: loc_aux)
(b1 b2: B.buffer a)
: Lemma
(requires (loc_aux_includes_buffer s b1 /\ b1 `B.includes` b2))
(ensures (loc_aux_includes_buffer s b2))
= ()
let loc_aux_includes_loc_aux_includes_buffer
(#a: Type)
(s1 s2: loc_aux)
(b: B.buffer a)
: Lemma
(requires (loc_aux_includes s1 s2 /\ loc_aux_includes_buffer s2 b))
(ensures (loc_aux_includes_buffer s1 b))
= match s2 with
| LocBuffer b2 -> loc_aux_includes_buffer_includes s1 b2 b
let loc_aux_includes_trans
(s1 s2 s3: loc_aux)
: Lemma
(requires (loc_aux_includes s1 s2 /\ loc_aux_includes s2 s3))
(ensures (loc_aux_includes s1 s3))
= match s3 with
| LocBuffer b -> loc_aux_includes_loc_aux_includes_buffer s1 s2 b
(* the following is necessary because `decreases` messes up 2nd-order unification with `Classical.forall_intro_3` *)
let loc_aux_includes_trans'
(s1 s2: loc_aux)
(s3: loc_aux)
: Lemma
((loc_aux_includes s1 s2 /\ loc_aux_includes s2 s3) ==> loc_aux_includes s1 s3)
= Classical.move_requires (loc_aux_includes_trans s1 s2) s3
let loc_aux_disjoint_buffer
(l: loc_aux)
(#t: Type)
(p: B.buffer t)
: GTot Type0
= match l with
| LocBuffer b -> B.disjoint b p
let loc_aux_disjoint
(l1 l2: loc_aux)
: GTot Type0
= match l2 with
| LocBuffer b ->
loc_aux_disjoint_buffer l1 b
let loc_aux_disjoint_sym
(l1 l2: loc_aux)
: Lemma
(ensures (loc_aux_disjoint l1 l2 <==> loc_aux_disjoint l2 l1))
= ()
let loc_aux_disjoint_buffer_includes
(l: loc_aux)
(#t: Type)
(p1: B.buffer t)
(p2: B.buffer t)
: Lemma
(requires (loc_aux_disjoint_buffer l p1 /\ p1 `B.includes` p2))
(ensures (loc_aux_disjoint_buffer l p2))
= ()
let loc_aux_disjoint_loc_aux_includes_buffer
(l1 l2: loc_aux)
(#t3: Type)
(b3: B.buffer t3)
: Lemma
(requires (loc_aux_disjoint l1 l2 /\ loc_aux_includes_buffer l2 b3))
(ensures (loc_aux_disjoint_buffer l1 b3))
= match l2 with
| LocBuffer b2 -> loc_aux_disjoint_buffer_includes l1 b2 b3
let loc_aux_disjoint_loc_aux_includes
(l1 l2 l3: loc_aux)
: Lemma
(requires (loc_aux_disjoint l1 l2 /\ loc_aux_includes l2 l3))
(ensures (loc_aux_disjoint l1 l3))
= match l3 with
| LocBuffer b3 ->
loc_aux_disjoint_loc_aux_includes_buffer l1 l2 b3
let loc_aux_preserved (l: loc_aux) (h1 h2: HS.mem) : GTot Type0
= match l with
| LocBuffer b ->
(
B.live h1 b
) ==> (
B.live h2 b /\
B.as_seq h2 b == B.as_seq h1 b
)
module MG = FStar.ModifiesGen
let cls : MG.cls aloc = MG.Cls #aloc
(fun #r #a -> loc_aux_includes)
(fun #r #a x -> ())
(fun #r #a x1 x2 x3 -> ())
(fun #r #a -> loc_aux_disjoint)
(fun #r #a x1 x2 -> ())
(fun #r #a larger1 larger2 smaller1 smaller2 -> ())
(fun #r #a -> loc_aux_preserved)
(fun #r #a x h -> ())
(fun #r #a x h1 h2 h3 -> ())
(fun #r #a b h1 h2 f ->
match b with
| LocBuffer b' ->
let g () : Lemma
(requires (B.live h1 b'))
(ensures (loc_aux_preserved b h1 h2))
= f _ _ (B.content b')
in
Classical.move_requires g ()
)
let loc = MG.loc cls
let loc_none = MG.loc_none
let loc_union = MG.loc_union
let loc_union_idem = MG.loc_union_idem
let loc_union_comm = MG.loc_union_comm
let loc_union_assoc = MG.loc_union_assoc
let loc_union_loc_none_l = MG.loc_union_loc_none_l
let loc_union_loc_none_r = MG.loc_union_loc_none_r
let loc_buffer #t b =
MG.loc_of_aloc #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let loc_addresses = MG.loc_addresses
let loc_regions = MG.loc_regions
let loc_includes = MG.loc_includes
let loc_includes_refl = MG.loc_includes_refl
let loc_includes_trans = MG.loc_includes_trans
let loc_includes_union_r = MG.loc_includes_union_r
let loc_includes_union_l = MG.loc_includes_union_l
let loc_includes_none = MG.loc_includes_none
let loc_includes_buffer #t b1 b2 =
MG.loc_includes_aloc #_ #cls #(B.frameOf b1) #(B.as_addr b1) (LocBuffer b1) (LocBuffer b2)
let loc_includes_gsub_buffer_r l #t b i len =
loc_includes_trans l (loc_buffer b) (loc_buffer (B.sub b i len))
let loc_includes_gsub_buffer_l #t b i1 len1 i2 len2 = ()
let loc_includes_addresses_buffer #t preserve_liveness r s p =
MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(B.as_addr p) (LocBuffer p)
let loc_includes_region_buffer #t preserve_liveness s b =
MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls
let loc_includes_region_region = MG.loc_includes_region_region #_ #cls
let loc_includes_region_union_l = MG.loc_includes_region_union_l
let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses #_ cls
let loc_disjoint = MG.loc_disjoint
let loc_disjoint_sym = MG.loc_disjoint_sym
let loc_disjoint_none_r = MG.loc_disjoint_none_r
let loc_disjoint_union_r = MG.loc_disjoint_union_r
let loc_disjoint_includes = MG.loc_disjoint_includes
let loc_disjoint_buffer #t1 #t2 b1 b2 =
MG.loc_disjoint_aloc_intro #_ #cls #(B.frameOf b1) #(B.as_addr b1) #(B.frameOf b2) #(B.as_addr b2) (LocBuffer b1) (LocBuffer b2)
let loc_disjoint_gsub_buffer #t b i1 len1 i2 len2 = ()
let loc_disjoint_addresses = MG.loc_disjoint_addresses #_ #cls
let loc_disjoint_buffer_addresses #t p preserve_liveness r n =
MG.loc_disjoint_aloc_addresses_intro #_ #cls #(B.frameOf p) #(B.as_addr p) (LocBuffer p) preserve_liveness r n
let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls
let modifies = MG.modifies
let modifies_mreference_elim = MG.modifies_mreference_elim
let modifies_buffer_elim #t1 b p h h' =
MG.modifies_aloc_elim #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b) p h h'
let modifies_refl = MG.modifies_refl
let modifies_loc_includes = MG.modifies_loc_includes
let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _
let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _
let address_liveness_insensitive_buffer #t b =
MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let address_liveness_insensitive_addresses =
MG.loc_includes_address_liveness_insensitive_locs_addresses cls
let region_liveness_insensitive_buffer #t b =
MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b)
let region_liveness_insensitive_addresses =
MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls
let region_liveness_insensitive_regions =
MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls
let region_liveness_insensitive_address_liveness_insensitive =
MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls
let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness
let modifies_liveness_insensitive_buffer l1 l2 h h' #t x =
MG.modifies_preserves_liveness_strong l1 l2 h h' (B.content x) (LocBuffer x)
let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness
let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference
let modifies_liveness_insensitive_region_buffer l1 l2 h h' #t x =
MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(B.frameOf x) #(B.as_addr x) (LocBuffer x)
let modifies_trans = MG.modifies_trans
let modifies_only_live_regions = MG.modifies_only_live_regions
let no_upd_fresh_region = MG.no_upd_fresh_region
let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped
let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls
let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro
let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls
let modifies_salloc_post = MG.modifies_salloc_post #_ #cls
let modifies_free = MG.modifies_free #_ #cls
let modifies_none_modifies = MG.modifies_none_modifies #_ #cls
let modifies_buffer_none_modifies h1 h2 =
MG.modifies_none_intro #_ #cls h1 h2
(fun _ -> ())
(fun _ _ _ -> ())
(fun _ _ -> ())
let modifies_0_modifies h1 h2 =
B.lemma_reveal_modifies_0 h1 h2;
MG.modifies_none_intro #_ #cls h1 h2
(fun _ -> ())
(fun _ _ _ -> ())
(fun _ _ -> ())
let modifies_1_modifies #a b h1 h2 =
B.lemma_reveal_modifies_1 b h1 h2;
MG.modifies_intro (loc_buffer b) h1 h2
(fun _ -> ())
(fun t' pre' b' ->
MG.loc_disjoint_sym (loc_mreference b') (loc_buffer b);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b) #(B.as_addr b) (LocBuffer b) true (HS.frameOf b') (Set.singleton (HS.as_addr b'))
)
(fun t' pre' b' -> ())
(fun r n -> ())
(fun r' a' b' ->
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b) #(B.as_addr b) b' (LocBuffer b)
)
let modifies_2_modifies #a1 #a2 b1 b2 h1 h2 =
B.lemma_reveal_modifies_2 b1 b2 h1 h2;
MG.modifies_intro (loc_union (loc_buffer b1) (loc_buffer b2)) h1 h2
(fun _ -> ())
(fun t' pre' b' ->
loc_disjoint_includes (loc_mreference b') (loc_union (loc_buffer b1) (loc_buffer b2)) (loc_mreference b') (loc_buffer b1);
loc_disjoint_sym (loc_mreference b') (loc_buffer b1);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b1) #(B.as_addr b1) (LocBuffer b1) true (HS.frameOf b') (Set.singleton (HS.as_addr b'));
loc_disjoint_includes (loc_mreference b') (loc_union (loc_buffer b1) (loc_buffer b2)) (loc_mreference b') (loc_buffer b2);
loc_disjoint_sym (loc_mreference b') (loc_buffer b2);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b2) #(B.as_addr b2) (LocBuffer b2) true (HS.frameOf b') (Set.singleton (HS.as_addr b'))
)
(fun _ _ _ -> ())
(fun _ _ -> ())
(fun r' a' b' ->
loc_disjoint_includes (MG.loc_of_aloc b') (loc_union (loc_buffer b1) (loc_buffer b2)) (MG.loc_of_aloc b') (loc_buffer b1);
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b1) #(B.as_addr b1) b' (LocBuffer b1);
loc_disjoint_includes (MG.loc_of_aloc b') (loc_union (loc_buffer b1) (loc_buffer b2)) (MG.loc_of_aloc b') (loc_buffer b2);
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b2) #(B.as_addr b2) b' (LocBuffer b2)
)
#set-options "--z3rlimit 20"
let modifies_3_modifies #a1 #a2 #a3 b1 b2 b3 h1 h2 =
B.lemma_reveal_modifies_3 b1 b2 b3 h1 h2;
MG.modifies_intro (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) h1 h2
(fun _ -> ())
(fun t' pre' b' ->
loc_disjoint_includes (loc_mreference b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (loc_mreference b') (loc_buffer b1);
loc_disjoint_sym (loc_mreference b') (loc_buffer b1);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b1) #(B.as_addr b1) (LocBuffer b1) true (HS.frameOf b') (Set.singleton (HS.as_addr b'));
loc_disjoint_includes (loc_mreference b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (loc_mreference b') (loc_buffer b2);
loc_disjoint_sym (loc_mreference b') (loc_buffer b2);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b2) #(B.as_addr b2) (LocBuffer b2) true (HS.frameOf b') (Set.singleton (HS.as_addr b'));
loc_disjoint_includes (loc_mreference b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (loc_mreference b') (loc_buffer b3);
loc_disjoint_sym (loc_mreference b') (loc_buffer b3);
MG.loc_disjoint_aloc_addresses_elim #_ #cls #(B.frameOf b3) #(B.as_addr b3) (LocBuffer b3) true (HS.frameOf b') (Set.singleton (HS.as_addr b'))
)
(fun _ _ _ -> ())
(fun _ _ -> ())
(fun r' a' b' ->
loc_disjoint_includes (MG.loc_of_aloc b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (MG.loc_of_aloc b') (loc_buffer b1);
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b1) #(B.as_addr b1) b' (LocBuffer b1);
loc_disjoint_includes (MG.loc_of_aloc b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (MG.loc_of_aloc b') (loc_buffer b2);
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b2) #(B.as_addr b2) b' (LocBuffer b2);
loc_disjoint_includes (MG.loc_of_aloc b') (loc_union (loc_buffer b1) (loc_union (loc_buffer b2) (loc_buffer b3))) (MG.loc_of_aloc b') (loc_buffer b3);
MG.loc_disjoint_aloc_elim #_ #cls #r' #a' #(B.frameOf b3) #(B.as_addr b3) b' (LocBuffer b3)
)
#reset-options
let modifies_buffer_rcreate_post_common #a r init len b h0 h1 =
MG.modifies_none_intro #_ #cls h0 h1
(fun _ -> ())
(fun _ _ _ -> ())
(fun _ _ -> ())
let mreference_live_buffer_unused_in_disjoint #t1 #pre #t2 h b1 b2 =
loc_disjoint_includes (loc_freed_mreference b1) (loc_freed_mreference (B.content b2)) (loc_freed_mreference b1) (loc_buffer b2)
let buffer_live_mreference_unused_in_disjoint #t1 #t2 #pre h b1 b2 =
loc_disjoint_includes (loc_freed_mreference (B.content b1)) (loc_freed_mreference b2) (loc_buffer b1) (loc_freed_mreference b2)
let does_not_contain_addr = MG.does_not_contain_addr
let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr
let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr
let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr | false | false | FStar.Modifies.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val free_does_not_contain_addr
(#a: Type0)
(#rel: Preorder.preorder a)
(r: HS.mreference a rel)
(m: HS.mem)
(x: HS.rid * nat)
: Lemma
(requires (
HS.is_mm r /\
m `HS.contains` r /\
fst x == HS.frameOf r /\
snd x == HS.as_addr r
))
(ensures (
HS.free r m `does_not_contain_addr` x
))
[SMTPat (HS.free r m `does_not_contain_addr` x)] | [] | FStar.Modifies.free_does_not_contain_addr | {
"file_name": "ulib/FStar.Modifies.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
r: FStar.Monotonic.HyperStack.mreference a rel ->
m: FStar.Monotonic.HyperStack.mem ->
x: (FStar.Monotonic.HyperHeap.rid * Prims.nat)
-> FStar.Pervasives.Lemma
(requires
FStar.Monotonic.HyperStack.is_mm r /\ FStar.Monotonic.HyperStack.contains m r /\
FStar.Pervasives.Native.fst x == FStar.Monotonic.HyperStack.frameOf r /\
FStar.Pervasives.Native.snd x == FStar.Monotonic.HyperStack.as_addr r)
(ensures FStar.Modifies.does_not_contain_addr (FStar.Monotonic.HyperStack.free r m) x)
[SMTPat (FStar.Modifies.does_not_contain_addr (FStar.Monotonic.HyperStack.free r m) x)] | {
"end_col": 62,
"end_line": 426,
"start_col": 33,
"start_line": 426
} |
FStar.Pervasives.Lemma | val lemma_to_of (s:machine_state) : Lemma
(ensures state_to_S (state_of_S s) == {s with Ms.ms_trace = []}) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_to_of s =
let open Ms in
let s' = state_of_S s in
let s'' = state_to_S s' in
assert (feq s.ms_regs s''.ms_regs);
assert (feq s.ms_flags s''.ms_flags);
VSS.lemma_stack_to_from s.ms_stack;
() | val lemma_to_of (s:machine_state) : Lemma
(ensures state_to_S (state_of_S s) == {s with Ms.ms_trace = []})
let lemma_to_of s = | false | null | true | let open Ms in
let s' = state_of_S s in
let s'' = state_to_S s' in
assert (feq s.ms_regs s''.ms_regs);
assert (feq s.ms_flags s''.ms_flags);
VSS.lemma_stack_to_from s.ms_stack;
() | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.X64.StateLemmas.machine_state",
"Prims.unit",
"Vale.X64.Stack_Sems.lemma_stack_to_from",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Vale.X64.Machine_s.flag",
"Vale.X64.Machine_Semantics_s.flag_val_t",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs",
"Vale.X64.Machine_Semantics_s.machine_state",
"Vale.X64.StateLemmas.state_to_S",
"Vale.X64.State.vale_state",
"Vale.X64.StateLemmas.state_of_S"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get128 h ptr =
MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
//let lemma_valid_buffer_read64 h b i =
// lemma_valid_mem64 b i h
//let lemma_valid_buffer_read128 h b i =
// lemma_valid_mem128 b i h
let lemma_load_buffer_read64 h b i =
lemma_load_mem64 b i h
let lemma_load_buffer_read128 h b i =
lemma_load_mem128 b i h
#reset-options "--z3rlimit 50"
#restart-solver
let lemma_to_eval_operand s o =
allow_inversion tmaddr;
allow_inversion maddr
#reset-options "--initial_fuel 2 --max_fuel 2"
//let lemma_to_eval_xmm s x = ()
//#reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 50"
//#restart-solver
//let lemma_to_eval_operand128 s o =
// allow_inversion tmaddr;
// allow_inversion maddr
//
//#reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 50"
//#restart-solver
//let lemma_to_valid_operand s o =
// allow_inversion tmaddr;
// allow_inversion maddr | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_to_of (s:machine_state) : Lemma
(ensures state_to_S (state_of_S s) == {s with Ms.ms_trace = []}) | [] | Vale.X64.StateLemmas.lemma_to_of | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.X64.StateLemmas.machine_state
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.StateLemmas.state_to_S (Vale.X64.StateLemmas.state_of_S s) ==
Vale.X64.Machine_Semantics_s.Mkmachine_state (Mkmachine_state?.ms_ok s)
(Mkmachine_state?.ms_regs s)
(Mkmachine_state?.ms_flags s)
(Mkmachine_state?.ms_heap s)
(Mkmachine_state?.ms_stack s)
(Mkmachine_state?.ms_stackTaint s)
[]) | {
"end_col": 4,
"end_line": 80,
"start_col": 2,
"start_line": 74
} |
FStar.Pervasives.Lemma | val lemma_load_mem_get64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures load_mem64 ptr (get_vale_heap h) == get_heap_val64 ptr (heap_get (coerce h)))
[SMTPat (load_mem64 ptr (get_vale_heap h))] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | val lemma_load_mem_get64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures load_mem64 ptr (get_vale_heap h) == get_heap_val64 ptr (heap_get (coerce h)))
[SMTPat (load_mem64 ptr (get_vale_heap h))]
let lemma_load_mem_get64 h ptr = | false | null | true | MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_full_heap",
"Prims.int",
"Prims.unit",
"Vale.X64.Memory_Sems.lemma_heap_get_heap",
"Vale.X64.Memory_Sems.equiv_load_mem64",
"Vale.X64.Memory.get_vale_heap"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_load_mem_get64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures load_mem64 ptr (get_vale_heap h) == get_heap_val64 ptr (heap_get (coerce h)))
[SMTPat (load_mem64 ptr (get_vale_heap h))] | [] | Vale.X64.StateLemmas.lemma_load_mem_get64 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_full_heap -> ptr: Prims.int
-> FStar.Pervasives.Lemma
(requires Vale.X64.Memory.valid_mem64 ptr (Vale.X64.Memory.get_vale_heap h))
(ensures
Vale.X64.Memory.load_mem64 ptr (Vale.X64.Memory.get_vale_heap h) ==
Vale.Arch.MachineHeap_s.get_heap_val64 ptr
(Vale.Arch.Heap.heap_get (Vale.X64.StateLemmas.coerce h)))
[SMTPat (Vale.X64.Memory.load_mem64 ptr (Vale.X64.Memory.get_vale_heap h))] | {
"end_col": 4,
"end_line": 32,
"start_col": 2,
"start_line": 30
} |
FStar.Pervasives.Lemma | val lemma_valid_mem_addr64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures valid_addr64 ptr (heap_get (coerce h)))
[SMTPat (valid_mem64 ptr (get_vale_heap h))] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | val lemma_valid_mem_addr64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures valid_addr64 ptr (heap_get (coerce h)))
[SMTPat (valid_mem64 ptr (get_vale_heap h))]
let lemma_valid_mem_addr64 h ptr = | false | null | true | MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_full_heap",
"Prims.int",
"Prims.unit",
"Vale.X64.Memory_Sems.lemma_heap_get_heap",
"Vale.X64.Memory_Sems.bytes_valid64",
"Vale.X64.Memory.get_vale_heap"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2" | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_valid_mem_addr64 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem64 ptr (get_vale_heap h))
(ensures valid_addr64 ptr (heap_get (coerce h)))
[SMTPat (valid_mem64 ptr (get_vale_heap h))] | [] | Vale.X64.StateLemmas.lemma_valid_mem_addr64 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_full_heap -> ptr: Prims.int
-> FStar.Pervasives.Lemma
(requires Vale.X64.Memory.valid_mem64 ptr (Vale.X64.Memory.get_vale_heap h))
(ensures
Vale.Arch.MachineHeap_s.valid_addr64 ptr
(Vale.Arch.Heap.heap_get (Vale.X64.StateLemmas.coerce h)))
[SMTPat (Vale.X64.Memory.valid_mem64 ptr (Vale.X64.Memory.get_vale_heap h))] | {
"end_col": 4,
"end_line": 22,
"start_col": 2,
"start_line": 20
} |
FStar.Pervasives.Lemma | val lemma_valid_mem_addr128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures valid_addr128 ptr (heap_get (coerce h)))
[SMTPat (valid_mem128 ptr (get_vale_heap h))] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | val lemma_valid_mem_addr128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures valid_addr128 ptr (heap_get (coerce h)))
[SMTPat (valid_mem128 ptr (get_vale_heap h))]
let lemma_valid_mem_addr128 h ptr = | false | null | true | MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_full_heap",
"Prims.int",
"Prims.unit",
"Vale.X64.Memory_Sems.lemma_heap_get_heap",
"Vale.X64.Memory_Sems.bytes_valid128",
"Vale.X64.Memory.get_vale_heap"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_valid_mem_addr128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures valid_addr128 ptr (heap_get (coerce h)))
[SMTPat (valid_mem128 ptr (get_vale_heap h))] | [] | Vale.X64.StateLemmas.lemma_valid_mem_addr128 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_full_heap -> ptr: Prims.int
-> FStar.Pervasives.Lemma
(requires Vale.X64.Memory.valid_mem128 ptr (Vale.X64.Memory.get_vale_heap h))
(ensures
Vale.Arch.MachineHeap_s.valid_addr128 ptr
(Vale.Arch.Heap.heap_get (Vale.X64.StateLemmas.coerce h)))
[SMTPat (Vale.X64.Memory.valid_mem128 ptr (Vale.X64.Memory.get_vale_heap h))] | {
"end_col": 4,
"end_line": 27,
"start_col": 2,
"start_line": 25
} |
FStar.Pervasives.Lemma | val lemma_load_mem_get128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures load_mem128 ptr (get_vale_heap h) == get_heap_val128 ptr (heap_get (coerce h)))
[SMTPat (load_mem128 ptr (get_vale_heap h))] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_load_mem_get128 h ptr =
MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | val lemma_load_mem_get128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures load_mem128 ptr (get_vale_heap h) == get_heap_val128 ptr (heap_get (coerce h)))
[SMTPat (load_mem128 ptr (get_vale_heap h))]
let lemma_load_mem_get128 h ptr = | false | null | true | MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_full_heap",
"Prims.int",
"Prims.unit",
"Vale.X64.Memory_Sems.lemma_heap_get_heap",
"Vale.X64.Memory_Sems.equiv_load_mem128",
"Vale.X64.Memory.get_vale_heap"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
() | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_load_mem_get128 (h:vale_full_heap) (ptr:int) : Lemma
(requires valid_mem128 ptr (get_vale_heap h))
(ensures load_mem128 ptr (get_vale_heap h) == get_heap_val128 ptr (heap_get (coerce h)))
[SMTPat (load_mem128 ptr (get_vale_heap h))] | [] | Vale.X64.StateLemmas.lemma_load_mem_get128 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_full_heap -> ptr: Prims.int
-> FStar.Pervasives.Lemma
(requires Vale.X64.Memory.valid_mem128 ptr (Vale.X64.Memory.get_vale_heap h))
(ensures
Vale.X64.Memory.load_mem128 ptr (Vale.X64.Memory.get_vale_heap h) ==
Vale.Arch.MachineHeap_s.get_heap_val128 ptr
(Vale.Arch.Heap.heap_get (Vale.X64.StateLemmas.coerce h)))
[SMTPat (Vale.X64.Memory.load_mem128 ptr (Vale.X64.Memory.get_vale_heap h))] | {
"end_col": 4,
"end_line": 37,
"start_col": 2,
"start_line": 35
} |
FStar.Pervasives.Lemma | val lemma_load_buffer_read128 (h:vale_heap) (b:buffer128) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem128 (buffer_addr b h + 16 * i) h)
[SMTPat (buffer_read b i h)] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_load_buffer_read128 h b i =
lemma_load_mem128 b i h | val lemma_load_buffer_read128 (h:vale_heap) (b:buffer128) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem128 (buffer_addr b h + 16 * i) h)
[SMTPat (buffer_read b i h)]
let lemma_load_buffer_read128 h b i = | false | null | true | lemma_load_mem128 b i h | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_heap",
"Vale.X64.Memory.buffer128",
"Prims.int",
"Vale.X64.Memory.lemma_load_mem128",
"Prims.unit"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get128 h ptr =
MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
//let lemma_valid_buffer_read64 h b i =
// lemma_valid_mem64 b i h
//let lemma_valid_buffer_read128 h b i =
// lemma_valid_mem128 b i h
let lemma_load_buffer_read64 h b i =
lemma_load_mem64 b i h | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_load_buffer_read128 (h:vale_heap) (b:buffer128) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem128 (buffer_addr b h + 16 * i) h)
[SMTPat (buffer_read b i h)] | [] | Vale.X64.StateLemmas.lemma_load_buffer_read128 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_heap -> b: Vale.X64.Memory.buffer128 -> i: Prims.int
-> FStar.Pervasives.Lemma (requires Vale.X64.Memory.valid_buffer_read h b i)
(ensures
Vale.X64.Memory.buffer_read b i h ==
Vale.X64.Memory.load_mem128 (Vale.X64.Memory.buffer_addr b h + 16 * i) h)
[SMTPat (Vale.X64.Memory.buffer_read b i h)] | {
"end_col": 25,
"end_line": 49,
"start_col": 2,
"start_line": 49
} |
FStar.Pervasives.Lemma | val lemma_to_eval_operand (s:vale_state) (o:operand64) : Lemma
(requires valid_src_operand o s)
(ensures eval_operand o s == Ms.eval_operand o (state_to_S s))
[SMTPat (eval_operand o s)] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_to_eval_operand s o =
allow_inversion tmaddr;
allow_inversion maddr | val lemma_to_eval_operand (s:vale_state) (o:operand64) : Lemma
(requires valid_src_operand o s)
(ensures eval_operand o s == Ms.eval_operand o (state_to_S s))
[SMTPat (eval_operand o s)]
let lemma_to_eval_operand s o = | false | null | true | allow_inversion tmaddr;
allow_inversion maddr | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.X64.State.vale_state",
"Vale.X64.Machine_s.operand64",
"FStar.Pervasives.allow_inversion",
"Vale.X64.Machine_s.maddr",
"Prims.unit",
"Vale.X64.Machine_s.tmaddr"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get128 h ptr =
MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
//let lemma_valid_buffer_read64 h b i =
// lemma_valid_mem64 b i h
//let lemma_valid_buffer_read128 h b i =
// lemma_valid_mem128 b i h
let lemma_load_buffer_read64 h b i =
lemma_load_mem64 b i h
let lemma_load_buffer_read128 h b i =
lemma_load_mem128 b i h
#reset-options "--z3rlimit 50"
#restart-solver | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_to_eval_operand (s:vale_state) (o:operand64) : Lemma
(requires valid_src_operand o s)
(ensures eval_operand o s == Ms.eval_operand o (state_to_S s))
[SMTPat (eval_operand o s)] | [] | Vale.X64.StateLemmas.lemma_to_eval_operand | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.X64.State.vale_state -> o: Vale.X64.Machine_s.operand64
-> FStar.Pervasives.Lemma (requires Vale.X64.State.valid_src_operand o s)
(ensures
Vale.X64.State.eval_operand o s ==
Vale.X64.Machine_Semantics_s.eval_operand o (Vale.X64.StateLemmas.state_to_S s))
[SMTPat (Vale.X64.State.eval_operand o s)] | {
"end_col": 23,
"end_line": 55,
"start_col": 2,
"start_line": 54
} |
FStar.Pervasives.Lemma | val lemma_load_buffer_read64 (h:vale_heap) (b:buffer64) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem64 (buffer_addr b h + 8 * i) h)
[SMTPat (buffer_read b i h)] | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_i",
"short_module": "VST"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory_Sems",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "BS"
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "Vale.X64.Stack_Sems",
"short_module": "VSS"
},
{
"abbrev": false,
"full_module": "Vale.Arch.MachineHeap_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": "Ms"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Heap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_load_buffer_read64 h b i =
lemma_load_mem64 b i h | val lemma_load_buffer_read64 (h:vale_heap) (b:buffer64) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem64 (buffer_addr b h + 8 * i) h)
[SMTPat (buffer_read b i h)]
let lemma_load_buffer_read64 h b i = | false | null | true | lemma_load_mem64 b i h | {
"checked_file": "Vale.X64.StateLemmas.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_Sems.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Memory_Sems.fsti.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Memory.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.StateLemmas.fst"
} | [
"lemma"
] | [
"Vale.Arch.HeapImpl.vale_heap",
"Vale.X64.Memory.buffer64",
"Prims.int",
"Vale.X64.Memory.lemma_load_mem64",
"Prims.unit"
] | [] | module Vale.X64.StateLemmas
open FStar.Mul
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.State
module BS = Vale.X64.Machine_Semantics_s
module MS = Vale.X64.Memory_Sems
module ME = Vale.X64.Memory
module VST = Vale.X64.Stack_i
module VSS = Vale.X64.Stack_Sems
module F = FStar.FunctionalExtensionality
friend Vale.X64.Memory
let same_heap_types = ()
let use_machine_state_equal () = ()
#set-options "--max_ifuel 2 --initial_ifuel 2"
let lemma_valid_mem_addr64 h ptr =
MS.bytes_valid64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_valid_mem_addr128 h ptr =
MS.bytes_valid128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get64 h ptr =
MS.equiv_load_mem64 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
let lemma_load_mem_get128 h ptr =
MS.equiv_load_mem128 ptr (get_vale_heap h);
MS.lemma_heap_get_heap h;
()
//let lemma_valid_buffer_read64 h b i =
// lemma_valid_mem64 b i h
//let lemma_valid_buffer_read128 h b i =
// lemma_valid_mem128 b i h | false | false | Vale.X64.StateLemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 1,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_load_buffer_read64 (h:vale_heap) (b:buffer64) (i:int) : Lemma
(requires valid_buffer_read h b i)
(ensures buffer_read b i h == load_mem64 (buffer_addr b h + 8 * i) h)
[SMTPat (buffer_read b i h)] | [] | Vale.X64.StateLemmas.lemma_load_buffer_read64 | {
"file_name": "vale/code/arch/x64/Vale.X64.StateLemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Arch.HeapImpl.vale_heap -> b: Vale.X64.Memory.buffer64 -> i: Prims.int
-> FStar.Pervasives.Lemma (requires Vale.X64.Memory.valid_buffer_read h b i)
(ensures
Vale.X64.Memory.buffer_read b i h ==
Vale.X64.Memory.load_mem64 (Vale.X64.Memory.buffer_addr b h + 8 * i) h)
[SMTPat (Vale.X64.Memory.buffer_read b i h)] | {
"end_col": 24,
"end_line": 46,
"start_col": 2,
"start_line": 46
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mont_nat (#t:limb_t) (k:bn_mont_ctx t) =
x:lbignum t k.len{bn_v x < bn_v k.n} | let bn_mont_nat (#t: limb_t) (k: bn_mont_ctx t) = | false | null | false | x: lbignum t k.len {bn_v x < bn_v k.n} | {
"checked_file": "Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.MontArithmetic.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n"
] | [] | module Hacl.Spec.Bignum.MontArithmetic
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module Euclid = FStar.Math.Euclid
module M = Hacl.Spec.Montgomery.Lemmas
module BN = Hacl.Spec.Bignum
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mont_ctx_pre (#t:limb_t) (#len:BN.bn_len t) (n:lbignum t len) =
1 < bn_v n /\ bn_v n % 2 = 1
inline_for_extraction
class bn_mont_ctx (t:limb_t) = {
len: BN.bn_len t;
n: lbignum t len;
mu: limb t;
r2: lbignum t len
}
let bn_mont_ctx_inv (#t:limb_t) (k:bn_mont_ctx t) =
bn_v k.n < pow2 (bits t * k.len) /\
bn_mont_ctx_pre k.n /\
(1 + bn_v k.n * v k.mu) % pow2 (bits t) == 0 /\
bn_v k.r2 == pow2 (2 * bits t * k.len) % bn_v k.n | false | false | Hacl.Spec.Bignum.MontArithmetic.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mont_nat : k: Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t -> Type0 | [] | Hacl.Spec.Bignum.MontArithmetic.bn_mont_nat | {
"file_name": "code/bignum/Hacl.Spec.Bignum.MontArithmetic.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t -> Type0 | {
"end_col": 38,
"end_line": 37,
"start_col": 2,
"start_line": 37
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mont_ctx_pre (#t:limb_t) (#len:BN.bn_len t) (n:lbignum t len) =
1 < bn_v n /\ bn_v n % 2 = 1 | let bn_mont_ctx_pre (#t: limb_t) (#len: BN.bn_len t) (n: lbignum t len) = | false | null | false | 1 < bn_v n /\ bn_v n % 2 = 1 | {
"checked_file": "Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.MontArithmetic.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.logical"
] | [] | module Hacl.Spec.Bignum.MontArithmetic
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module Euclid = FStar.Math.Euclid
module M = Hacl.Spec.Montgomery.Lemmas
module BN = Hacl.Spec.Bignum
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | false | Hacl.Spec.Bignum.MontArithmetic.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mont_ctx_pre : n: Hacl.Spec.Bignum.Definitions.lbignum t len -> Prims.logical | [] | Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_pre | {
"file_name": "code/bignum/Hacl.Spec.Bignum.MontArithmetic.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Hacl.Spec.Bignum.Definitions.lbignum t len -> Prims.logical | {
"end_col": 30,
"end_line": 17,
"start_col": 2,
"start_line": 17
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mont_ctx_inv (#t:limb_t) (k:bn_mont_ctx t) =
bn_v k.n < pow2 (bits t * k.len) /\
bn_mont_ctx_pre k.n /\
(1 + bn_v k.n * v k.mu) % pow2 (bits t) == 0 /\
bn_v k.r2 == pow2 (2 * bits t * k.len) % bn_v k.n | let bn_mont_ctx_inv (#t: limb_t) (k: bn_mont_ctx t) = | false | null | false | bn_v k.n < pow2 (bits t * k.len) /\ bn_mont_ctx_pre k.n /\
(1 + bn_v k.n * v k.mu) % pow2 (bits t) == 0 /\ bn_v k.r2 == pow2 ((2 * bits t) * k.len) % bn_v k.n | {
"checked_file": "Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.MontArithmetic.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_pre",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__mu",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__r2",
"Prims.logical"
] | [] | module Hacl.Spec.Bignum.MontArithmetic
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module Euclid = FStar.Math.Euclid
module M = Hacl.Spec.Montgomery.Lemmas
module BN = Hacl.Spec.Bignum
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mont_ctx_pre (#t:limb_t) (#len:BN.bn_len t) (n:lbignum t len) =
1 < bn_v n /\ bn_v n % 2 = 1
inline_for_extraction
class bn_mont_ctx (t:limb_t) = {
len: BN.bn_len t;
n: lbignum t len;
mu: limb t;
r2: lbignum t len
} | false | false | Hacl.Spec.Bignum.MontArithmetic.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mont_ctx_inv : k: Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | [] | Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv | {
"file_name": "code/bignum/Hacl.Spec.Bignum.MontArithmetic.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | {
"end_col": 51,
"end_line": 33,
"start_col": 2,
"start_line": 30
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_field_exp_st (t:limb_t) (k:bn_mont_ctx t{bn_mont_ctx_inv k}) =
aM:bn_mont_nat k
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (bn_mont_nat k)
(requires bn_v b < pow2 bBits)
(ensures fun cM ->
bn_v (bn_from_field k cM) == Lib.NatMod.pow_mod #(bn_v k.n) (bn_v (bn_from_field k aM)) (bn_v b)) | let bn_field_exp_st (t: limb_t) (k: bn_mont_ctx t {bn_mont_ctx_inv k}) = | false | null | false | aM: bn_mont_nat k -> bBits: size_nat -> b: lbignum t (blocks0 bBits (bits t))
-> Pure (bn_mont_nat k)
(requires bn_v b < pow2 bBits)
(ensures
fun cM ->
bn_v (bn_from_field k cM) ==
Lib.NatMod.pow_mod #(bn_v k.n) (bn_v (bn_from_field k aM)) (bn_v b)) | {
"checked_file": "Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.MontArithmetic.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_nat",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"Prims.eq2",
"Prims.nat",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Spec.Bignum.MontArithmetic.bn_from_field",
"Lib.NatMod.pow_mod",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n"
] | [] | module Hacl.Spec.Bignum.MontArithmetic
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module Euclid = FStar.Math.Euclid
module M = Hacl.Spec.Montgomery.Lemmas
module BN = Hacl.Spec.Bignum
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mont_ctx_pre (#t:limb_t) (#len:BN.bn_len t) (n:lbignum t len) =
1 < bn_v n /\ bn_v n % 2 = 1
inline_for_extraction
class bn_mont_ctx (t:limb_t) = {
len: BN.bn_len t;
n: lbignum t len;
mu: limb t;
r2: lbignum t len
}
let bn_mont_ctx_inv (#t:limb_t) (k:bn_mont_ctx t) =
bn_v k.n < pow2 (bits t * k.len) /\
bn_mont_ctx_pre k.n /\
(1 + bn_v k.n * v k.mu) % pow2 (bits t) == 0 /\
bn_v k.r2 == pow2 (2 * bits t * k.len) % bn_v k.n
let bn_mont_nat (#t:limb_t) (k:bn_mont_ctx t) =
x:lbignum t k.len{bn_v x < bn_v k.n}
val bn_field_get_len: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> BN.bn_len t
val bn_field_check_modulus: #t:limb_t -> #len:BN.bn_len t -> n:lbignum t len ->
res:bool{res <==> bn_mont_ctx_pre n}
// computes the Montgomery constants r2 and mu
val bn_field_init: #t:limb_t -> #len:BN.bn_len t -> n:lbignum t len ->
Pure (bn_mont_ctx t)
(requires bn_mont_ctx_pre n)
(ensures fun k -> bn_mont_ctx_inv k /\ k.n == n /\ k.len == len)
val bn_to_field: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> a:lbignum t k.len ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun aM ->
bn_v aM == M.to_mont (bits t) k.len (bn_v k.n) (v k.mu) (bn_v a))
val bn_from_field: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> aM:bn_mont_nat k ->
Pure (lbignum t k.len)
(requires True)
(ensures fun a -> bn_v a < bn_v k.n /\
bn_v a == M.from_mont (bits t) k.len (bn_v k.n) (v k.mu) (bn_v aM))
val bn_from_to_field_lemma: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> a:lbignum t k.len ->
Lemma (bn_v (bn_from_field k (bn_to_field k a)) == bn_v a % bn_v k.n)
val bn_field_add: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> aM:bn_mont_nat k -> bM:bn_mont_nat k ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun cM ->
bn_v (bn_from_field k cM) == (bn_v (bn_from_field k aM) + bn_v (bn_from_field k bM)) % bn_v k.n)
val bn_field_sub: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> aM:bn_mont_nat k -> bM:bn_mont_nat k ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun cM ->
bn_v (bn_from_field k cM) == (bn_v (bn_from_field k aM) - bn_v (bn_from_field k bM)) % bn_v k.n)
val bn_field_mul: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> aM:bn_mont_nat k -> bM:bn_mont_nat k ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun cM ->
bn_v (bn_from_field k cM) == bn_v (bn_from_field k aM) * bn_v (bn_from_field k bM) % bn_v k.n)
val bn_field_sqr: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} -> aM:bn_mont_nat k ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun cM ->
bn_v (bn_from_field k cM) == bn_v (bn_from_field k aM) * bn_v (bn_from_field k aM) % bn_v k.n)
val bn_field_one: #t:limb_t -> k:bn_mont_ctx t{bn_mont_ctx_inv k} ->
Pure (bn_mont_nat k)
(requires True)
(ensures fun oneM ->
bn_v (bn_from_field k oneM) == 1)
noextract | false | false | Hacl.Spec.Bignum.MontArithmetic.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_field_exp_st : t: Hacl.Spec.Bignum.Definitions.limb_t ->
k:
Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t
{Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv k}
-> Type0 | [] | Hacl.Spec.Bignum.MontArithmetic.bn_field_exp_st | {
"file_name": "code/bignum/Hacl.Spec.Bignum.MontArithmetic.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t: Hacl.Spec.Bignum.Definitions.limb_t ->
k:
Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t
{Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv k}
-> Type0 | {
"end_col": 101,
"end_line": 115,
"start_col": 4,
"start_line": 109
} |
|
Prims.Tot | val table_inv_w5:BE.table_inv_t U64 15ul 32ul | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len | val table_inv_w5:BE.table_inv_t U64 15ul 32ul
let table_inv_w5:BE.table_inv_t U64 15ul 32ul = | false | null | false | [@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let l = 5ul in
[@@ inline_let ]let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [
"total"
] | [
"Hacl.Impl.Exponentiation.table_inv_precomp",
"Lib.IntTypes.U64",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Prims.pow2",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"FStar.UInt32.t",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val table_inv_w5:BE.table_inv_t U64 15ul 32ul | [] | Hacl.Impl.K256.PointMul.table_inv_w5 | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.table_inv_t Lib.IntTypes.U64
(FStar.UInt32.uint_to_t 15 <: FStar.UInt32.t)
(FStar.UInt32.uint_to_t 32 <: FStar.UInt32.t) | {
"end_col": 48,
"end_line": 48,
"start_col": 2,
"start_line": 42
} |
Prims.Tot | val table_inv_w4:BE.table_inv_t U64 15ul 16ul | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len | val table_inv_w4:BE.table_inv_t U64 15ul 16ul
let table_inv_w4:BE.table_inv_t U64 15ul 16ul = | false | null | false | [@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let l = 4ul in
[@@ inline_let ]let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [
"total"
] | [
"Hacl.Impl.Exponentiation.table_inv_precomp",
"Lib.IntTypes.U64",
"FStar.UInt32.t",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val table_inv_w4:BE.table_inv_t U64 15ul 16ul | [] | Hacl.Impl.K256.PointMul.table_inv_w4 | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.table_inv_t Lib.IntTypes.U64
(FStar.UInt32.uint_to_t 15 <: FStar.UInt32.t)
(FStar.UInt32.uint_to_t 16 <: FStar.UInt32.t) | {
"end_col": 48,
"end_line": 37,
"start_col": 2,
"start_line": 32
} |
FStar.Pervasives.Lemma | val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b))) | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_exp_four_fw_local b =
let cm = S.mk_k256_comm_monoid in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff (BD.bn_v b));
SPT256.lemma_point_mul_base_precomp4 cm g_aff (BD.bn_v b);
assert (res == LE.pow cm g_aff (BD.bn_v b));
SE.exp_fw_lemma S.mk_k256_concrete_ops S.g 256 (BD.bn_v b) 4;
LE.exp_fw_lemma cm g_aff 256 (BD.bn_v b) 4;
assert (S.to_aff_point (S.point_mul_g (BD.bn_v b)) == LE.pow cm g_aff (BD.bn_v b)) | val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b)))
let lemma_exp_four_fw_local b = | false | null | true | let cm = S.mk_k256_comm_monoid in
let b0, b1, b2, b3 = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff (BD.bn_v b));
SPT256.lemma_point_mul_base_precomp4 cm g_aff (BD.bn_v b);
assert (res == LE.pow cm g_aff (BD.bn_v b));
SE.exp_fw_lemma S.mk_k256_concrete_ops S.g 256 (BD.bn_v b) 4;
LE.exp_fw_lemma cm g_aff 256 (BD.bn_v b) 4;
assert (S.to_aff_point (S.point_mul_g (BD.bn_v b)) == LE.pow cm g_aff (BD.bn_v b)) | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.U64",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Spec.K256.PointOps.q",
"Prims.int",
"Prims._assert",
"Prims.eq2",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.to_aff_point",
"Spec.K256.point_mul_g",
"Lib.Exponentiation.Definition.pow",
"Hacl.K256.PrecompTable.g_aff",
"Prims.unit",
"Lib.Exponentiation.exp_fw_lemma",
"Spec.Exponentiation.exp_fw_lemma",
"Spec.K256.PointOps.proj_point",
"Spec.K256.mk_k256_concrete_ops",
"Spec.K256.PointOps.g",
"Hacl.Spec.PrecompBaseTable256.lemma_point_mul_base_precomp4",
"Hacl.Spec.PrecompBaseTable256.exp_as_exp_four_nat256_precomp",
"Lib.Exponentiation.exp_four_fw",
"Hacl.K256.PrecompTable.g_pow2_64",
"Hacl.K256.PrecompTable.g_pow2_128",
"Hacl.K256.PrecompTable.g_pow2_192",
"FStar.Pervasives.Native.tuple4",
"Hacl.Spec.PrecompBaseTable256.decompose_nat256_as_four_u64",
"Lib.Exponentiation.Definition.comm_monoid",
"Spec.K256.mk_k256_comm_monoid"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
//SPT256.exp_as_exp_four_nat256_precomp S.mk_k256_comm_monoid
//(S.to_aff_point (point_eval h0 q1)) (qas_nat h0 scalar))
let point_mul_g_noalloc out scalar q1 q2 q3 q4 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out
val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b))) | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b))) | [] | Hacl.Impl.K256.PointMul.lemma_exp_four_fw_local | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b:
Hacl.Spec.Bignum.Definitions.lbignum Lib.IntTypes.U64 4
{Hacl.Spec.Bignum.Definitions.bn_v b < Spec.K256.PointOps.q}
-> FStar.Pervasives.Lemma
(ensures
(let _ =
Hacl.Spec.PrecompBaseTable256.decompose_nat256_as_four_u64 (Hacl.Spec.Bignum.Definitions.bn_v
b)
in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ b0 b1 b2 b3 = _ in
Lib.Exponentiation.exp_four_fw Spec.K256.mk_k256_comm_monoid Hacl.K256.PrecompTable.g_aff
64 b0 Hacl.K256.PrecompTable.g_pow2_64 b1 Hacl.K256.PrecompTable.g_pow2_128 b2
Hacl.K256.PrecompTable.g_pow2_192 b3 4 ==
Spec.K256.PointOps.to_aff_point (Spec.K256.point_mul_g (Hacl.Spec.Bignum.Definitions.bn_v b
)))
<:
Type0)) | {
"end_col": 84,
"end_line": 159,
"start_col": 31,
"start_line": 150
} |
FStar.HyperStack.ST.Stack | val point_mul: out:point -> scalar:qelem -> q:point -> Stack unit
(requires fun h ->
live h out /\ live h scalar /\ live h q /\
disjoint out q /\ disjoint out scalar /\ disjoint q scalar /\
point_inv h q /\ qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul (qas_nat h0 scalar) (point_eval h0 q))) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out | val point_mul: out:point -> scalar:qelem -> q:point -> Stack unit
(requires fun h ->
live h out /\ live h scalar /\ live h q /\
disjoint out q /\ disjoint out scalar /\ disjoint q scalar /\
point_inv h q /\ qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul (qas_nat h0 scalar) (point_eval h0 q)))
let point_mul out scalar q = | true | null | false | let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"Hacl.Impl.Exponentiation.lexp_fw_consttime",
"Lib.IntTypes.U64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Prims.unit",
"Spec.Exponentiation.exp_fw_lemma",
"Spec.K256.PointOps.proj_point",
"Spec.K256.mk_k256_concrete_ops",
"Hacl.Impl.K256.Point.point_eval",
"Hacl.K256.Scalar.qas_nat",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul: out:point -> scalar:qelem -> q:point -> Stack unit
(requires fun h ->
live h out /\ live h scalar /\ live h q /\
disjoint out q /\ disjoint out scalar /\ disjoint q scalar /\
point_inv h q /\ qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul (qas_nat h0 scalar) (point_eval h0 q))) | [] | Hacl.Impl.K256.PointMul.point_mul | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.Impl.K256.Point.point -> scalar: Hacl.K256.Scalar.qelem -> q: Hacl.Impl.K256.Point.point
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 93,
"end_line": 54,
"start_col": 28,
"start_line": 51
} |
Prims.Tot | val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul) | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp | val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
let precomp_get_consttime ctx a table bits_l tmp = | false | null | false | [@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let l = 4ul in
[@@ inline_let ]let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.__uint_to_t",
"FStar.Ghost.erased",
"Lib.Sequence.lseq",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.clbuffer",
"Lib.IntTypes.op_Star_Bang",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Hacl.Impl.Exponentiation.lprecomp_get_consttime",
"Prims.unit",
"FStar.UInt32.t",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline] | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul) | [] | Hacl.Impl.K256.PointMul.precomp_get_consttime | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.pow_a_to_small_b_st Lib.IntTypes.U64
15ul
0ul
Hacl.Impl.K256.Group.mk_k256_concrete_ops
4ul
16ul
(Hacl.Impl.Exponentiation.table_inv_precomp 15ul
0ul
Hacl.Impl.K256.Group.mk_k256_concrete_ops
4ul
16ul) | {
"end_col": 76,
"end_line": 67,
"start_col": 2,
"start_line": 61
} |
FStar.HyperStack.ST.Stack | val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:qelem -> q1:point
-> scalar2:qelem -> q2:point
-> table2:lbuffer uint64 (32ul *! 15ul) ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q /\
point_inv h q1 /\ point_eval h q1 == S.g /\ point_inv h q2 /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2))) | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
[@inline_let] let bLen = 4ul in
[@inline_let] let bBits = 256ul in
assert_norm (pow2 (v l) == v table_len);
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w5 precomp_basepoint_table_lseq_w5;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w5 ();
assert (table_inv_w5 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w5));
assert (table_inv_w5 (as_seq h1 q2) (as_seq h1 table2));
ME.mk_lexp_double_fw_tables len ctx_len k l table_len
table_inv_w5 table_inv_w5
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(null uint64) q1 bLen bBits scalar1 q2 scalar2
(to_const precomp_basepoint_table_w5) (to_const table2) out;
SE.exp_double_fw_lemma S.mk_k256_concrete_ops
(point_eval h0 q1) 256 (qas_nat h0 scalar1)
(point_eval h0 q2) (qas_nat h0 scalar2) 5 | val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:qelem -> q1:point
-> scalar2:qelem -> q2:point
-> table2:lbuffer uint64 (32ul *! 15ul) ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q /\
point_inv h q1 /\ point_eval h q1 == S.g /\ point_inv h q2 /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2)))
let point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2 = | true | null | false | [@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let l = 5ul in
[@@ inline_let ]let table_len = 32ul in
[@@ inline_let ]let bLen = 4ul in
[@@ inline_let ]let bBits = 256ul in
assert_norm (pow2 (v l) == v table_len);
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w5 precomp_basepoint_table_lseq_w5;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w5 ();
assert (table_inv_w5 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w5));
assert (table_inv_w5 (as_seq h1 q2) (as_seq h1 table2));
ME.mk_lexp_double_fw_tables len ctx_len k l table_len table_inv_w5 table_inv_w5
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(BE.lprecomp_get_vartime len ctx_len k l table_len) (null uint64) q1 bLen bBits scalar1 q2 scalar2
(to_const precomp_basepoint_table_w5) (to_const table2) out;
SE.exp_double_fw_lemma S.mk_k256_concrete_ops
(point_eval h0 q1)
256
(qas_nat h0 scalar1)
(point_eval h0 q2)
(qas_nat h0 scalar2)
5 | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Spec.Exponentiation.exp_double_fw_lemma",
"Spec.K256.PointOps.proj_point",
"Spec.K256.mk_k256_concrete_ops",
"Hacl.Impl.K256.Point.point_eval",
"Hacl.K256.Scalar.qas_nat",
"Prims.unit",
"Hacl.Impl.MultiExponentiation.mk_lexp_double_fw_tables",
"Lib.IntTypes.U64",
"Hacl.Impl.K256.PointMul.table_inv_w5",
"Hacl.Impl.Exponentiation.lprecomp_get_vartime",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.Buffer.to_const",
"Lib.Buffer.CONST",
"Hacl.K256.PrecompTable.precomp_basepoint_table_w5",
"Prims._assert",
"Lib.Buffer.as_seq",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lemma_w5",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.recall_contents",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w5",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.range",
"Prims.pow2",
"Lib.IntTypes.v",
"FStar.UInt32.t",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
//SPT256.exp_as_exp_four_nat256_precomp S.mk_k256_comm_monoid
//(S.to_aff_point (point_eval h0 q1)) (qas_nat h0 scalar))
let point_mul_g_noalloc out scalar q1 q2 q3 q4 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out
val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b)))
let lemma_exp_four_fw_local b =
let cm = S.mk_k256_comm_monoid in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff (BD.bn_v b));
SPT256.lemma_point_mul_base_precomp4 cm g_aff (BD.bn_v b);
assert (res == LE.pow cm g_aff (BD.bn_v b));
SE.exp_fw_lemma S.mk_k256_concrete_ops S.g 256 (BD.bn_v b) 4;
LE.exp_fw_lemma cm g_aff 256 (BD.bn_v b) 4;
assert (S.to_aff_point (S.point_mul_g (BD.bn_v b)) == LE.pow cm g_aff (BD.bn_v b))
[@CInline]
let point_mul_g out scalar =
push_frame ();
let h0 = ST.get () in
let q1 = create 15ul (u64 0) in
make_g q1;
let q2 = mk_proj_g_pow2_64 () in
let q3 = mk_proj_g_pow2_128 () in
let q4 = mk_proj_g_pow2_192 () in
proj_g_pow2_64_lseq_lemma ();
proj_g_pow2_128_lseq_lemma ();
proj_g_pow2_192_lseq_lemma ();
point_mul_g_noalloc out scalar q1 q2 q3 q4;
lemma_exp_four_fw_local (as_seq h0 scalar);
pop_frame ()
//-------------------------
inline_for_extraction noextract
val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:qelem -> q1:point
-> scalar2:qelem -> q2:point
-> table2:lbuffer uint64 (32ul *! 15ul) ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q /\
point_inv h q1 /\ point_eval h q1 == S.g /\ point_inv h q2 /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2))) | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:qelem -> q1:point
-> scalar2:qelem -> q2:point
-> table2:lbuffer uint64 (32ul *! 15ul) ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q /\
point_inv h q1 /\ point_eval h q1 == S.g /\ point_inv h q2 /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2))) | [] | Hacl.Impl.K256.PointMul.point_mul_g_double_vartime_noalloc | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Hacl.Impl.K256.Point.point ->
scalar1: Hacl.K256.Scalar.qelem ->
q1: Hacl.Impl.K256.Point.point ->
scalar2: Hacl.K256.Scalar.qelem ->
q2: Hacl.Impl.K256.Point.point ->
table2: Lib.Buffer.lbuffer Lib.IntTypes.uint64 (32ul *! 15ul)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 45,
"end_line": 230,
"start_col": 2,
"start_line": 205
} |
FStar.HyperStack.ST.Stack | val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4)) | [
{
"abbrev": false,
"full_module": "Hacl.K256.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_g_noalloc out scalar q1 q2 q3 q4 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out | val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
let point_mul_g_noalloc out scalar q1 q2 q3 q4 = | true | null | false | [@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let l = 4ul in
[@@ inline_let ]let table_len = 16ul in
[@@ inline_let ]let bLen = 1ul in
[@@ inline_let ]let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len table_inv_w4 table_inv_w4 table_inv_w4
table_inv_w4 precomp_get_consttime precomp_get_consttime precomp_get_consttime
precomp_get_consttime (null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4) (to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4) (to_const precomp_g_pow2_192_table_w4) out | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"Hacl.Impl.MultiExponentiation.mk_lexp_four_fw_tables",
"Lib.IntTypes.U64",
"Hacl.Impl.K256.PointMul.table_inv_w4",
"Hacl.Impl.K256.PointMul.precomp_get_consttime",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Lib.Buffer.to_const",
"Lib.Buffer.CONST",
"Hacl.K256.PrecompTable.precomp_basepoint_table_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_64_table_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_128_table_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_192_table_w4",
"Prims.unit",
"Hacl.Spec.PrecompBaseTable256.lemma_decompose_nat256_as_four_u64_lbignum",
"Lib.Buffer.as_seq",
"Hacl.K256.Scalar.qnlimb",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t",
"Prims._assert",
"Hacl.K256.PrecompTable.precomp_g_pow2_192_table_lemma_w4",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.recall_contents",
"Hacl.K256.PrecompTable.precomp_g_pow2_192_table_lseq_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_128_table_lemma_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_128_table_lseq_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_64_table_lemma_w4",
"Hacl.K256.PrecompTable.precomp_g_pow2_64_table_lseq_w4",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lemma_w4",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w4",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
//SPT256.exp_as_exp_four_nat256_precomp S.mk_k256_comm_monoid
//(S.to_aff_point (point_eval h0 q1)) (qas_nat h0 scalar)) | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4)) | [] | Hacl.Impl.K256.PointMul.point_mul_g_noalloc | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Hacl.Impl.K256.Point.point ->
scalar: Hacl.K256.Scalar.qelem ->
q1: Hacl.Impl.K256.Point.point ->
q2: Hacl.Impl.K256.Point.point ->
q3: Hacl.Impl.K256.Point.point ->
q4: Hacl.Impl.K256.Point.point
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 7,
"end_line": 142,
"start_col": 2,
"start_line": 96
} |
FStar.HyperStack.ST.Stack | val point_mul_g: out:point -> scalar:qelem -> Stack unit
(requires fun h ->
live h scalar /\ live h out /\ disjoint out scalar /\
qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_g (qas_nat h0 scalar))) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_g out scalar =
push_frame ();
let h0 = ST.get () in
let q1 = create 15ul (u64 0) in
make_g q1;
let q2 = mk_proj_g_pow2_64 () in
let q3 = mk_proj_g_pow2_128 () in
let q4 = mk_proj_g_pow2_192 () in
proj_g_pow2_64_lseq_lemma ();
proj_g_pow2_128_lseq_lemma ();
proj_g_pow2_192_lseq_lemma ();
point_mul_g_noalloc out scalar q1 q2 q3 q4;
lemma_exp_four_fw_local (as_seq h0 scalar);
pop_frame () | val point_mul_g: out:point -> scalar:qelem -> Stack unit
(requires fun h ->
live h scalar /\ live h out /\ disjoint out scalar /\
qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_g (qas_nat h0 scalar)))
let point_mul_g out scalar = | true | null | false | push_frame ();
let h0 = ST.get () in
let q1 = create 15ul (u64 0) in
make_g q1;
let q2 = mk_proj_g_pow2_64 () in
let q3 = mk_proj_g_pow2_128 () in
let q4 = mk_proj_g_pow2_192 () in
proj_g_pow2_64_lseq_lemma ();
proj_g_pow2_128_lseq_lemma ();
proj_g_pow2_192_lseq_lemma ();
point_mul_g_noalloc out scalar q1 q2 q3 q4;
lemma_exp_four_fw_local (as_seq h0 scalar);
pop_frame () | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.K256.PointMul.lemma_exp_four_fw_local",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Hacl.K256.Scalar.qnlimb",
"Hacl.Impl.K256.PointMul.point_mul_g_noalloc",
"Hacl.K256.PrecompTable.proj_g_pow2_192_lseq_lemma",
"Hacl.K256.PrecompTable.proj_g_pow2_128_lseq_lemma",
"Hacl.K256.PrecompTable.proj_g_pow2_64_lseq_lemma",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Hacl.K256.PrecompTable.mk_proj_g_pow2_192",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Hacl.K256.PrecompTable.mk_proj_g_pow2_128",
"Hacl.K256.PrecompTable.mk_proj_g_pow2_64",
"Hacl.Impl.K256.Point.make_g",
"Lib.Buffer.create",
"Lib.IntTypes.u64",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
//SPT256.exp_as_exp_four_nat256_precomp S.mk_k256_comm_monoid
//(S.to_aff_point (point_eval h0 q1)) (qas_nat h0 scalar))
let point_mul_g_noalloc out scalar q1 q2 q3 q4 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out
val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b)))
let lemma_exp_four_fw_local b =
let cm = S.mk_k256_comm_monoid in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff (BD.bn_v b));
SPT256.lemma_point_mul_base_precomp4 cm g_aff (BD.bn_v b);
assert (res == LE.pow cm g_aff (BD.bn_v b));
SE.exp_fw_lemma S.mk_k256_concrete_ops S.g 256 (BD.bn_v b) 4;
LE.exp_fw_lemma cm g_aff 256 (BD.bn_v b) 4;
assert (S.to_aff_point (S.point_mul_g (BD.bn_v b)) == LE.pow cm g_aff (BD.bn_v b))
[@CInline] | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_g: out:point -> scalar:qelem -> Stack unit
(requires fun h ->
live h scalar /\ live h out /\ disjoint out scalar /\
qas_nat h scalar < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_g (qas_nat h0 scalar))) | [] | Hacl.Impl.K256.PointMul.point_mul_g | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.Impl.K256.Point.point -> scalar: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 176,
"start_col": 2,
"start_line": 164
} |
FStar.HyperStack.ST.Stack | val point_mul_g_double_vartime: out:point -> scalar1:qelem -> scalar2:qelem -> q2:point ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h scalar2 /\ live h q2 /\
disjoint q2 out /\ disjoint out scalar1 /\ disjoint out scalar2 /\
point_inv h q2 /\ qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2))) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let point_mul_g_double_vartime out scalar1 scalar2 q2 =
push_frame ();
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 5 == v table_len);
let q1 = create 15ul (u64 0) in
make_g q1;
let table2 = create (table_len *! len) (u64 0) in
PT.lprecomp_table len ctx_len k (null uint64) q2 table_len table2;
let h = ST.get () in
assert (table_inv_w5 (as_seq h q2) (as_seq h table2));
point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2;
pop_frame () | val point_mul_g_double_vartime: out:point -> scalar1:qelem -> scalar2:qelem -> q2:point ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h scalar2 /\ live h q2 /\
disjoint q2 out /\ disjoint out scalar1 /\ disjoint out scalar2 /\
point_inv h q2 /\ qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2)))
let point_mul_g_double_vartime out scalar1 scalar2 q2 = | true | null | false | push_frame ();
[@@ inline_let ]let len = 15ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_k256_concrete_ops in
[@@ inline_let ]let table_len = 32ul in
assert_norm (pow2 5 == v table_len);
let q1 = create 15ul (u64 0) in
make_g q1;
let table2 = create (table_len *! len) (u64 0) in
PT.lprecomp_table len ctx_len k (null uint64) q2 table_len table2;
let h = ST.get () in
assert (table_inv_w5 (as_seq h q2) (as_seq h table2));
point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2;
pop_frame () | {
"checked_file": "Hacl.Impl.K256.PointMul.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.PrecompTable.fsti.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.K256.PointMul.fst"
} | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.K256.PointMul.point_mul_g_double_vartime_noalloc",
"Prims._assert",
"Hacl.Impl.K256.PointMul.table_inv_w5",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.PrecompTable.lprecomp_table",
"Lib.Buffer.null",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.mul",
"Lib.Buffer.create",
"Lib.IntTypes.u64",
"Lib.Buffer.lbuffer",
"Hacl.Impl.K256.Point.make_g",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.range",
"Prims.pow2",
"Lib.IntTypes.v",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"Hacl.Impl.K256.Group.mk_k256_concrete_ops",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.K256.PointMul
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Spec.Bignum.Definitions
module S = Spec.K256
open Hacl.K256.Scalar
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
include Hacl.K256.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 15ul 16ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 15ul 32ul =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) == v table_len);
BE.table_inv_precomp len ctx_len k l table_len
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_k256_concrete_ops (point_eval h0 q) 256 (qas_nat h0 scalar) 4;
BE.lexp_fw_consttime 15ul 0ul mk_k256_concrete_ops 4ul (null uint64) q 4ul 256ul scalar out
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 15ul 0ul mk_k256_concrete_ops 4ul 16ul
(BE.table_inv_precomp 15ul 0ul mk_k256_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> scalar:qelem
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h scalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out scalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
qas_nat h scalar < S.q /\
point_inv h q1 /\ refl (as_seq h q1) == g_aff /\
point_inv h q2 /\ refl (as_seq h q2) == g_pow2_64 /\
point_inv h q3 /\ refl (as_seq h q3) == g_pow2_128 /\
point_inv h q4 /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (qas_nat h0 scalar) in
S.to_aff_point (point_eval h1 out) ==
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
//SPT256.exp_as_exp_four_nat256_precomp S.mk_k256_comm_monoid
//(S.to_aff_point (point_eval h0 q1)) (qas_nat h0 scalar))
let point_mul_g_noalloc out scalar q1 q2 q3 q4 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub scalar 0ul 1ul in
let r2 = sub scalar 1ul 1ul in
let r3 = sub scalar 2ul 1ul in
let r4 = sub scalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 scalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out
val lemma_exp_four_fw_local: b:BD.lbignum U64 4{BD.bn_v b < S.q} ->
Lemma (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
LE.exp_four_fw S.mk_k256_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g (BD.bn_v b)))
let lemma_exp_four_fw_local b =
let cm = S.mk_k256_comm_monoid in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v b) in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff (BD.bn_v b));
SPT256.lemma_point_mul_base_precomp4 cm g_aff (BD.bn_v b);
assert (res == LE.pow cm g_aff (BD.bn_v b));
SE.exp_fw_lemma S.mk_k256_concrete_ops S.g 256 (BD.bn_v b) 4;
LE.exp_fw_lemma cm g_aff 256 (BD.bn_v b) 4;
assert (S.to_aff_point (S.point_mul_g (BD.bn_v b)) == LE.pow cm g_aff (BD.bn_v b))
[@CInline]
let point_mul_g out scalar =
push_frame ();
let h0 = ST.get () in
let q1 = create 15ul (u64 0) in
make_g q1;
let q2 = mk_proj_g_pow2_64 () in
let q3 = mk_proj_g_pow2_128 () in
let q4 = mk_proj_g_pow2_192 () in
proj_g_pow2_64_lseq_lemma ();
proj_g_pow2_128_lseq_lemma ();
proj_g_pow2_192_lseq_lemma ();
point_mul_g_noalloc out scalar q1 q2 q3 q4;
lemma_exp_four_fw_local (as_seq h0 scalar);
pop_frame ()
//-------------------------
inline_for_extraction noextract
val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:qelem -> q1:point
-> scalar2:qelem -> q2:point
-> table2:lbuffer uint64 (32ul *! 15ul) ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q /\
point_inv h q1 /\ point_eval h q1 == S.g /\ point_inv h q2 /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2)))
let point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2 =
[@inline_let] let len = 15ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_k256_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
[@inline_let] let bLen = 4ul in
[@inline_let] let bBits = 256ul in
assert_norm (pow2 (v l) == v table_len);
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w5 precomp_basepoint_table_lseq_w5;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w5 ();
assert (table_inv_w5 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w5));
assert (table_inv_w5 (as_seq h1 q2) (as_seq h1 table2));
ME.mk_lexp_double_fw_tables len ctx_len k l table_len
table_inv_w5 table_inv_w5
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(null uint64) q1 bLen bBits scalar1 q2 scalar2
(to_const precomp_basepoint_table_w5) (to_const table2) out;
SE.exp_double_fw_lemma S.mk_k256_concrete_ops
(point_eval h0 q1) 256 (qas_nat h0 scalar1)
(point_eval h0 q2) (qas_nat h0 scalar2) 5
[@CInline] | false | false | Hacl.Impl.K256.PointMul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val point_mul_g_double_vartime: out:point -> scalar1:qelem -> scalar2:qelem -> q2:point ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h scalar2 /\ live h q2 /\
disjoint q2 out /\ disjoint out scalar1 /\ disjoint out scalar2 /\
point_inv h q2 /\ qas_nat h scalar1 < S.q /\ qas_nat h scalar2 < S.q)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
point_inv h1 out /\
S.to_aff_point (point_eval h1 out) ==
S.to_aff_point (S.point_mul_double_g
(qas_nat h0 scalar1) (qas_nat h0 scalar2) (point_eval h0 q2))) | [] | Hacl.Impl.K256.PointMul.point_mul_g_double_vartime | {
"file_name": "code/k256/Hacl.Impl.K256.PointMul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Hacl.Impl.K256.Point.point ->
scalar1: Hacl.K256.Scalar.qelem ->
scalar2: Hacl.K256.Scalar.qelem ->
q2: Hacl.Impl.K256.Point.point
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 250,
"start_col": 2,
"start_line": 235
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let defined r = ~(Unknown? r) | let defined r = | false | null | false | ~(Unknown? r) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq._cmpres",
"Prims.l_not",
"Prims.b2t",
"FStar.Reflection.V2.TermEq.uu___is_Unknown",
"Prims.logical"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2 | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val defined : r: FStar.Reflection.V2.TermEq._cmpres -> Prims.logical | [] | FStar.Reflection.V2.TermEq.defined | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | r: FStar.Reflection.V2.TermEq._cmpres -> Prims.logical | {
"end_col": 29,
"end_line": 381,
"start_col": 16,
"start_line": 381
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y)) | let def2 f l1 l2 = | false | null | false | (forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y)) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq._cmpres",
"Prims.list",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"FStar.List.Tot.Base.memP",
"FStar.Reflection.V2.TermEq.defined",
"Prims.logical"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val def2 : f: (_: _ -> _: _ -> FStar.Reflection.V2.TermEq._cmpres) -> l1: Prims.list _ -> l2: Prims.list _
-> Prims.logical | [] | FStar.Reflection.V2.TermEq.def2 | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: _ -> _: _ -> FStar.Reflection.V2.TermEq._cmpres) -> l1: Prims.list _ -> l2: Prims.list _
-> Prims.logical | {
"end_col": 78,
"end_line": 383,
"start_col": 18,
"start_line": 383
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let faithful_universe = t:universe{faithful_univ t} | let faithful_universe = | false | null | false | t: universe{faithful_univ t} | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.universe",
"FStar.Reflection.V2.TermEq.faithful_univ"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options
let faithful_term = t:term{faithful t}
(* A conservative version: works on all terms, returns `true` if they
are guaranteed to be equal. *)
let term_eq (t1 t2 : term) : (b:bool{b ==> t1 == t2}) =
Eq? (term_cmp t1 t2)
(* A fully decidable version, for faithful terms. *)
let term_eq_dec (t1 t2 : faithful_term) : (b:bool{b <==> t1 == t2}) =
faithful_lemma t1 t2;
Eq? (term_cmp t1 t2) | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_universe : Type0 | [] | FStar.Reflection.V2.TermEq.faithful_universe | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Type0 | {
"end_col": 51,
"end_line": 828,
"start_col": 24,
"start_line": 828
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let faithful_term = t:term{faithful t} | let faithful_term = | false | null | false | t: term{faithful t} | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.TermEq.faithful"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_term : Type0 | [] | FStar.Reflection.V2.TermEq.faithful_term | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Type0 | {
"end_col": 38,
"end_line": 815,
"start_col": 20,
"start_line": 815
} |
|
FStar.Pervasives.Lemma | val memP_dec (#a: _) (x: a) (l: list a)
: Lemma (requires L.memP x l) (ensures x << l) [SMTPat (L.memP x l)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys | val memP_dec (#a: _) (x: a) (l: list a)
: Lemma (requires L.memP x l) (ensures x << l) [SMTPat (L.memP x l)]
let rec memP_dec #a (x: a) (l: list a)
: Lemma (requires L.memP x l) (ensures x << l) [SMTPat (L.memP x l)] = | false | null | true | match l with
| [] -> ()
| y :: ys -> if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"Prims.list",
"FStar.StrongExcludedMiddle.strong_excluded_middle",
"Prims.eq2",
"Prims.bool",
"FStar.Reflection.V2.TermEq.memP_dec",
"Prims.unit",
"FStar.List.Tot.Base.memP",
"Prims.squash",
"Prims.precedes",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val memP_dec (#a: _) (x: a) (l: list a)
: Lemma (requires L.memP x l) (ensures x << l) [SMTPat (L.memP x l)] | [
"recursion"
] | FStar.Reflection.V2.TermEq.memP_dec | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> l: Prims.list a
-> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.memP x l)
(ensures x << l)
[SMTPat (FStar.List.Tot.Base.memP x l)] | {
"end_col": 88,
"end_line": 65,
"start_col": 4,
"start_line": 62
} |
Prims.Tot | val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq | val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 = | false | null | false | match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a) | [] | FStar.Reflection.V2.TermEq.opt_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | cmp: FStar.Reflection.V2.TermEq.comparator_for a
-> FStar.Reflection.V2.TermEq.comparator_for (FStar.Pervasives.Native.option a) | {
"end_col": 12,
"end_line": 129,
"start_col": 2,
"start_line": 126
} |
Prims.Tot | val allP0 (#a: _) (pred: (a -> Type0)) (l: list a) : Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs | val allP0 (#a: _) (pred: (a -> Type0)) (l: list a) : Type0
let rec allP0 #a (pred: (a -> Type0)) (l: list a) : Type0 = | false | null | false | match l with
| [] -> True
| x :: xs -> pred x /\ allP0 pred xs | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.list",
"Prims.l_True",
"Prims.l_and",
"FStar.Reflection.V2.TermEq.allP0"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val allP0 (#a: _) (pred: (a -> Type0)) (l: list a) : Type0 | [
"recursion"
] | FStar.Reflection.V2.TermEq.allP0 | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | pred: (_: a -> Type0) -> l: Prims.list a -> Type0 | {
"end_col": 36,
"end_line": 23,
"start_col": 2,
"start_line": 21
} |
Prims.Tot | val ctxu_cmp : comparator_for ctx_uvar_and_subst | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ctxu_cmp _ _ = Unknown | val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = | false | null | false | Unknown | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.ctx_uvar_and_subst",
"FStar.Reflection.V2.TermEq.Unknown",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *) | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ctxu_cmp : comparator_for ctx_uvar_and_subst | [] | FStar.Reflection.V2.TermEq.ctxu_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.ctx_uvar_and_subst | {
"end_col": 26,
"end_line": 230,
"start_col": 19,
"start_line": 230
} |
Prims.Tot | val fv_cmp : comparator_for fv | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq | val fv_cmp : comparator_for fv
let fv_cmp f1 f2 = | false | null | false | pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.fv",
"Prims.op_Equality",
"FStar.Reflection.Types.name",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.bool",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres",
"FStar.Reflection.V2.Builtins.inspect_fv",
"Prims.unit",
"FStar.Reflection.V2.Builtins.pack_inspect_fv"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fv_cmp : comparator_for fv | [] | FStar.Reflection.V2.TermEq.fv_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.fv | {
"end_col": 31,
"end_line": 122,
"start_col": 4,
"start_line": 118
} |
Prims.Tot | val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2 | val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) = | false | null | false | cmpa a1 a2 &&& cmpb b1 b2 | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.op_Amp_Amp_Amp",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b) | [] | FStar.Reflection.V2.TermEq.pair_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
cmpa: FStar.Reflection.V2.TermEq.comparator_for a ->
cmpb: FStar.Reflection.V2.TermEq.comparator_for b
-> FStar.Reflection.V2.TermEq.comparator_for (a * b) | {
"end_col": 27,
"end_line": 140,
"start_col": 2,
"start_line": 140
} |
FStar.Pervasives.Lemma | val memP_allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type)) (x: a) (l: list a {l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys | val memP_allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type)) (x: a) (l: list a {l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
let rec memP_allP #a #b (top: b) (pred: (x: a{x << top} -> Type)) (x: a) (l: list a {l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)] = | false | null | true | match l with
| [] -> ()
| y :: ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"Prims.precedes",
"Prims.list",
"FStar.StrongExcludedMiddle.strong_excluded_middle",
"Prims.eq2",
"Prims.bool",
"FStar.Reflection.V2.TermEq.memP_allP",
"Prims.unit",
"Prims.l_and",
"FStar.Reflection.V2.TermEq.allP",
"FStar.List.Tot.Base.memP",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val memP_allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type)) (x: a) (l: list a {l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)] | [
"recursion"
] | FStar.Reflection.V2.TermEq.memP_allP | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | top: b -> pred: (x: a{x << top} -> Type0) -> x: a -> l: Prims.list a {l << top}
-> FStar.Pervasives.Lemma
(requires FStar.Reflection.V2.TermEq.allP top pred l /\ FStar.List.Tot.Base.memP x l)
(ensures x << top /\ pred x)
[SMTPat (FStar.Reflection.V2.TermEq.allP top pred l); SMTPat (FStar.List.Tot.Base.memP x l)] | {
"end_col": 98,
"end_line": 47,
"start_col": 4,
"start_line": 44
} |
Prims.Tot | val bv_cmp : comparator_for bv | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq | val bv_cmp : comparator_for bv
let bv_cmp x1 x2 = | false | null | false | let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.bv",
"Prims.op_Equality",
"Prims.nat",
"FStar.Reflection.V2.Data.__proj__Mkbv_view__item__index",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.bool",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres",
"Prims.unit",
"FStar.Sealed.sealed_singl",
"FStar.Reflection.Types.typ",
"FStar.Reflection.V2.Data.__proj__Mkbv_view__item__sort",
"FStar.Reflection.V2.Builtins.pack_inspect_bv",
"FStar.Reflection.V2.Data.bv_view",
"Prims.precedes",
"FStar.Reflection.V2.Builtins.inspect_bv"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bv_cmp : comparator_for bv | [] | FStar.Reflection.V2.TermEq.bv_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.bv | {
"end_col": 41,
"end_line": 105,
"start_col": 18,
"start_line": 99
} |
Prims.Tot | val allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (l: list a {l << top \/ l === top})
: Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs | val allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (l: list a {l << top \/ l === top})
: Type0
let rec allP #a #b (top: b) (pred: (x: a{x << top} -> Type0)) (l: list a {l << top \/ l === top})
: Type0 = | false | null | false | match l with
| [] -> True
| x :: xs -> pred x /\ allP top pred xs | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.precedes",
"Prims.list",
"Prims.l_or",
"Prims.op_Equals_Equals_Equals",
"Prims.l_True",
"Prims.l_and",
"FStar.Reflection.V2.TermEq.allP"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val allP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (l: list a {l << top \/ l === top})
: Type0 | [
"recursion"
] | FStar.Reflection.V2.TermEq.allP | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | top: b -> pred: (x: a{x << top} -> Type0) -> l: Prims.list a {l << top \/ l === top} -> Type0 | {
"end_col": 39,
"end_line": 28,
"start_col": 2,
"start_line": 26
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True | let valid #t (c: _cmpres) (x: t) (y: t) = | false | null | false | match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq._cmpres",
"Prims.eq2",
"Prims.l_not",
"Prims.l_True",
"Prims.logical"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres? | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid : c: FStar.Reflection.V2.TermEq._cmpres -> x: t -> y: t -> Prims.logical | [] | FStar.Reflection.V2.TermEq.valid | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | c: FStar.Reflection.V2.TermEq._cmpres -> x: t -> y: t -> Prims.logical | {
"end_col": 19,
"end_line": 82,
"start_col": 2,
"start_line": 79
} |
|
Prims.Tot | val eq_cmp : #a:eqtype -> comparator_for a | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eq_cmp x y = if x = y then Eq else Neq | val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = | false | null | false | if x = y then Eq else Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Prims.op_Equality",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.bool",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eq_cmp : #a:eqtype -> comparator_for a | [] | FStar.Reflection.V2.TermEq.eq_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for a | {
"end_col": 42,
"end_line": 183,
"start_col": 17,
"start_line": 183
} |
Prims.Tot | val univ_eq (u1 u2: universe) : (b: bool{b ==> u1 == u2}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let univ_eq (u1 u2 : universe) : (b:bool{b ==> u1 == u2}) =
Eq? (univ_cmp u1 u2) | val univ_eq (u1 u2: universe) : (b: bool{b ==> u1 == u2})
let univ_eq (u1 u2: universe) : (b: bool{b ==> u1 == u2}) = | false | null | false | Eq? (univ_cmp u1 u2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.universe",
"FStar.Reflection.V2.TermEq.uu___is_Eq",
"FStar.Reflection.V2.TermEq.univ_cmp",
"Prims.bool",
"Prims.l_imp",
"Prims.b2t",
"Prims.eq2"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options
let faithful_term = t:term{faithful t}
(* A conservative version: works on all terms, returns `true` if they
are guaranteed to be equal. *)
let term_eq (t1 t2 : term) : (b:bool{b ==> t1 == t2}) =
Eq? (term_cmp t1 t2)
(* A fully decidable version, for faithful terms. *)
let term_eq_dec (t1 t2 : faithful_term) : (b:bool{b <==> t1 == t2}) =
faithful_lemma t1 t2;
Eq? (term_cmp t1 t2)
(* Idem for universes *)
let faithful_universe = t:universe{faithful_univ t} | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val univ_eq (u1 u2: universe) : (b: bool{b ==> u1 == u2}) | [] | FStar.Reflection.V2.TermEq.univ_eq | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe
-> b: Prims.bool{b ==> u1 == u2} | {
"end_col": 22,
"end_line": 830,
"start_col": 2,
"start_line": 830
} |
Prims.Tot | val ident_cmp : comparator_for ident | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2) | val ident_cmp : comparator_for ident
let ident_cmp i1 i2 = | false | null | false | let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.ident",
"FStar.Reflection.V2.TermEq.eq_cmp",
"Prims.string",
"FStar.Pervasives.Native.fst",
"FStar.Range.range",
"Prims.unit",
"FStar.Sealed.sealed_singl",
"FStar.Range.__range",
"FStar.Pervasives.Native.snd",
"FStar.Reflection.V2.Builtins.pack_inspect_ident",
"FStar.Reflection.V2.Data.ident_view",
"Prims.precedes",
"FStar.Reflection.V2.Builtins.inspect_ident",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ident_cmp : comparator_for ident | [] | FStar.Reflection.V2.TermEq.ident_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.ident | {
"end_col": 28,
"end_line": 197,
"start_col": 21,
"start_line": 191
} |
Prims.Tot | val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq | val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 = | false | null | false | match l1, l2 with
| [], [] -> Eq
| x :: xs, y :: ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Reflection.V2.TermEq.op_Amp_Amp_Amp",
"FStar.Reflection.V2.TermEq.list_cmp",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a) | [
"recursion"
] | FStar.Reflection.V2.TermEq.list_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | cmp: FStar.Reflection.V2.TermEq.comparator_for a
-> FStar.Reflection.V2.TermEq.comparator_for (Prims.list a) | {
"end_col": 12,
"end_line": 147,
"start_col": 2,
"start_line": 144
} |
Prims.Tot | val univ_eq_dec (u1 u2: faithful_universe) : (b: bool{b <==> u1 == u2}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let univ_eq_dec (u1 u2 : faithful_universe) : (b:bool{b <==> u1 == u2}) =
univ_faithful_lemma u1 u2;
Eq? (univ_cmp u1 u2) | val univ_eq_dec (u1 u2: faithful_universe) : (b: bool{b <==> u1 == u2})
let univ_eq_dec (u1 u2: faithful_universe) : (b: bool{b <==> u1 == u2}) = | false | null | false | univ_faithful_lemma u1 u2;
Eq? (univ_cmp u1 u2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.faithful_universe",
"FStar.Reflection.V2.TermEq.uu___is_Eq",
"FStar.Reflection.V2.TermEq.univ_cmp",
"Prims.unit",
"FStar.Reflection.V2.TermEq.univ_faithful_lemma",
"Prims.bool",
"Prims.l_iff",
"Prims.b2t",
"Prims.eq2"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options
let faithful_term = t:term{faithful t}
(* A conservative version: works on all terms, returns `true` if they
are guaranteed to be equal. *)
let term_eq (t1 t2 : term) : (b:bool{b ==> t1 == t2}) =
Eq? (term_cmp t1 t2)
(* A fully decidable version, for faithful terms. *)
let term_eq_dec (t1 t2 : faithful_term) : (b:bool{b <==> t1 == t2}) =
faithful_lemma t1 t2;
Eq? (term_cmp t1 t2)
(* Idem for universes *)
let faithful_universe = t:universe{faithful_univ t}
let univ_eq (u1 u2 : universe) : (b:bool{b ==> u1 == u2}) =
Eq? (univ_cmp u1 u2) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val univ_eq_dec (u1 u2: faithful_universe) : (b: bool{b <==> u1 == u2}) | [] | FStar.Reflection.V2.TermEq.univ_eq_dec | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | u1: FStar.Reflection.V2.TermEq.faithful_universe -> u2: FStar.Reflection.V2.TermEq.faithful_universe
-> b: Prims.bool{b <==> u1 == u2} | {
"end_col": 22,
"end_line": 833,
"start_col": 2,
"start_line": 832
} |
Prims.Tot | val univ_cmp : comparator_for universe | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq | val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2: universe) = | false | null | false | pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.universe",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.Data.universe_view",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Reflection.V2.TermEq.univ_cmp",
"FStar.Reflection.V2.Data.universes",
"FStar.Reflection.V2.TermEq.list_dec_cmp",
"Prims.nat",
"FStar.Reflection.V2.TermEq.eq_cmp",
"FStar.Reflection.Types.univ_name",
"FStar.Reflection.V2.TermEq.ident_cmp",
"FStar.Reflection.Types.universe_uvar",
"FStar.Reflection.V2.TermEq.Unknown",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres",
"Prims.precedes",
"FStar.Reflection.V2.Builtins.inspect_universe",
"Prims.unit",
"FStar.Reflection.V2.Builtins.pack_inspect_universe"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val univ_cmp : comparator_for universe | [
"recursion"
] | FStar.Reflection.V2.TermEq.univ_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.universe | {
"end_col": 12,
"end_line": 213,
"start_col": 2,
"start_line": 201
} |
Prims.Tot | val term_eq (t1 t2: term) : (b: bool{b ==> t1 == t2}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let term_eq (t1 t2 : term) : (b:bool{b ==> t1 == t2}) =
Eq? (term_cmp t1 t2) | val term_eq (t1 t2: term) : (b: bool{b ==> t1 == t2})
let term_eq (t1 t2: term) : (b: bool{b ==> t1 == t2}) = | false | null | false | Eq? (term_cmp t1 t2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.TermEq.uu___is_Eq",
"FStar.Reflection.V2.TermEq.term_cmp",
"Prims.bool",
"Prims.l_imp",
"Prims.b2t",
"Prims.eq2"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options
let faithful_term = t:term{faithful t}
(* A conservative version: works on all terms, returns `true` if they
are guaranteed to be equal. *) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val term_eq (t1 t2: term) : (b: bool{b ==> t1 == t2}) | [] | FStar.Reflection.V2.TermEq.term_eq | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> b: Prims.bool{b ==> t1 == t2} | {
"end_col": 22,
"end_line": 820,
"start_col": 2,
"start_line": 820
} |
Prims.Tot | val faithful_univ : universe -> Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us | val faithful_univ : universe -> Type0
let rec faithful_univ (u: universe) = | false | null | false | match inspect_universe u with
| Uv_Unif _ -> False
| Uv_Unk | Uv_Zero | Uv_BVar _ | Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.universe",
"FStar.Reflection.V2.Builtins.inspect_universe",
"FStar.Reflection.Types.universe_uvar",
"Prims.l_False",
"Prims.l_True",
"Prims.nat",
"FStar.Reflection.Types.univ_name",
"FStar.Reflection.V2.TermEq.faithful_univ",
"FStar.Reflection.V2.Data.universes",
"FStar.Reflection.V2.TermEq.allP"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0 | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_univ : universe -> Type0 | [
"recursion"
] | FStar.Reflection.V2.TermEq.faithful_univ | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | u102: FStar.Reflection.Types.universe -> Type0 | {
"end_col": 40,
"end_line": 412,
"start_col": 2,
"start_line": 403
} |
FStar.Pervasives.Lemma | val faithful_Tv_Match (t sc: term) (o: option match_returns_ascription) (brs: list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs) | val faithful_Tv_Match (t sc: term) (o: option match_returns_ascription) (brs: list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
let faithful_Tv_Match (t sc: term) (o: option match_returns_ascription) (brs: list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs) = | false | null | true | assert_norm (faithful t ==> allP t faithful_branch brs) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.Types.term",
"FStar.Pervasives.Native.option",
"FStar.Reflection.Types.match_returns_ascription",
"Prims.list",
"FStar.Reflection.V2.Data.branch",
"FStar.Pervasives.assert_norm",
"Prims.l_imp",
"FStar.Reflection.V2.TermEq.faithful",
"FStar.Reflection.V2.TermEq.allP",
"FStar.Reflection.V2.TermEq.faithful_branch",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"FStar.Reflection.V2.Data.term_view",
"FStar.Reflection.V2.Builtins.inspect_ln",
"FStar.Reflection.V2.Data.Tv_Match",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_Tv_Match (t sc: term) (o: option match_returns_ascription) (brs: list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs) | [] | FStar.Reflection.V2.TermEq.faithful_Tv_Match | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
t: FStar.Reflection.Types.term ->
sc: FStar.Reflection.Types.term ->
o: FStar.Pervasives.Native.option FStar.Reflection.Types.match_returns_ascription ->
brs: Prims.list FStar.Reflection.V2.Data.branch
-> FStar.Pervasives.Lemma
(requires
FStar.Reflection.V2.Builtins.inspect_ln t == FStar.Reflection.V2.Data.Tv_Match sc o brs /\
FStar.Reflection.V2.TermEq.faithful t)
(ensures FStar.Reflection.V2.TermEq.allP t FStar.Reflection.V2.TermEq.faithful_branch brs) | {
"end_col": 59,
"end_line": 574,
"start_col": 4,
"start_line": 574
} |
FStar.Pervasives.Lemma | val faithful_univ_UvMax (u: universe) (us: list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) | val faithful_univ_UvMax (u: universe) (us: list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
let faithful_univ_UvMax (u: universe) (us: list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us) = | false | null | true | assert_norm (faithful_univ u <==> allP u faithful_univ us) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.Types.universe",
"Prims.list",
"FStar.Pervasives.assert_norm",
"Prims.l_iff",
"FStar.Reflection.V2.TermEq.faithful_univ",
"FStar.Reflection.V2.TermEq.allP",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"FStar.Reflection.V2.Data.universe_view",
"FStar.Reflection.V2.Builtins.inspect_universe",
"FStar.Reflection.V2.Data.Uv_Max",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_univ_UvMax (u: universe) (us: list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us) | [] | FStar.Reflection.V2.TermEq.faithful_univ_UvMax | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | u104: FStar.Reflection.Types.universe -> us: Prims.list FStar.Reflection.Types.universe
-> FStar.Pervasives.Lemma
(requires
FStar.Reflection.V2.Builtins.inspect_universe u104 == FStar.Reflection.V2.Data.Uv_Max us /\
FStar.Reflection.V2.TermEq.faithful_univ u104)
(ensures FStar.Reflection.V2.TermEq.allP u104 FStar.Reflection.V2.TermEq.faithful_univ us) | {
"end_col": 62,
"end_line": 417,
"start_col": 4,
"start_line": 417
} |
Prims.Tot | val optP0 (#a: _) (pred: (a -> Type0)) (o: option a) : Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x | val optP0 (#a: _) (pred: (a -> Type0)) (o: option a) : Type0
let optP0 #a (pred: (a -> Type0)) (o: option a) : Type0 = | false | null | false | match o with
| None -> True
| Some x -> pred x | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.option",
"Prims.l_True"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val optP0 (#a: _) (pred: (a -> Type0)) (o: option a) : Type0 | [] | FStar.Reflection.V2.TermEq.optP0 | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | pred: (_: a -> Type0) -> o: FStar.Pervasives.Native.option a -> Type0 | {
"end_col": 20,
"end_line": 33,
"start_col": 2,
"start_line": 31
} |
FStar.Pervasives.Lemma | val defined_list (#a: _) (f: comparator_for a) (l1 l2: list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> () | val defined_list (#a: _) (f: comparator_for a) (l1 l2: list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
let rec defined_list #a (f: comparator_for a) (l1: list a) (l2: list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2)) = | false | null | true | match l1, l2 with
| [], [] -> ()
| x :: xs, y :: ys -> defined_list f xs ys
| _ -> () | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.defined_list",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"FStar.Reflection.V2.TermEq.def2",
"Prims.squash",
"FStar.Reflection.V2.TermEq.defined",
"FStar.Reflection.V2.TermEq.list_cmp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val defined_list (#a: _) (f: comparator_for a) (l1 l2: list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2)) | [
"recursion"
] | FStar.Reflection.V2.TermEq.defined_list | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: FStar.Reflection.V2.TermEq.comparator_for a -> l1: Prims.list a -> l2: Prims.list a
-> FStar.Pervasives.Lemma (requires FStar.Reflection.V2.TermEq.def2 f l1 l2)
(ensures FStar.Reflection.V2.TermEq.defined (FStar.Reflection.V2.TermEq.list_cmp f l1 l2)) | {
"end_col": 13,
"end_line": 390,
"start_col": 4,
"start_line": 387
} |
Prims.Tot | val op_Amp_Amp_Amp
(#s: Type u#ss)
(#t: Type u#tt)
(#x #y: s)
(#w #z: t)
($c1: cmpres x y)
($c2: cmpres w z)
: cmpres (x, w) (y, z) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown | val op_Amp_Amp_Amp
(#s: Type u#ss)
(#t: Type u#tt)
(#x #y: s)
(#w #z: t)
($c1: cmpres x y)
($c2: cmpres w z)
: cmpres (x, w) (y, z)
let op_Amp_Amp_Amp
(#s: Type u#ss)
(#t: Type u#tt)
(#x #y: s)
(#w #z: t)
($c1: cmpres x y)
($c2: cmpres w z)
: cmpres (x, w) (y, z) = | false | null | false | match c1, c2 with
| Eq, Eq -> Eq
| Neq, _ | _, Neq -> Neq
| _ -> Unknown | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.cmpres",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq._cmpres",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Unknown"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Amp_Amp_Amp
(#s: Type u#ss)
(#t: Type u#tt)
(#x #y: s)
(#w #z: t)
($c1: cmpres x y)
($c2: cmpres w z)
: cmpres (x, w) (y, z) | [] | FStar.Reflection.V2.TermEq.op_Amp_Amp_Amp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | $c1: FStar.Reflection.V2.TermEq.cmpres x y -> $c2: FStar.Reflection.V2.TermEq.cmpres w z
-> FStar.Reflection.V2.TermEq.cmpres (x, w) (y, z) | {
"end_col": 16,
"end_line": 96,
"start_col": 2,
"start_line": 92
} |
FStar.Pervasives.Lemma | val univ_eq_UvMax (u1 u2: universe) (us1 us2: list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\ inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) | val univ_eq_UvMax (u1 u2: universe) (us1 us2: list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\ inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
let univ_eq_UvMax (u1 u2: universe) (us1 us2: list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\ inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) = | false | null | true | assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.Types.universe",
"Prims.list",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.Reflection.V2.TermEq._cmpres",
"Prims.l_or",
"FStar.Reflection.V2.TermEq.valid",
"FStar.Reflection.V2.TermEq.univ_cmp",
"FStar.Reflection.V2.TermEq.list_dec_cmp",
"Prims.unit",
"Prims.l_and",
"FStar.Reflection.V2.Data.universe_view",
"FStar.Reflection.V2.Builtins.inspect_universe",
"FStar.Reflection.V2.Data.Uv_Max",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val univ_eq_UvMax (u1 u2: universe) (us1 us2: list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\ inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) | [] | FStar.Reflection.V2.TermEq.univ_eq_UvMax | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
u1: FStar.Reflection.Types.universe ->
u2: FStar.Reflection.Types.universe ->
us1: Prims.list FStar.Reflection.Types.universe ->
us2: Prims.list FStar.Reflection.Types.universe
-> FStar.Pervasives.Lemma
(requires
FStar.Reflection.V2.Builtins.inspect_universe u1 == FStar.Reflection.V2.Data.Uv_Max us1 /\
FStar.Reflection.V2.Builtins.inspect_universe u2 == FStar.Reflection.V2.Data.Uv_Max us2)
(ensures
FStar.Reflection.V2.TermEq.univ_cmp u1 u2 ==
FStar.Reflection.V2.TermEq.list_dec_cmp u1 u2 FStar.Reflection.V2.TermEq.univ_cmp us1 us2) | {
"end_col": 71,
"end_line": 423,
"start_col": 4,
"start_line": 423
} |
FStar.Pervasives.Lemma | val memP_allP0 (#a: _) (pred: (a -> Type)) (x: a) (l: list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)] | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys | val memP_allP0 (#a: _) (pred: (a -> Type)) (x: a) (l: list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
let rec memP_allP0 #a (pred: (a -> Type)) (x: a) (l: list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)] = | false | null | true | match l with
| [] -> ()
| y :: ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"Prims.list",
"FStar.StrongExcludedMiddle.strong_excluded_middle",
"Prims.eq2",
"Prims.bool",
"FStar.Reflection.V2.TermEq.memP_allP0",
"Prims.unit",
"Prims.l_and",
"FStar.Reflection.V2.TermEq.allP0",
"FStar.List.Tot.Base.memP",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val memP_allP0 (#a: _) (pred: (a -> Type)) (x: a) (l: list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)] | [
"recursion"
] | FStar.Reflection.V2.TermEq.memP_allP0 | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | pred: (_: a -> Type0) -> x: a -> l: Prims.list a
-> FStar.Pervasives.Lemma
(requires FStar.Reflection.V2.TermEq.allP0 pred l /\ FStar.List.Tot.Base.memP x l)
(ensures pred x)
[SMTPat (FStar.Reflection.V2.TermEq.allP0 pred l); SMTPat (FStar.List.Tot.Base.memP x l)] | {
"end_col": 95,
"end_line": 56,
"start_col": 4,
"start_line": 53
} |
Prims.Tot | val optP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (o: option a {o << top}) : Type0 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x | val optP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (o: option a {o << top}) : Type0
let optP #a #b (top: b) (pred: (x: a{x << top} -> Type0)) (o: option a {o << top}) : Type0 = | false | null | false | match o with
| None -> True
| Some x -> pred x | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.precedes",
"FStar.Pervasives.Native.option",
"Prims.l_True"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val optP (#a #b: _) (top: b) (pred: (x: a{x << top} -> Type0)) (o: option a {o << top}) : Type0 | [] | FStar.Reflection.V2.TermEq.optP | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | top: b -> pred: (x: a{x << top} -> Type0) -> o: FStar.Pervasives.Native.option a {o << top} -> Type0 | {
"end_col": 20,
"end_line": 38,
"start_col": 2,
"start_line": 36
} |
Prims.Tot | val namedv_cmp : comparator_for namedv | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq | val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 = | false | null | false | let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.Types.namedv",
"Prims.op_Equality",
"Prims.nat",
"FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.bool",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres",
"Prims.unit",
"FStar.Sealed.sealed_singl",
"FStar.Reflection.Types.typ",
"FStar.Reflection.V2.Data.__proj__Mknamedv_view__item__sort",
"FStar.Reflection.V2.Builtins.pack_inspect_namedv",
"FStar.Reflection.V2.Data.namedv_view",
"Prims.precedes",
"FStar.Reflection.V2.Builtins.inspect_namedv"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val namedv_cmp : comparator_for namedv | [] | FStar.Reflection.V2.TermEq.namedv_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.Types.namedv | {
"end_col": 39,
"end_line": 114,
"start_col": 22,
"start_line": 108
} |
Prims.Tot | val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq | val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 = | false | null | false | match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"FStar.Pervasives.either",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b) | [] | FStar.Reflection.V2.TermEq.either_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
cmpa: FStar.Reflection.V2.TermEq.comparator_for a ->
cmpb: FStar.Reflection.V2.TermEq.comparator_for b
-> FStar.Reflection.V2.TermEq.comparator_for (FStar.Pervasives.either a b) | {
"end_col": 12,
"end_line": 136,
"start_col": 2,
"start_line": 133
} |
Prims.Tot | val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq | val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 = | false | null | false | match l1, l2 with
| [], [] -> Eq
| x :: xs, y :: ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.l_and",
"Prims.precedes",
"FStar.Reflection.V2.TermEq.cmpres",
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Reflection.V2.TermEq.op_Amp_Amp_Amp",
"FStar.Reflection.V2.TermEq.list_dec_cmp",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2 | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2 | [
"recursion"
] | FStar.Reflection.V2.TermEq.list_dec_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
top1: b ->
top2: b ->
f: (x: a -> y: a{x << top1 /\ y << top2} -> FStar.Reflection.V2.TermEq.cmpres x y) ->
l1: Prims.list a ->
l2: Prims.list a {l1 << top1 /\ l2 << top2}
-> FStar.Reflection.V2.TermEq.cmpres l1 l2 | {
"end_col": 12,
"end_line": 158,
"start_col": 2,
"start_line": 155
} |
Prims.Tot | val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq | val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 = | false | null | false | match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.l_and",
"Prims.precedes",
"FStar.Reflection.V2.TermEq.cmpres",
"FStar.Pervasives.either",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"Prims.l_or"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2 | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2 | [] | FStar.Reflection.V2.TermEq.either_dec_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
top1: c ->
top2: c ->
cmpa: (x: a -> y: a{x << top1 /\ y << top2} -> FStar.Reflection.V2.TermEq.cmpres x y) ->
cmpb: (x: b -> y: b{x << top1 /\ y << top2} -> FStar.Reflection.V2.TermEq.cmpres x y) ->
e1: FStar.Pervasives.either a b {e1 << top1} ->
e2: FStar.Pervasives.either a b {e2 << top2}
-> FStar.Reflection.V2.TermEq.cmpres e1 e2 | {
"end_col": 12,
"end_line": 180,
"start_col": 2,
"start_line": 177
} |
Prims.Tot | val range_cmp : comparator_for range | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq | val range_cmp : comparator_for range
let range_cmp r1 r2 = | false | null | false | Sealed.sealed_singl r1 r2;
Eq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Range.range",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.unit",
"FStar.Sealed.sealed_singl",
"FStar.Range.__range",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val range_cmp : comparator_for range | [] | FStar.Reflection.V2.TermEq.range_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Range.range | {
"end_col": 4,
"end_line": 188,
"start_col": 2,
"start_line": 187
} |
Prims.Tot | val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2 | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq | val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 = | false | null | false | match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"Prims.l_and",
"Prims.precedes",
"FStar.Reflection.V2.TermEq.cmpres",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.Eq",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"Prims.l_or"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2 | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2 | [] | FStar.Reflection.V2.TermEq.opt_dec_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
top1: b ->
top2: b ->
f: (x: a -> y: a{x << top1 /\ y << top2} -> FStar.Reflection.V2.TermEq.cmpres x y) ->
o1: FStar.Pervasives.Native.option a {o1 << top1} ->
o2: FStar.Pervasives.Native.option a {o2 << top2}
-> FStar.Reflection.V2.TermEq.cmpres o1 o2 | {
"end_col": 12,
"end_line": 168,
"start_col": 2,
"start_line": 165
} |
Prims.Tot | val const_cmp : comparator_for vconst | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq | val const_cmp : comparator_for vconst
let const_cmp c1 c2 = | false | null | false | match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.Data.vconst",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.Eq",
"Prims.int",
"FStar.Reflection.V2.TermEq.eq_cmp",
"Prims.string",
"FStar.Range.range",
"FStar.Reflection.V2.TermEq.range_cmp",
"FStar.Reflection.Types.name",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.TermEq.Neq",
"FStar.Reflection.V2.TermEq.cmpres"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst | false | true | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val const_cmp : comparator_for vconst | [] | FStar.Reflection.V2.TermEq.const_cmp | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Reflection.V2.TermEq.comparator_for FStar.Reflection.V2.Data.vconst | {
"end_col": 12,
"end_line": 226,
"start_col": 2,
"start_line": 217
} |
FStar.Pervasives.Lemma | val faithful_Pat_Cons (p: pattern) (f: fv) (ous: option universes) (subpats: list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) | val faithful_Pat_Cons (p: pattern) (f: fv) (ous: option universes) (subpats: list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
let faithful_Pat_Cons (p: pattern) (f: fv) (ous: option universes) (subpats: list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats) = | false | null | true | assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.V2.Data.pattern",
"FStar.Reflection.Types.fv",
"FStar.Pervasives.Native.option",
"FStar.Reflection.V2.Data.universes",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Pervasives.assert_norm",
"Prims.l_imp",
"FStar.Reflection.V2.TermEq.faithful_pattern",
"FStar.Reflection.V2.TermEq.allP",
"FStar.Reflection.V2.TermEq.faithful_pattern_arg",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"FStar.Reflection.V2.Data.Pat_Cons",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val faithful_Pat_Cons (p: pattern) (f: fv) (ous: option universes) (subpats: list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats) | [] | FStar.Reflection.V2.TermEq.faithful_Pat_Cons | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
p: FStar.Reflection.V2.Data.pattern ->
f: FStar.Reflection.Types.fv ->
ous: FStar.Pervasives.Native.option FStar.Reflection.V2.Data.universes ->
subpats: Prims.list (FStar.Reflection.V2.Data.pattern * Prims.bool)
-> FStar.Pervasives.Lemma
(requires
p == FStar.Reflection.V2.Data.Pat_Cons f ous subpats /\
FStar.Reflection.V2.TermEq.faithful_pattern p)
(ensures
FStar.Reflection.V2.TermEq.allP p FStar.Reflection.V2.TermEq.faithful_pattern_arg subpats) | {
"end_col": 76,
"end_line": 589,
"start_col": 4,
"start_line": 589
} |
FStar.Pervasives.Lemma | val defined_list_dec
(#a #b: _)
(t1 t2: b)
(f: comparator_for a)
(l1: list a {l1 << t1})
(l2: list a {l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> () | val defined_list_dec
(#a #b: _)
(t1 t2: b)
(f: comparator_for a)
(l1: list a {l1 << t1})
(l2: list a {l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
let rec defined_list_dec
#a
#b
(t1: b)
(t2: b)
(f: comparator_for a)
(l1: list a {l1 << t1})
(l2: list a {l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2)) = | false | null | true | match l1, l2 with
| [], [] -> ()
| x :: xs, y :: ys -> defined_list_dec t1 t2 f xs ys
| _ -> () | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.V2.TermEq.comparator_for",
"Prims.list",
"Prims.precedes",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.defined_list_dec",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"FStar.Reflection.V2.TermEq.def2",
"Prims.squash",
"FStar.Reflection.V2.TermEq.defined",
"FStar.Reflection.V2.TermEq.list_dec_cmp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2}) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val defined_list_dec
(#a #b: _)
(t1 t2: b)
(f: comparator_for a)
(l1: list a {l1 << t1})
(l2: list a {l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2)) | [
"recursion"
] | FStar.Reflection.V2.TermEq.defined_list_dec | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
t1: b ->
t2: b ->
f: FStar.Reflection.V2.TermEq.comparator_for a ->
l1: Prims.list a {l1 << t1} ->
l2: Prims.list a {l2 << t2}
-> FStar.Pervasives.Lemma (requires FStar.Reflection.V2.TermEq.def2 f l1 l2)
(ensures
FStar.Reflection.V2.TermEq.defined (FStar.Reflection.V2.TermEq.list_dec_cmp t1 t2 f l1 l2)) | {
"end_col": 13,
"end_line": 399,
"start_col": 4,
"start_line": 396
} |
Prims.Tot | val term_eq_dec (t1 t2: faithful_term) : (b: bool{b <==> t1 == t2}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let term_eq_dec (t1 t2 : faithful_term) : (b:bool{b <==> t1 == t2}) =
faithful_lemma t1 t2;
Eq? (term_cmp t1 t2) | val term_eq_dec (t1 t2: faithful_term) : (b: bool{b <==> t1 == t2})
let term_eq_dec (t1 t2: faithful_term) : (b: bool{b <==> t1 == t2}) = | false | null | false | faithful_lemma t1 t2;
Eq? (term_cmp t1 t2) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.TermEq.faithful_term",
"FStar.Reflection.V2.TermEq.uu___is_Eq",
"FStar.Reflection.V2.TermEq.term_cmp",
"Prims.unit",
"FStar.Reflection.V2.TermEq.faithful_lemma",
"Prims.bool",
"Prims.l_iff",
"Prims.b2t",
"Prims.eq2"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let comp_eq_C_Eff (c1 c2 : comp) (us1 us2 : universes) (ef1 ef2 : name) (t1 t2 : typ) (args1 args2 : list argv) (dec1 dec2 : list term)
: Lemma (requires inspect_comp c1 == C_Eff us1 ef1 t1 args1 dec1
/\ inspect_comp c2 == C_Eff us2 ef2 t2 args2 dec2)
(ensures comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2))
= assume (comp_cmp c1 c2 == (list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2)) // #2908, assert_norm doesn't work
let rec faithful_lemma (t1 t2 : term) =
match inspect_ln t1, inspect_ln t2 with
| Tv_Var _, Tv_Var _
| Tv_BVar _, Tv_BVar _
| Tv_FVar _, Tv_FVar _ -> ()
| Tv_UInst f1 us1, Tv_UInst f2 us2 ->
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
univ_faithful_lemma_list t1 t2 us1 us2;
()
| Tv_Const c1, Tv_Const c2 -> ()
| Tv_App h1 a1, Tv_App h2 a2 ->
faithful_lemma h1 h2;
faithful_lemma_arg a1 a2
| Tv_Abs b1 t1, Tv_Abs b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
faithful_lemma_binder b1 b2;
faithful_lemma_comp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_faithful_lemma u1 u2
| Tv_Refine b1 t1, Tv_Refine b2 t2 ->
faithful_lemma_binder b1 b2;
faithful_lemma t1 t2
| Tv_Let r1 ats1 x1 e1 b1, Tv_Let r2 ats2 x2 e2 b2 ->
faithful_lemma_attrs_dec t1 t2 ats1 ats2;
faithful_lemma_binder x1 x2;
faithful_lemma e1 e2;
faithful_lemma b1 b2;
(***)term_eq_Tv_Let t1 t2 r1 r2 ats1 ats2 x1 x2 e1 e2 b1 b2;
()
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
(***)faithful_Tv_Match t1 sc1 o1 brs1;
(***)faithful_Tv_Match t2 sc2 o2 brs2;
faithful_lemma sc1 sc2;
faithful_lemma_branches t1 t2 brs1 brs2;
(***)term_eq_Tv_Match t1 t2 sc1 sc2 o1 o2 brs1 brs2;
()
| Tv_AscribedT e1 t1 tacopt1 eq1, Tv_AscribedT e2 t2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma t1 t2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
faithful_lemma e1 e2;
faithful_lemma_comp c1 c2;
(match tacopt1, tacopt2 with | Some t1, Some t2 -> faithful_lemma t1 t2 | _ -> ());
()
| Tv_Unknown, Tv_Unknown -> ()
| _ -> assert (defined (term_cmp t1 t2)) (* rest of the cases trivial *)
and faithful_lemma_pattern (p1 p2 : pattern) : Lemma (requires faithful_pattern p1 /\ faithful_pattern p2) (ensures defined (pat_cmp p1 p2)) =
match p1, p2 with
| Pat_Var _ _, Pat_Var _ _ -> ()
| Pat_Constant _, Pat_Constant _ -> ()
| Pat_Dot_Term (Some t1), Pat_Dot_Term (Some t2) ->
faithful_lemma t1 t2
| Pat_Cons head1 univs1 subpats1, Pat_Cons head2 univs2 subpats2 ->
(***)faithful_Pat_Cons p1 head1 univs1 subpats1;
(***)faithful_Pat_Cons p2 head2 univs2 subpats2;
let aux : squash (defined (opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) univs1 univs2)) =
match univs1, univs2 with
| Some us1, Some us2 ->
univ_faithful_lemma_list p1 p2 us1 us2
| _ -> ()
in
faithful_lemma_pattern_args p1 p2 subpats1 subpats2;
(***)pat_eq_Pat_Cons p1 p2 head1 head2 univs1 univs2 subpats1 subpats2;
()
| _ -> ()
and faithful_lemma_pattern_arg (pb1 pb2 : pattern & bool)
: Lemma (requires faithful_pattern_arg pb1 /\ faithful_pattern_arg pb2)
(ensures defined (pat_arg_cmp pb1 pb2))
=
let (p1, _) = pb1 in
let (p2, _) = pb2 in
faithful_lemma_pattern p1 p2
and faithful_lemma_pattern_args #b
(top1 top2 : b)
(pats1 : list (pattern & bool){pats1 << top1})
(pats2 : list (pattern & bool){pats2 << top2})
: Lemma (requires allP top1 faithful_pattern_arg pats1 /\ allP top2 faithful_pattern_arg pats2)
(ensures defined (list_dec_cmp top1 top2 pat_arg_cmp pats1 pats2))
(decreases pats1)
=
introduce forall x y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce forall y. L.memP x pats1 /\ L.memP y pats2 ==> defined (pat_arg_cmp x y) with
(introduce (L.memP x pats1 /\ L.memP y pats2) ==> (defined (pat_arg_cmp x y)) with h. (
faithful_lemma_pattern_arg x y
)
)
)
;
defined_list_dec top1 top2 pat_arg_cmp pats1 pats2
and faithful_lemma_branch (br1 br2 : branch) : Lemma (requires faithful_branch br1 /\ faithful_branch br2) (ensures defined (br_cmp br1 br2)) =
faithful_lemma_pattern (fst br1) (fst br2);
faithful_lemma (snd br1) (snd br2)
and faithful_lemma_branches #b (top1 top2 : b)
(brs1 : list branch{brs1 << top1})
(brs2 : list branch{brs2 << top2})
: Lemma (requires allP top1 faithful_branch brs1 /\ allP top2 faithful_branch brs2)
(ensures defined (list_dec_cmp top1 top2 br_cmp brs1 brs2))
(decreases brs1)
=
introduce forall x y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce forall y. L.memP x brs1 /\ L.memP y brs2 ==> defined (br_cmp x y) with
(introduce (L.memP x brs1 /\ L.memP y brs2) ==> (defined (br_cmp x y)) with h. (
faithful_lemma_branch x y
)
)
)
;
defined_list_dec top1 top2 br_cmp brs1 brs2
and faithful_lemma_arg (a1 a2 : argv) : Lemma (requires faithful_arg a1 /\ faithful_arg a2) (ensures defined (arg_cmp a1 a2)) =
faithful_lemma (fst a1) (fst a2);
(match snd a1, snd a2 with | Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2 | _ -> ())
and faithful_lemma_binder (b1 b2 : binder) : Lemma (requires faithful_binder b1 /\ faithful_binder b2) (ensures defined (binder_cmp b1 b2)) =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
faithful_lemma_qual bv1.qual bv2.qual;
faithful_lemma bv1.sort bv2.sort;
faithful_lemma_attrs_dec b1 b2 bv1.attrs bv2.attrs;
assert_norm (
(term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs) == binder_cmp b1 b2);
()
and faithful_lemma_qual (q1 q2 : aqualv) : Lemma (requires faithful_qual q1 /\ faithful_qual q2) (ensures defined (aqual_cmp q1 q2)) =
match q1, q2 with
| Q_Meta t1, Q_Meta t2 -> faithful_lemma t1 t2
| _ -> ()
and faithful_lemma_attrs_dec #b (top1 top2 : b)
(at1 : list term{at1 << top1})
(at2 : list term{at2 << top2})
: Lemma (requires faithful_attrs at1 /\ faithful_attrs at2)
(ensures defined (list_dec_cmp top1 top2 term_cmp at1 at2))
(decreases at1)
=
// TODO: factor out
introduce forall x y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x at1 /\ L.memP y at2 ==> defined (term_cmp x y) with
(introduce (L.memP x at1 /\ L.memP y at2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec top1 top2 term_cmp at1 at2
and faithful_lemma_comp (c1 c2 : comp) : Lemma (requires faithful_comp c1 /\ faithful_comp c2) (ensures defined (comp_cmp c1 c2)) =
match inspect_comp c1, inspect_comp c2 with
| C_Total t1, C_Total t2 -> faithful_lemma t1 t2
| C_GTotal t1, C_GTotal t2 -> faithful_lemma t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
faithful_lemma pre1 pre2;
faithful_lemma post1 post2;
faithful_lemma pat1 pat2
| C_Eff us1 e1 r1 args1 dec1, C_Eff us2 e2 r2 args2 dec2 ->
univ_faithful_lemma_list c1 c2 us1 us2;
faithful_lemma r1 r2;
introduce forall x y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce forall y. L.memP x args1 /\ L.memP y args2 ==> defined (arg_cmp x y) with
(introduce (L.memP x args1 /\ L.memP y args2) ==> (defined (arg_cmp x y)) with h. (
faithful_lemma_arg x y
)
)
)
;
defined_list_dec c1 c2 arg_cmp args1 args2;
introduce forall x y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce forall y. L.memP x dec1 /\ L.memP y dec2 ==> defined (term_cmp x y) with
(introduce (L.memP x dec1 /\ L.memP y dec2) ==> (defined (term_cmp x y)) with h. (
faithful_lemma x y
)
)
)
;
defined_list_dec c1 c2 term_cmp dec1 dec2;
(***)comp_eq_C_Eff c1 c2 us1 us2 e1 e2 r1 r2 args1 args2 dec1 dec2;
()
| _ -> ()
#pop-options
let faithful_term = t:term{faithful t}
(* A conservative version: works on all terms, returns `true` if they
are guaranteed to be equal. *)
let term_eq (t1 t2 : term) : (b:bool{b ==> t1 == t2}) =
Eq? (term_cmp t1 t2)
(* A fully decidable version, for faithful terms. *) | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val term_eq_dec (t1 t2: faithful_term) : (b: bool{b <==> t1 == t2}) | [] | FStar.Reflection.V2.TermEq.term_eq_dec | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t1: FStar.Reflection.V2.TermEq.faithful_term -> t2: FStar.Reflection.V2.TermEq.faithful_term
-> b: Prims.bool{b <==> t1 == t2} | {
"end_col": 22,
"end_line": 825,
"start_col": 2,
"start_line": 824
} |
FStar.Pervasives.Lemma | val pat_eq_Pat_Cons
(p1 p2: pattern)
(f1 f2: fv)
(ous1 ous2: option universes)
(args1 args2: list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures
pat_cmp p1 p2 ==
(fv_cmp f1 f2 &&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 &&&
list_dec_cmp p1 p2 pat_arg_cmp args1 args2)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Data",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
= assert_norm (pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2
&&& list_dec_cmp p1 p2 pat_arg_cmp args1 args2)) | val pat_eq_Pat_Cons
(p1 p2: pattern)
(f1 f2: fv)
(ous1 ous2: option universes)
(args1 args2: list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures
pat_cmp p1 p2 ==
(fv_cmp f1 f2 &&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 &&&
list_dec_cmp p1 p2 pat_arg_cmp args1 args2))
let pat_eq_Pat_Cons
(p1 p2: pattern)
(f1 f2: fv)
(ous1 ous2: option universes)
(args1 args2: list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures
pat_cmp p1 p2 ==
(fv_cmp f1 f2 &&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 &&&
list_dec_cmp p1 p2 pat_arg_cmp args1 args2)) = | false | null | true | assert_norm (pat_cmp p1 p2 ==
(fv_cmp f1 f2 &&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 &&&
list_dec_cmp p1 p2 pat_arg_cmp args1 args2)) | {
"checked_file": "FStar.Reflection.V2.TermEq.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.StrongExcludedMiddle.fst.checked",
"FStar.Sealed.fsti.checked",
"FStar.Reflection.V2.Data.fsti.checked",
"FStar.Reflection.V2.Builtins.fsti.checked",
"FStar.Reflection.Types.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.Sugar.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Reflection.V2.TermEq.fst"
} | [
"lemma"
] | [
"FStar.Reflection.V2.Data.pattern",
"FStar.Reflection.Types.fv",
"FStar.Pervasives.Native.option",
"FStar.Reflection.V2.Data.universes",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.Reflection.V2.TermEq._cmpres",
"Prims.l_or",
"FStar.Reflection.V2.TermEq.valid",
"FStar.Reflection.Types.universe",
"Prims.precedes",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.TermEq.pat_cmp",
"FStar.Reflection.V2.TermEq.op_Amp_Amp_Amp",
"FStar.Reflection.V2.TermEq.fv_cmp",
"FStar.Reflection.V2.TermEq.opt_dec_cmp",
"FStar.Reflection.V2.TermEq.list_dec_cmp",
"FStar.Reflection.V2.TermEq.univ_cmp",
"FStar.Reflection.V2.TermEq.pat_arg_cmp",
"Prims.unit",
"Prims.l_and",
"FStar.Reflection.V2.Data.Pat_Cons",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module FStar.Reflection.V2.TermEq
open FStar.Reflection.Types
open FStar.Reflection.V2.Data
open FStar.Reflection.V2.Builtins
module L = FStar.List.Tot
(* "SMT may not be able to prove the types of ... and ... to be equal,
if the proof fails, try annotating these with the same type" *)
#set-options "--warn_error -290"
(*
This file raised several limitations of the SMT encoding. Lines marked
with #2908 are seemingly consequences of issue #2908 and should be removed.
In fact many auxiliary lemmas should be removed as they should become
obvious. Lines marked with *** should not be needed.
*)
let rec allP0 #a (pred : a -> Type0) (l : list a) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP0 pred xs
let rec allP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (l : list a{l << top \/ l === top}) : Type0 =
match l with
| [] -> True
| x::xs -> pred x /\ allP top pred xs
let optP0 #a (pred : a -> Type0) (o : option a) : Type0 =
match o with
| None -> True
| Some x -> pred x
let optP #a #b (top:b) (pred : (x:a{x << top}) -> Type0) (o : option a{o << top}) : Type0 =
match o with
| None -> True
| Some x -> pred x
let rec memP_allP #a #b (top:b) (pred : (x:a{x << top}) -> Type) (x : a) (l : list a{l << top})
: Lemma (requires allP top pred l /\ L.memP x l)
(ensures x << top /\ pred x)
[SMTPat (allP top pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP top pred x ys
let rec memP_allP0 #a (pred : a -> Type) (x : a) (l : list a)
: Lemma (requires allP0 pred l /\ L.memP x l)
(ensures pred x)
[SMTPat (allP0 pred l); SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_allP0 pred x ys
let rec memP_dec #a (x : a) (l : list a)
: Lemma (requires L.memP x l)
(ensures x << l)
[SMTPat (L.memP x l)]
= match l with
| [] -> ()
| y::ys ->
if StrongExcludedMiddle.strong_excluded_middle (x == y) then () else memP_dec x ys
(* FIXME: the only reason these are not exposed is to not contaminate
the namespace for most users, especially as `Eq` is already used in
Reflection.Formula. But there should not be a problem with using this
name fully-qualified. *)
private
type _cmpres =
| Eq
| Neq
| Unknown
// Would it be easier for the proofs to be embedded in the _cmpres?
let valid #t (c:_cmpres) (x y : t) =
match c with
| Eq -> x == y
| Neq -> x =!= y
| Unknown -> True
type cmpres #t (x y : t) = c:_cmpres{valid c x y}
type comparator_for (t:Type) = x:t -> y:t -> cmpres x y
let (&&&) (#s : Type u#ss) (#t : Type u#tt) (#x #y : s) (#w #z : t)
($c1 : cmpres x y)
($c2 : cmpres w z)
: cmpres (x,w) (y,z) =
match c1, c2 with
| Eq, Eq -> Eq
| Neq, _
| _, Neq -> Neq
| _ -> Unknown
val bv_cmp : comparator_for bv
let bv_cmp x1 x2 =
let v1 = inspect_bv x1 in
let v2 = inspect_bv x2 in
pack_inspect_bv x1;
pack_inspect_bv x2;
sealed_singl v1.sort v2.sort;
if v1.index = v2.index then Eq else Neq
val namedv_cmp : comparator_for namedv
let namedv_cmp x1 x2 =
let v1 = inspect_namedv x1 in
let v2 = inspect_namedv x2 in
pack_inspect_namedv x1;
pack_inspect_namedv x2;
sealed_singl v1.sort v2.sort;
if v1.uniq = v2.uniq then Eq else Neq
val fv_cmp : comparator_for fv
let fv_cmp f1 f2 =
pack_inspect_fv f1;
pack_inspect_fv f2;
let n1 = inspect_fv f1 in
let n2 = inspect_fv f2 in
if n1 = n2 then Eq else Neq
val opt_cmp : #a:Type -> comparator_for a -> comparator_for (option a)
let opt_cmp cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (either a b)
let either_cmp cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val pair_cmp : #a:Type -> #b:Type -> comparator_for a -> comparator_for b -> comparator_for (a & b)
let pair_cmp cmpa cmpb (a1, b1) (a2, b2) =
cmpa a1 a2 &&& cmpb b1 b2
val list_cmp : #a:Type u#aa -> comparator_for a -> comparator_for (list a)
let rec list_cmp #a cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_cmp cmp xs ys
| _ -> Neq
val list_dec_cmp :
#a:Type u#aa -> #b:Type u#bb -> top1:b -> top2:b ->
f:(x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y) ->
l1:(list a) -> l2:(list a){l1 << top1 /\ l2 << top2} ->
cmpres l1 l2
let rec list_dec_cmp #a top1 top2 cmp l1 l2 =
match l1, l2 with
| [], [] -> Eq
| x::xs, y::ys -> cmp x y &&& list_dec_cmp top1 top2 cmp xs ys
| _ -> Neq
val opt_dec_cmp : #a:Type -> #b:Type -> top1:b -> top2:b ->
(f : (x:a -> y:a{x << top1 /\ y << top2} -> cmpres x y)) ->
o1:(option a){o1 << top1} -> o2:(option a){o2 << top2} ->
cmpres o1 o2
let opt_dec_cmp top1 top2 cmp o1 o2 =
match o1, o2 with
| None, None -> Eq
| Some x, Some y -> cmp x y
| _ -> Neq
val either_dec_cmp : #a:Type -> #b:Type -> #c:Type -> top1:c -> top2:c ->
(x:a -> y:a{x<<top1 /\ y<<top2} -> cmpres x y) ->
(x:b -> y:b{x<<top1 /\ y<<top2} -> cmpres x y) ->
e1 :(either a b){e1 << top1} ->
e2 :(either a b){e2 << top2} ->
cmpres e1 e2
let either_dec_cmp top1 top2 cmpa cmpb e1 e2 =
match e1, e2 with
| Inl x, Inl y -> cmpa x y
| Inr x, Inr y -> cmpb x y
| _ -> Neq
val eq_cmp : #a:eqtype -> comparator_for a
let eq_cmp x y = if x = y then Eq else Neq
val range_cmp : comparator_for range
let range_cmp r1 r2 =
Sealed.sealed_singl r1 r2;
Eq
val ident_cmp : comparator_for ident
let ident_cmp i1 i2 =
let iv1 = inspect_ident i1 in
let iv2 = inspect_ident i2 in
pack_inspect_ident i1;
pack_inspect_ident i2;
Sealed.sealed_singl (snd iv1) (snd iv2);
eq_cmp (fst iv1) (fst iv2)
val univ_cmp : comparator_for universe
let rec univ_cmp (u1 u2 : universe) =
pack_inspect_universe u1;
pack_inspect_universe u2;
let uv1 = inspect_universe u1 in
let uv2 = inspect_universe u2 in
match uv1, uv2 with
| Uv_Zero, Uv_Zero -> Eq
| Uv_Succ u1, Uv_Succ u2 -> univ_cmp u1 u2
| Uv_Max us1, Uv_Max us2 -> list_dec_cmp u1 u2 univ_cmp us1 us2
| Uv_BVar v1, Uv_BVar v2 -> eq_cmp v1 v2
| Uv_Name n1, Uv_Name n2 -> ident_cmp n1 n2
| Uv_Unif u1, Uv_Unif u2 -> Unknown
| Uv_Unk, Uv_Unk -> Eq
| _ -> Neq
val const_cmp : comparator_for vconst
let const_cmp c1 c2 =
match c1, c2 with
| C_Unit, C_Unit -> Eq
| C_Int i1, C_Int i2 -> eq_cmp i1 i2
| C_True, C_True -> Eq
| C_False, C_False -> Eq
| C_String s1, C_String s2 -> eq_cmp s1 s2
| C_Range r1, C_Range r2 -> range_cmp r1 r2
| C_Reify, C_Reify -> Eq
| C_Reflect n1, C_Reflect n2 -> eq_cmp n1 n2
| _ -> Neq
(* TODO. Or seal...? *)
val ctxu_cmp : comparator_for ctx_uvar_and_subst
let ctxu_cmp _ _ = Unknown
val term_cmp : comparator_for term
val binder_cmp : comparator_for binder
val aqual_cmp : comparator_for aqualv
val arg_cmp : comparator_for argv
val comp_cmp : comparator_for comp
val pat_cmp : comparator_for pattern
val pat_arg_cmp : comparator_for (pattern & bool)
val br_cmp : comparator_for branch
val match_returns_ascription_cmp : comparator_for match_returns_ascription
let rec term_cmp t1 t2 =
pack_inspect_inv t1;
pack_inspect_inv t2;
let tv1 = inspect_ln t1 in
let tv2 = inspect_ln t2 in
match tv1, tv2 with
| Tv_Unsupp, _
| _, Tv_Unsupp -> Unknown
| Tv_Var v1, Tv_Var v2 -> namedv_cmp v1 v2
| Tv_BVar v1, Tv_BVar v2 -> bv_cmp v1 v2
| Tv_FVar f1, Tv_FVar f2 -> fv_cmp f1 f2
| Tv_UInst f1 u1, Tv_UInst f2 u2 ->
fv_cmp f1 f2 &&& list_dec_cmp t1 t2 univ_cmp u1 u2
| Tv_App h1 a1, Tv_App h2 a2 ->
term_cmp h1 h2 &&& arg_cmp a1 a2
| Tv_Abs b1 e1, Tv_Abs b2 e2 ->
binder_cmp b1 b2
&&& term_cmp e1 e2
| Tv_Arrow b1 c1, Tv_Arrow b2 c2 ->
binder_cmp b1 b2
&&& comp_cmp c1 c2
| Tv_Type u1, Tv_Type u2 ->
univ_cmp u1 u2
| Tv_Refine sb1 r1, Tv_Refine sb2 r2 ->
binder_cmp sb1 sb2
&&& term_cmp r1 r2
| Tv_Const c1, Tv_Const c2 ->
const_cmp c1 c2
| Tv_Uvar n1 u1, Tv_Uvar n2 u2 ->
eq_cmp n1 n2 &&& ctxu_cmp u1 u2
| Tv_Let r1 attrs1 sb1 e1 b1, Tv_Let r2 attrs2 sb2 e2 b2 ->
eq_cmp r1 r2
&&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2
&&& binder_cmp sb1 sb2
&&& term_cmp e1 e2
&&& term_cmp b1 b2
| Tv_Match sc1 o1 brs1, Tv_Match sc2 o2 brs2 ->
term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2
| Tv_AscribedT e1 ta1 tacopt1 eq1, Tv_AscribedT e2 ta2 tacopt2 eq2 ->
term_cmp e1 e2
&&& term_cmp ta1 ta2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_AscribedC e1 c1 tacopt1 eq1, Tv_AscribedC e2 c2 tacopt2 eq2 ->
term_cmp e1 e2
&&& comp_cmp c1 c2
&&& opt_dec_cmp t1 t2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
| Tv_Unknown, Tv_Unknown -> Eq
| _ -> Neq
and arg_cmp (a1, q1) (a2, q2) =
term_cmp a1 a2 &&& aqual_cmp q1 q2
and aqual_cmp a1 a2 =
match a1, a2 with
| Q_Implicit, Q_Implicit -> Eq
| Q_Explicit, Q_Explicit -> Eq
| Q_Meta m1, Q_Meta m2 -> term_cmp m1 m2
| _ -> Neq
and match_returns_ascription_cmp asc1 asc2 =
let (b1, (tc1, tacopt1, eq1)) = asc1 in
let (b2, (tc2, tacopt2, eq2)) = asc2 in
binder_cmp b1 b2
&&& either_dec_cmp asc1 asc2 term_cmp comp_cmp tc1 tc2
&&& opt_dec_cmp asc1 asc2 term_cmp tacopt1 tacopt2
&&& eq_cmp eq1 eq2
and binder_cmp b1 b2 =
let bv1 = inspect_binder b1 in
let bv2 = inspect_binder b2 in
pack_inspect_binder b1;
pack_inspect_binder b2;
term_cmp bv1.sort bv2.sort
&&& aqual_cmp bv1.qual bv2.qual
&&& list_dec_cmp b1 b2 term_cmp bv1.attrs bv2.attrs
and comp_cmp c1 c2 =
let cv1 = inspect_comp c1 in
let cv2 = inspect_comp c2 in
pack_inspect_comp_inv c1;
pack_inspect_comp_inv c2;
match cv1, cv2 with
| C_Total t1, C_Total t2
| C_GTotal t1, C_GTotal t2 ->
term_cmp t1 t2
| C_Lemma pre1 post1 pat1, C_Lemma pre2 post2 pat2 ->
term_cmp pre1 pre2
&&& term_cmp post1 post2
&&& term_cmp pat1 pat2
| C_Eff us1 ef1 t1 args1 dec1, C_Eff us2 ef2 t2 args2 dec2 ->
list_dec_cmp c1 c2 univ_cmp us1 us2
&&& eq_cmp ef1 ef2
&&& term_cmp t1 t2
&&& list_dec_cmp c1 c2 arg_cmp args1 args2
&&& list_dec_cmp c1 c2 term_cmp dec1 dec2
| _ -> Neq
and br_cmp br1 br2 =
//pair_cmp pat_cmp term_cmp br1 br2
pat_cmp (fst br1) (fst br2) &&& term_cmp (snd br1) (snd br2)
and pat_cmp p1 p2 =
match p1, p2 with
| Pat_Var x1 s1, Pat_Var x2 s2 ->
sealed_singl x1 x2;
sealed_singl s1 s2;
Eq
| Pat_Constant x1, Pat_Constant x2 -> const_cmp x1 x2
| Pat_Dot_Term x1, Pat_Dot_Term x2 -> opt_dec_cmp p1 p2 term_cmp x1 x2
| Pat_Cons head1 us1 subpats1, Pat_Cons head2 us2 subpats2 ->
fv_cmp head1 head2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) us1 us2
&&& list_dec_cmp p1 p2 pat_arg_cmp subpats1 subpats2
| _ -> Neq
and pat_arg_cmp (p1, b1) (p2, b2) =
pat_cmp p1 p2 &&& eq_cmp b1 b2
let defined r = ~(Unknown? r)
let def2 f l1 l2 =(forall x y. L.memP x l1 /\ L.memP y l2 ==> defined (f x y))
let rec defined_list #a (f : comparator_for a) (l1 l2 : list a)
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_cmp f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list f xs ys
| _ -> ()
let rec defined_list_dec #a #b (t1 t2 : b) (f : comparator_for a)
(l1 : list a{l1 << t1})
(l2 : list a{l2 << t2})
: Lemma (requires (def2 f l1 l2)) (ensures defined (list_dec_cmp t1 t2 f l1 l2))
= match l1, l2 with
| [], [] -> ()
| x::xs, y::ys -> defined_list_dec t1 t2 f xs ys
| _ -> ()
val faithful_univ : universe -> Type0
let rec faithful_univ (u : universe) =
match inspect_universe u with
| Uv_Unif _ -> False (* We just forbid this *)
| Uv_Unk
| Uv_Zero
| Uv_BVar _
| Uv_Name _ -> True
| Uv_Succ u -> faithful_univ u
| Uv_Max us -> allP u faithful_univ us
let faithful_univ_UvMax (u : universe) (us : list universe)
: Lemma (requires inspect_universe u == Uv_Max us /\ faithful_univ u)
(ensures allP u faithful_univ us)
= assert_norm (faithful_univ u <==> allP u faithful_univ us) // #2908
let univ_eq_UvMax (u1 u2 : universe) (us1 us2 : list universe)
: Lemma (requires inspect_universe u1 == Uv_Max us1 /\
inspect_universe u2 == Uv_Max us2)
(ensures univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2)
= assert_norm (univ_cmp u1 u2 == list_dec_cmp u1 u2 univ_cmp us1 us2) // #2908
val univ_faithful_lemma (u1 u2 : universe) : Lemma (requires faithful_univ u1 /\ faithful_univ u2) (ensures defined (univ_cmp u1 u2))
let rec univ_faithful_lemma (u1 u2 : universe) =
match inspect_universe u1, inspect_universe u2 with
| Uv_Zero, Uv_Zero -> ()
| Uv_Succ u1, Uv_Succ u2 -> univ_faithful_lemma u1 u2
| Uv_Max us1, Uv_Max us2 ->
(****)faithful_univ_UvMax u1 us1;
(***)faithful_univ_UvMax u2 us2;
univ_faithful_lemma_list u1 u2 us1 us2;
(***)univ_eq_UvMax u1 u2 us1 us2;
()
| Uv_BVar _, Uv_BVar _ -> ()
| Uv_Name _, Uv_Name _ -> ()
| _ -> ()
and univ_faithful_lemma_list #b (u1 u2 : b) (us1 : list universe{us1 << u1}) (us2 : list universe{us2 << u2})
: Lemma (requires allP u1 faithful_univ us1 /\ allP u2 faithful_univ us2)
(ensures defined (list_dec_cmp u1 u2 univ_cmp us1 us2))
(decreases us1)
=
introduce forall x y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce forall y. L.memP x us1 /\ L.memP y us2 ==> defined (univ_cmp x y) with
(introduce (L.memP x us1 /\ L.memP y us2) ==> (defined (univ_cmp x y)) with h. (
univ_faithful_lemma x y
)
)
)
;
defined_list_dec u1 u2 univ_cmp us1 us2
val faithful : term -> Type0
let rec faithful t =
match inspect_ln t with
| Tv_Var _
| Tv_BVar _
| Tv_FVar _
| Tv_Unknown
| Tv_Const _ -> True
| Tv_UInst f us ->
allP t faithful_univ us
| Tv_Unsupp -> False
| Tv_App h a ->
faithful h /\ faithful_arg a
| Tv_Abs b t ->
faithful_binder b /\ faithful t
| Tv_Arrow b c ->
faithful_binder b /\ faithful_comp c
| Tv_Type u ->
faithful_univ u
| Tv_Refine b phi ->
faithful_binder b
/\ faithful phi
| Tv_Uvar n u -> False
| Tv_Let r ats x e b ->
faithful_attrs ats
/\ faithful_binder x
/\ faithful e
/\ faithful b
| Tv_Match sc o brs ->
faithful sc
/\ None? o // stopgap
/\ allP t faithful_branch brs
| Tv_AscribedT e ta tacopt eq ->
faithful e
/\ faithful ta
/\ optP t faithful tacopt
| Tv_AscribedC e c tacopt eq ->
faithful e
/\ faithful_comp c
/\ optP t faithful tacopt
and faithful_arg (a : argv) : Type0 =
faithful (fst a) /\ faithful_qual (snd a)
and faithful_qual (q:aqualv) : Type0 =
match q with
| Q_Implicit -> True
| Q_Explicit -> True
| Q_Meta m -> faithful m
and faithful_binder (b:binder) : Type0 =
match inspect_binder b with
| {sort=sort; qual=q; attrs=attrs} ->
faithful sort /\ faithful_qual q /\ faithful_attrs attrs
and faithful_branch (b : branch) : Type0 =
let (p, t) = b in
faithful_pattern p /\ faithful t
and faithful_pattern (p : pattern) : Type0 =
match p with
| Pat_Constant _ -> True
| Pat_Cons head univs subpats ->
optP p (allP p faithful_univ) univs
/\ allP p faithful_pattern_arg subpats
(* non-binding bvs are always OK *)
| Pat_Var _ _ -> True
| Pat_Dot_Term None -> True
| Pat_Dot_Term (Some t) -> faithful t
and faithful_pattern_arg (pb : pattern * bool) : Type0 =
faithful_pattern (fst pb)
and faithful_attrs ats : Type0 =
allP ats faithful ats
and faithful_comp c =
match inspect_comp c with
| C_Total t -> faithful t
| C_GTotal t -> faithful t
| C_Lemma pre post pats -> faithful pre /\ faithful post /\ faithful pats
| C_Eff us ef r args decs ->
allP c faithful_univ us
/\ faithful r
/\ allP c faithful_arg args
/\ allP c faithful decs
val faithful_lemma (t1:term) (t2:term) : Lemma (requires faithful t1 /\ faithful t2) (ensures defined (term_cmp t1 t2))
#push-options "--z3rlimit 40"
let faithful_Tv_UInst (t : term) (f : fv) (us : list universe)
: Lemma (requires inspect_ln t == Tv_UInst f us
/\ faithful t)
(ensures allP t faithful_univ us)
= ()
let faithful_Tv_Let (t : term) (recf : bool) (attrs : list term) (b:simple_binder) (ty:typ) (def body : term)
: Lemma (requires inspect_ln t == Tv_Let recf attrs b def body
/\ faithful t)
(ensures faithful_attrs attrs)
= ()
let term_eq_Tv_Let (t1 t2 : term) (recf1 recf2 : bool) (attrs1 attrs2 : list term) (b1 b2:simple_binder) (def1 def2 body1 body2: term)
: Lemma (requires inspect_ln t1 == Tv_Let recf1 attrs1 b1 def1 body1
/\ inspect_ln t2 == Tv_Let recf2 attrs2 b2 def2 body2)
(ensures term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2))
= assume (term_cmp t1 t2 == (eq_cmp recf1 recf2 &&& list_dec_cmp t1 t2 term_cmp attrs1 attrs2 &&& binder_cmp b1 b2 &&& term_cmp def1 def2 &&& term_cmp body1 body2)) // #2908, somehow assert_norm also does not work
let faithful_Tv_Match (t : term) (sc : term) (o : option match_returns_ascription) (brs : list branch)
: Lemma (requires inspect_ln t == Tv_Match sc o brs /\ faithful t)
(ensures allP t faithful_branch brs)
= assert_norm (faithful t ==> allP t faithful_branch brs)
let term_eq_Tv_Match (t1 t2 : term) (sc1 sc2 : term) (o1 o2 : option match_returns_ascription) (brs1 brs2 : list branch)
: Lemma (requires inspect_ln t1 == Tv_Match sc1 o1 brs1
/\ inspect_ln t2 == Tv_Match sc2 o2 brs2)
(ensures term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2))
= assume (term_cmp t1 t2 == (term_cmp sc1 sc2
&&& opt_dec_cmp t1 t2 match_returns_ascription_cmp o1 o2
&&& list_dec_cmp t1 t2 br_cmp brs1 brs2)) // #2908, somehow assert_norm also does not work
let faithful_Pat_Cons (p : pattern) (f:fv) (ous : option universes) (subpats : list (pattern & bool))
: Lemma (requires p == Pat_Cons f ous subpats /\ faithful_pattern p)
(ensures allP p faithful_pattern_arg subpats)
= assert_norm (faithful_pattern p ==> allP p faithful_pattern_arg subpats) // #2908
let pat_eq_Pat_Cons (p1 p2 : pattern) (f1 f2 : fv) (ous1 ous2 : option universes) (args1 args2 : list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures pat_cmp p1 p2 == (fv_cmp f1 f2
&&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 | false | false | FStar.Reflection.V2.TermEq.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pat_eq_Pat_Cons
(p1 p2: pattern)
(f1 f2: fv)
(ous1 ous2: option universes)
(args1 args2: list (pattern & bool))
: Lemma (requires p1 == Pat_Cons f1 ous1 args1 /\ p2 == Pat_Cons f2 ous2 args2)
(ensures
pat_cmp p1 p2 ==
(fv_cmp f1 f2 &&& opt_dec_cmp p1 p2 (list_dec_cmp p1 p2 univ_cmp) ous1 ous2 &&&
list_dec_cmp p1 p2 pat_arg_cmp args1 args2)) | [] | FStar.Reflection.V2.TermEq.pat_eq_Pat_Cons | {
"file_name": "ulib/FStar.Reflection.V2.TermEq.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
p1: FStar.Reflection.V2.Data.pattern ->
p2: FStar.Reflection.V2.Data.pattern ->
f1: FStar.Reflection.Types.fv ->
f2: FStar.Reflection.Types.fv ->
ous1: FStar.Pervasives.Native.option FStar.Reflection.V2.Data.universes ->
ous2: FStar.Pervasives.Native.option FStar.Reflection.V2.Data.universes ->
args1: Prims.list (FStar.Reflection.V2.Data.pattern * Prims.bool) ->
args2: Prims.list (FStar.Reflection.V2.Data.pattern * Prims.bool)
-> FStar.Pervasives.Lemma
(requires
p1 == FStar.Reflection.V2.Data.Pat_Cons f1 ous1 args1 /\
p2 == FStar.Reflection.V2.Data.Pat_Cons f2 ous2 args2)
(ensures
FStar.Reflection.V2.TermEq.pat_cmp p1 p2 ==
(FStar.Reflection.V2.TermEq.fv_cmp f1 f2 &&&
FStar.Reflection.V2.TermEq.opt_dec_cmp p1
p2
(FStar.Reflection.V2.TermEq.list_dec_cmp p1 p2 FStar.Reflection.V2.TermEq.univ_cmp)
ous1
ous2 &&&
FStar.Reflection.V2.TermEq.list_dec_cmp p1
p2
FStar.Reflection.V2.TermEq.pat_arg_cmp
args1
args2)) | {
"end_col": 84,
"end_line": 598,
"start_col": 4,
"start_line": 596
} |
FStar.Pervasives.Lemma | val closure_transitive (#a: Type u#a) (#r_a: binrel u#a u#ra a) (x y z: a)
: Lemma (requires closure r_a x y /\ squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y); SMTPat (r_a y z)] | [
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ReflexiveTransitiveClosure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y);
SMTPat (r_a y z)]
= assert (closure r_a y z) | val closure_transitive (#a: Type u#a) (#r_a: binrel u#a u#ra a) (x y z: a)
: Lemma (requires closure r_a x y /\ squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y); SMTPat (r_a y z)]
let closure_transitive (#a: Type u#a) (#r_a: binrel u#a u#ra a) (x y z: a)
: Lemma (requires closure r_a x y /\ squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y); SMTPat (r_a y z)] = | false | null | true | assert (closure r_a y z) | {
"checked_file": "FStar.LexicographicOrdering.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.WellFounded.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.ReflexiveTransitiveClosure.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.LexicographicOrdering.fst"
} | [
"lemma"
] | [
"FStar.WellFounded.binrel",
"Prims._assert",
"FStar.ReflexiveTransitiveClosure.closure",
"Prims.unit",
"Prims.l_and",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Authors: Aseem Rastogi and Nikhil Swamy
*)
module FStar.LexicographicOrdering
#push-options "--warn_error -242" //no inner let recs in SMT
open FStar.ReflexiveTransitiveClosure
open FStar.WellFounded
/// A helper lemma about reflexive transitive closure
let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y); | false | false | FStar.LexicographicOrdering.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val closure_transitive (#a: Type u#a) (#r_a: binrel u#a u#ra a) (x y z: a)
: Lemma (requires closure r_a x y /\ squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y); SMTPat (r_a y z)] | [] | FStar.LexicographicOrdering.closure_transitive | {
"file_name": "ulib/FStar.LexicographicOrdering.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: a -> y: a -> z: a
-> FStar.Pervasives.Lemma
(requires FStar.ReflexiveTransitiveClosure.closure r_a x y /\ Prims.squash (r_a y z))
(ensures FStar.ReflexiveTransitiveClosure.closure r_a x z)
[SMTPat (FStar.ReflexiveTransitiveClosure.closure r_a x y); SMTPat (r_a y z)] | {
"end_col": 28,
"end_line": 33,
"start_col": 4,
"start_line": 33
} |
Prims.Tot | val lex_t_wf (#a:Type u#a) (#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(wf_a:well_founded r_a)
(wf_b:(x:a -> well_founded (r_b x)))
: well_founded (lex_t r_a r_b) | [
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ReflexiveTransitiveClosure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lex_t_wf #_ #_ #_ #_ wf_a wf_b =
fun (| x, y |) -> AccIntro (lex_t_wf_aux x (wf_a x) wf_b y (wf_b x y)) | val lex_t_wf (#a:Type u#a) (#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(wf_a:well_founded r_a)
(wf_b:(x:a -> well_founded (r_b x)))
: well_founded (lex_t r_a r_b)
let lex_t_wf #_ #_ #_ #_ wf_a wf_b = | false | null | false | fun (| x , y |) -> AccIntro (lex_t_wf_aux x (wf_a x) wf_b y (wf_b x y)) | {
"checked_file": "FStar.LexicographicOrdering.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.WellFounded.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.ReflexiveTransitiveClosure.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.LexicographicOrdering.fst"
} | [
"total"
] | [
"FStar.WellFounded.binrel",
"FStar.WellFounded.well_founded",
"Prims.dtuple2",
"FStar.WellFounded.AccIntro",
"FStar.LexicographicOrdering.lex_t",
"Prims.Mkdtuple2",
"FStar.LexicographicOrdering.lex_t_wf_aux",
"FStar.WellFounded.acc"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Authors: Aseem Rastogi and Nikhil Swamy
*)
module FStar.LexicographicOrdering
#push-options "--warn_error -242" //no inner let recs in SMT
open FStar.ReflexiveTransitiveClosure
open FStar.WellFounded
/// A helper lemma about reflexive transitive closure
let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y);
SMTPat (r_a y z)]
= assert (closure r_a y z)
/// The main workhorse for the proof of lex_t well-foundedness
///
/// Given x:a and (y:b x), along with proof of their accessibility,
/// this function provides a proof of accessibility for all t s.t. lex_t t (| x, y |)
///
/// The proof is by induction on the accessibility proofs of x and y
/// In the Left_lex case, we do the induction on the accessibility of x,
/// and in the Right_lex case, on the accessibility of y
///
/// Note also that the proof _does not_ rely on the in-built lexicographic ordering in F*
///
/// An interesting aspect of the proof is the wf_b argument,
/// that provides a proof for the well-foundedness of r_b,
/// but note that we only require it on elements of a that are related to x in the
/// transitive closure of r_a
let rec lex_t_wf_aux (#a:Type u#a)
(#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(x:a)
(acc_x:acc r_a x) //x and accessibility of x
(wf_b:(x0:a{closure r_a x0 x} -> well_founded (r_b x0))) //well-foundedness of r_b
(y:b x)
(acc_y:acc (r_b x) y) //y and accessibility of y
(t:(x:a & b x)) //another element t,
(p_t:lex_t r_a r_b t (| x, y |)) //that is related to (| x, y |)
: Tot (acc (lex_t r_a r_b) t) //returns the accessibility proof for t
(decreases acc_x)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ _ _ _ ->
//inner induction that keeps x same, but recurses on acc_y
let rec lex_t_wf_aux_y (y:b x) (acc_y:acc (r_b x) y) (t:(x:a & b x)) (p_t:lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t)
(decreases acc_y)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ y_t _ p_b ->
AccIntro (lex_t_wf_aux_y
y_t
(match acc_y with
| AccIntro f -> f y_t p_b)) in
lex_t_wf_aux_y y acc_y t p_t | false | false | FStar.LexicographicOrdering.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lex_t_wf (#a:Type u#a) (#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(wf_a:well_founded r_a)
(wf_b:(x:a -> well_founded (r_b x)))
: well_founded (lex_t r_a r_b) | [] | FStar.LexicographicOrdering.lex_t_wf | {
"file_name": "ulib/FStar.LexicographicOrdering.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | wf_a: FStar.WellFounded.well_founded r_a -> wf_b: (x: a -> FStar.WellFounded.well_founded (r_b x))
-> FStar.WellFounded.well_founded (FStar.LexicographicOrdering.lex_t r_a r_b) | {
"end_col": 72,
"end_line": 96,
"start_col": 2,
"start_line": 96
} |
Prims.Tot | val lex_t_non_dep_wf (#a:Type u#a)
(#b:Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:binrel u#b u#rb b)
(wf_a:well_founded r_a)
(wf_b:well_founded r_b)
: well_founded (lex_t_non_dep r_a r_b) | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ReflexiveTransitiveClosure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lex_t_non_dep_wf #a #b #r_a #r_b wf_a wf_b =
let rec get_acc (t:a & b) (p:acc (lex_t r_a (fun _ -> r_b)) (tuple_to_dep_tuple t))
: Tot (acc (lex_t_non_dep r_a r_b) t)
(decreases p)
= let get_acc_aux (t1:a & b) (p_dep:lex_t_non_dep r_a r_b t1 t)
: (p1:acc (lex_t r_a (fun _ -> r_b)) (tuple_to_dep_tuple t1){p1 << p})
= match p with
| AccIntro f -> f (tuple_to_dep_tuple t1) p_dep in
AccIntro (fun t1 p1 -> get_acc t1 (get_acc_aux t1 p1)) in
fun t -> get_acc t (lex_t_wf wf_a (fun _ -> wf_b) (tuple_to_dep_tuple t)) | val lex_t_non_dep_wf (#a:Type u#a)
(#b:Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:binrel u#b u#rb b)
(wf_a:well_founded r_a)
(wf_b:well_founded r_b)
: well_founded (lex_t_non_dep r_a r_b)
let lex_t_non_dep_wf #a #b #r_a #r_b wf_a wf_b = | false | null | false | let rec get_acc (t: a & b) (p: acc (lex_t r_a (fun _ -> r_b)) (tuple_to_dep_tuple t))
: Tot (acc (lex_t_non_dep r_a r_b) t) (decreases p) =
let get_acc_aux (t1: a & b) (p_dep: lex_t_non_dep r_a r_b t1 t)
: (p1: acc (lex_t r_a (fun _ -> r_b)) (tuple_to_dep_tuple t1) {p1 << p}) =
match p with | AccIntro f -> f (tuple_to_dep_tuple t1) p_dep
in
AccIntro (fun t1 p1 -> get_acc t1 (get_acc_aux t1 p1))
in
fun t -> get_acc t (lex_t_wf wf_a (fun _ -> wf_b) (tuple_to_dep_tuple t)) | {
"checked_file": "FStar.LexicographicOrdering.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.WellFounded.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.ReflexiveTransitiveClosure.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.LexicographicOrdering.fst"
} | [
"total"
] | [
"FStar.WellFounded.binrel",
"FStar.WellFounded.well_founded",
"FStar.Pervasives.Native.tuple2",
"FStar.LexicographicOrdering.lex_t_wf",
"FStar.LexicographicOrdering.tuple_to_dep_tuple",
"FStar.WellFounded.acc",
"FStar.LexicographicOrdering.lex_t_non_dep",
"Prims.dtuple2",
"FStar.LexicographicOrdering.lex_t",
"FStar.WellFounded.AccIntro",
"Prims.precedes"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Authors: Aseem Rastogi and Nikhil Swamy
*)
module FStar.LexicographicOrdering
#push-options "--warn_error -242" //no inner let recs in SMT
open FStar.ReflexiveTransitiveClosure
open FStar.WellFounded
/// A helper lemma about reflexive transitive closure
let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y);
SMTPat (r_a y z)]
= assert (closure r_a y z)
/// The main workhorse for the proof of lex_t well-foundedness
///
/// Given x:a and (y:b x), along with proof of their accessibility,
/// this function provides a proof of accessibility for all t s.t. lex_t t (| x, y |)
///
/// The proof is by induction on the accessibility proofs of x and y
/// In the Left_lex case, we do the induction on the accessibility of x,
/// and in the Right_lex case, on the accessibility of y
///
/// Note also that the proof _does not_ rely on the in-built lexicographic ordering in F*
///
/// An interesting aspect of the proof is the wf_b argument,
/// that provides a proof for the well-foundedness of r_b,
/// but note that we only require it on elements of a that are related to x in the
/// transitive closure of r_a
let rec lex_t_wf_aux (#a:Type u#a)
(#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(x:a)
(acc_x:acc r_a x) //x and accessibility of x
(wf_b:(x0:a{closure r_a x0 x} -> well_founded (r_b x0))) //well-foundedness of r_b
(y:b x)
(acc_y:acc (r_b x) y) //y and accessibility of y
(t:(x:a & b x)) //another element t,
(p_t:lex_t r_a r_b t (| x, y |)) //that is related to (| x, y |)
: Tot (acc (lex_t r_a r_b) t) //returns the accessibility proof for t
(decreases acc_x)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ _ _ _ ->
//inner induction that keeps x same, but recurses on acc_y
let rec lex_t_wf_aux_y (y:b x) (acc_y:acc (r_b x) y) (t:(x:a & b x)) (p_t:lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t)
(decreases acc_y)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ y_t _ p_b ->
AccIntro (lex_t_wf_aux_y
y_t
(match acc_y with
| AccIntro f -> f y_t p_b)) in
lex_t_wf_aux_y y acc_y t p_t
let lex_t_wf #_ #_ #_ #_ wf_a wf_b =
fun (| x, y |) -> AccIntro (lex_t_wf_aux x (wf_a x) wf_b y (wf_b x y))
open FStar.Squash
(*
* Given lex_sq, we can output a squashed instance of lex
*)
let lex_to_lex_t #a #b r_a r_b t1 t2 p =
let left (p:squash (r_a (dfst t1) (dfst t2)))
: squash (lex_t r_a r_b t1 t2)
= bind_squash p (fun p ->
return_squash (Left_lex #a #b #r_a #r_b (dfst t1) (dfst t2) (dsnd t1) (dsnd t2) p)) in
let right (p:(dfst t1 == dfst t2 /\ (squash (r_b (dfst t1) (dsnd t1) (dsnd t2)))))
: squash (lex_t r_a r_b t1 t2)
= bind_squash p (fun p ->
match p with
| Prims.Pair (_:dfst t1 == dfst t2) p2 ->
bind_squash p2 (fun p2 ->
return_squash (Right_lex #a #b #r_a #r_b (dfst t1) (dsnd t1) (dsnd t2) p2))) in
bind_squash p (fun p ->
match p with
| Prims.Left p1 -> left p1
| Prims.Right p2 -> right p2) | false | false | FStar.LexicographicOrdering.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lex_t_non_dep_wf (#a:Type u#a)
(#b:Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:binrel u#b u#rb b)
(wf_a:well_founded r_a)
(wf_b:well_founded r_b)
: well_founded (lex_t_non_dep r_a r_b) | [] | FStar.LexicographicOrdering.lex_t_non_dep_wf | {
"file_name": "ulib/FStar.LexicographicOrdering.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | wf_a: FStar.WellFounded.well_founded r_a -> wf_b: FStar.WellFounded.well_founded r_b
-> FStar.WellFounded.well_founded (FStar.LexicographicOrdering.lex_t_non_dep r_a r_b) | {
"end_col": 75,
"end_line": 132,
"start_col": 48,
"start_line": 123
} |
Prims.Tot | val lex_to_lex_t (#a:Type u#a) (#b:a -> Type u#b)
(r_a:binrel u#a u#ra a)
(r_b:(x:a -> binrel u#b u#rb (b x)))
(t1 t2:(x:a & b x))
(p:lex_aux r_a r_b t1 t2)
: squash (lex_t r_a r_b t1 t2) | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ReflexiveTransitiveClosure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lex_to_lex_t #a #b r_a r_b t1 t2 p =
let left (p:squash (r_a (dfst t1) (dfst t2)))
: squash (lex_t r_a r_b t1 t2)
= bind_squash p (fun p ->
return_squash (Left_lex #a #b #r_a #r_b (dfst t1) (dfst t2) (dsnd t1) (dsnd t2) p)) in
let right (p:(dfst t1 == dfst t2 /\ (squash (r_b (dfst t1) (dsnd t1) (dsnd t2)))))
: squash (lex_t r_a r_b t1 t2)
= bind_squash p (fun p ->
match p with
| Prims.Pair (_:dfst t1 == dfst t2) p2 ->
bind_squash p2 (fun p2 ->
return_squash (Right_lex #a #b #r_a #r_b (dfst t1) (dsnd t1) (dsnd t2) p2))) in
bind_squash p (fun p ->
match p with
| Prims.Left p1 -> left p1
| Prims.Right p2 -> right p2) | val lex_to_lex_t (#a:Type u#a) (#b:a -> Type u#b)
(r_a:binrel u#a u#ra a)
(r_b:(x:a -> binrel u#b u#rb (b x)))
(t1 t2:(x:a & b x))
(p:lex_aux r_a r_b t1 t2)
: squash (lex_t r_a r_b t1 t2)
let lex_to_lex_t #a #b r_a r_b t1 t2 p = | false | null | true | let left (p: squash (r_a (dfst t1) (dfst t2))) : squash (lex_t r_a r_b t1 t2) =
bind_squash p
(fun p -> return_squash (Left_lex #a #b #r_a #r_b (dfst t1) (dfst t2) (dsnd t1) (dsnd t2) p))
in
let right (p: (dfst t1 == dfst t2 /\ (squash (r_b (dfst t1) (dsnd t1) (dsnd t2)))))
: squash (lex_t r_a r_b t1 t2) =
bind_squash p
(function
| Prims.Pair (_: dfst t1 == dfst t2) p2 ->
bind_squash p2
(fun p2 -> return_squash (Right_lex #a #b #r_a #r_b (dfst t1) (dsnd t1) (dsnd t2) p2)))
in
bind_squash p
(function
| Prims.Left p1 -> left p1
| Prims.Right p2 -> right p2) | {
"checked_file": "FStar.LexicographicOrdering.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.WellFounded.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.ReflexiveTransitiveClosure.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.LexicographicOrdering.fst"
} | [
"total"
] | [
"FStar.WellFounded.binrel",
"Prims.dtuple2",
"FStar.LexicographicOrdering.lex_aux",
"FStar.Squash.bind_squash",
"Prims.sum",
"Prims.squash",
"FStar.Pervasives.dfst",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.dsnd",
"FStar.LexicographicOrdering.lex_t",
"Prims.pair",
"Prims.Mkdtuple2",
"FStar.Squash.return_squash",
"FStar.LexicographicOrdering.Right_lex",
"FStar.LexicographicOrdering.Left_lex"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Authors: Aseem Rastogi and Nikhil Swamy
*)
module FStar.LexicographicOrdering
#push-options "--warn_error -242" //no inner let recs in SMT
open FStar.ReflexiveTransitiveClosure
open FStar.WellFounded
/// A helper lemma about reflexive transitive closure
let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y);
SMTPat (r_a y z)]
= assert (closure r_a y z)
/// The main workhorse for the proof of lex_t well-foundedness
///
/// Given x:a and (y:b x), along with proof of their accessibility,
/// this function provides a proof of accessibility for all t s.t. lex_t t (| x, y |)
///
/// The proof is by induction on the accessibility proofs of x and y
/// In the Left_lex case, we do the induction on the accessibility of x,
/// and in the Right_lex case, on the accessibility of y
///
/// Note also that the proof _does not_ rely on the in-built lexicographic ordering in F*
///
/// An interesting aspect of the proof is the wf_b argument,
/// that provides a proof for the well-foundedness of r_b,
/// but note that we only require it on elements of a that are related to x in the
/// transitive closure of r_a
let rec lex_t_wf_aux (#a:Type u#a)
(#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(x:a)
(acc_x:acc r_a x) //x and accessibility of x
(wf_b:(x0:a{closure r_a x0 x} -> well_founded (r_b x0))) //well-foundedness of r_b
(y:b x)
(acc_y:acc (r_b x) y) //y and accessibility of y
(t:(x:a & b x)) //another element t,
(p_t:lex_t r_a r_b t (| x, y |)) //that is related to (| x, y |)
: Tot (acc (lex_t r_a r_b) t) //returns the accessibility proof for t
(decreases acc_x)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ _ _ _ ->
//inner induction that keeps x same, but recurses on acc_y
let rec lex_t_wf_aux_y (y:b x) (acc_y:acc (r_b x) y) (t:(x:a & b x)) (p_t:lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t)
(decreases acc_y)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ y_t _ p_b ->
AccIntro (lex_t_wf_aux_y
y_t
(match acc_y with
| AccIntro f -> f y_t p_b)) in
lex_t_wf_aux_y y acc_y t p_t
let lex_t_wf #_ #_ #_ #_ wf_a wf_b =
fun (| x, y |) -> AccIntro (lex_t_wf_aux x (wf_a x) wf_b y (wf_b x y))
open FStar.Squash
(*
* Given lex_sq, we can output a squashed instance of lex | false | false | FStar.LexicographicOrdering.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lex_to_lex_t (#a:Type u#a) (#b:a -> Type u#b)
(r_a:binrel u#a u#ra a)
(r_b:(x:a -> binrel u#b u#rb (b x)))
(t1 t2:(x:a & b x))
(p:lex_aux r_a r_b t1 t2)
: squash (lex_t r_a r_b t1 t2) | [] | FStar.LexicographicOrdering.lex_to_lex_t | {
"file_name": "ulib/FStar.LexicographicOrdering.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
r_a: FStar.WellFounded.binrel a ->
r_b: (x: a -> FStar.WellFounded.binrel (b x)) ->
t1: Prims.dtuple2 a (fun x -> b x) ->
t2: Prims.dtuple2 a (fun x -> b x) ->
p: FStar.LexicographicOrdering.lex_aux r_a r_b t1 t2
-> Prims.squash (FStar.LexicographicOrdering.lex_t r_a r_b t1 t2) | {
"end_col": 33,
"end_line": 120,
"start_col": 40,
"start_line": 103
} |
Prims.Tot | val lex_t_wf_aux
(#a: Type u#a)
(#b: (a -> Type u#b))
(#r_a: binrel u#a u#ra a)
(#r_b: (x: a -> binrel u#b u#rb (b x)))
(x: a)
(acc_x: acc r_a x)
(wf_b: (x0: a{closure r_a x0 x} -> well_founded (r_b x0)))
(y: b x)
(acc_y: acc (r_b x) y)
(t: (x: a & b x))
(p_t: lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t) (decreases acc_x) | [
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ReflexiveTransitiveClosure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.WellFounded",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lex_t_wf_aux (#a:Type u#a)
(#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(x:a)
(acc_x:acc r_a x) //x and accessibility of x
(wf_b:(x0:a{closure r_a x0 x} -> well_founded (r_b x0))) //well-foundedness of r_b
(y:b x)
(acc_y:acc (r_b x) y) //y and accessibility of y
(t:(x:a & b x)) //another element t,
(p_t:lex_t r_a r_b t (| x, y |)) //that is related to (| x, y |)
: Tot (acc (lex_t r_a r_b) t) //returns the accessibility proof for t
(decreases acc_x)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ _ _ _ ->
//inner induction that keeps x same, but recurses on acc_y
let rec lex_t_wf_aux_y (y:b x) (acc_y:acc (r_b x) y) (t:(x:a & b x)) (p_t:lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t)
(decreases acc_y)
= match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux
x_t
(match acc_x with
| AccIntro f -> f x_t p_a)
wf_b
y_t
(wf_b x_t y_t))
| Right_lex _ y_t _ p_b ->
AccIntro (lex_t_wf_aux_y
y_t
(match acc_y with
| AccIntro f -> f y_t p_b)) in
lex_t_wf_aux_y y acc_y t p_t | val lex_t_wf_aux
(#a: Type u#a)
(#b: (a -> Type u#b))
(#r_a: binrel u#a u#ra a)
(#r_b: (x: a -> binrel u#b u#rb (b x)))
(x: a)
(acc_x: acc r_a x)
(wf_b: (x0: a{closure r_a x0 x} -> well_founded (r_b x0)))
(y: b x)
(acc_y: acc (r_b x) y)
(t: (x: a & b x))
(p_t: lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t) (decreases acc_x)
let rec lex_t_wf_aux
(#a: Type u#a)
(#b: (a -> Type u#b))
(#r_a: binrel u#a u#ra a)
(#r_b: (x: a -> binrel u#b u#rb (b x)))
(x: a)
(acc_x: acc r_a x)
(wf_b: (x0: a{closure r_a x0 x} -> well_founded (r_b x0)))
(y: b x)
(acc_y: acc (r_b x) y)
(t: (x: a & b x))
(p_t: lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t) (decreases acc_x) = | false | null | false | match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro (lex_t_wf_aux x_t (match acc_x with | AccIntro f -> f x_t p_a) wf_b y_t (wf_b x_t y_t))
| Right_lex _ _ _ _ ->
let rec lex_t_wf_aux_y
(y: b x)
(acc_y: acc (r_b x) y)
(t: (x: a & b x))
(p_t: lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t) (decreases acc_y) =
match p_t with
| Left_lex x_t _ y_t _ p_a ->
AccIntro
(lex_t_wf_aux x_t (match acc_x with | AccIntro f -> f x_t p_a) wf_b y_t (wf_b x_t y_t))
| Right_lex _ y_t _ p_b ->
AccIntro (lex_t_wf_aux_y y_t (match acc_y with | AccIntro f -> f y_t p_b))
in
lex_t_wf_aux_y y acc_y t p_t | {
"checked_file": "FStar.LexicographicOrdering.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.WellFounded.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.ReflexiveTransitiveClosure.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.LexicographicOrdering.fst"
} | [
"total",
""
] | [
"FStar.WellFounded.binrel",
"FStar.WellFounded.acc",
"FStar.ReflexiveTransitiveClosure.closure",
"FStar.WellFounded.well_founded",
"Prims.dtuple2",
"FStar.LexicographicOrdering.lex_t",
"Prims.Mkdtuple2",
"FStar.WellFounded.AccIntro",
"FStar.LexicographicOrdering.lex_t_wf_aux"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Authors: Aseem Rastogi and Nikhil Swamy
*)
module FStar.LexicographicOrdering
#push-options "--warn_error -242" //no inner let recs in SMT
open FStar.ReflexiveTransitiveClosure
open FStar.WellFounded
/// A helper lemma about reflexive transitive closure
let closure_transitive (#a:Type u#a) (#r_a:binrel u#a u#ra a) (x y z:a)
: Lemma
(requires closure r_a x y /\
squash (r_a y z))
(ensures closure r_a x z)
[SMTPat (closure r_a x y);
SMTPat (r_a y z)]
= assert (closure r_a y z)
/// The main workhorse for the proof of lex_t well-foundedness
///
/// Given x:a and (y:b x), along with proof of their accessibility,
/// this function provides a proof of accessibility for all t s.t. lex_t t (| x, y |)
///
/// The proof is by induction on the accessibility proofs of x and y
/// In the Left_lex case, we do the induction on the accessibility of x,
/// and in the Right_lex case, on the accessibility of y
///
/// Note also that the proof _does not_ rely on the in-built lexicographic ordering in F*
///
/// An interesting aspect of the proof is the wf_b argument,
/// that provides a proof for the well-foundedness of r_b,
/// but note that we only require it on elements of a that are related to x in the
/// transitive closure of r_a
let rec lex_t_wf_aux (#a:Type u#a)
(#b:a -> Type u#b)
(#r_a:binrel u#a u#ra a)
(#r_b:(x:a -> binrel u#b u#rb (b x)))
(x:a)
(acc_x:acc r_a x) //x and accessibility of x
(wf_b:(x0:a{closure r_a x0 x} -> well_founded (r_b x0))) //well-foundedness of r_b
(y:b x)
(acc_y:acc (r_b x) y) //y and accessibility of y
(t:(x:a & b x)) //another element t,
(p_t:lex_t r_a r_b t (| x, y |)) //that is related to (| x, y |)
: Tot (acc (lex_t r_a r_b) t) //returns the accessibility proof for t | false | false | FStar.LexicographicOrdering.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lex_t_wf_aux
(#a: Type u#a)
(#b: (a -> Type u#b))
(#r_a: binrel u#a u#ra a)
(#r_b: (x: a -> binrel u#b u#rb (b x)))
(x: a)
(acc_x: acc r_a x)
(wf_b: (x0: a{closure r_a x0 x} -> well_founded (r_b x0)))
(y: b x)
(acc_y: acc (r_b x) y)
(t: (x: a & b x))
(p_t: lex_t r_a r_b t (| x, y |))
: Tot (acc (lex_t r_a r_b) t) (decreases acc_x) | [
"recursion"
] | FStar.LexicographicOrdering.lex_t_wf_aux | {
"file_name": "ulib/FStar.LexicographicOrdering.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
x: a ->
acc_x: FStar.WellFounded.acc r_a x ->
wf_b:
(x0: a{FStar.ReflexiveTransitiveClosure.closure r_a x0 x}
-> FStar.WellFounded.well_founded (r_b x0)) ->
y: b x ->
acc_y: FStar.WellFounded.acc (r_b x) y ->
t: Prims.dtuple2 a (fun x -> b x) ->
p_t: FStar.LexicographicOrdering.lex_t r_a r_b t (| x, y |)
-> Prims.Tot (FStar.WellFounded.acc (FStar.LexicographicOrdering.lex_t r_a r_b) t) | {
"end_col": 34,
"end_line": 92,
"start_col": 4,
"start_line": 64
} |
FStar.Pervasives.Lemma | val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)] | [
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_label_bool r msg b = lemma_label_Type0 r msg b | val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
let lemma_label_bool r msg b = | false | null | true | lemma_label_Type0 r msg b | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"FStar.Range.range",
"Prims.string",
"Prims.bool",
"Vale.X64.QuickCodes.lemma_label_Type0",
"Prims.b2t",
"Prims.unit"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= () | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)] | [] | Vale.X64.QuickCodes.lemma_label_bool | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: FStar.Range.range -> msg: Prims.string -> b: Prims.bool
-> FStar.Pervasives.Lemma (requires Vale.X64.QuickCodes.label r msg b)
(ensures b)
[SMTPat (Vale.X64.QuickCodes.label r msg b)] | {
"end_col": 56,
"end_line": 13,
"start_col": 31,
"start_line": 13
} |
FStar.Pervasives.Lemma | val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t | val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
let rec empty_list_is_small #a x = | false | null | true | match x with
| [] -> ()
| h :: t -> empty_list_is_small t | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Prims.list",
"Vale.X64.QuickCodes.empty_list_is_small",
"Prims.unit"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x) | [
"recursion"
] | Vale.X64.QuickCodes.empty_list_is_small | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Prims.list a -> FStar.Pervasives.Lemma (ensures [] == x \/ [] << x) | {
"end_col": 33,
"end_line": 18,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint | let state_mod_eq (m: mod_t) (s1 s2: vale_state) = | false | null | false | match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"total"
] | [
"Vale.X64.QuickCode.mod_t",
"Vale.X64.State.vale_state",
"Prims.l_True",
"Prims.eq2",
"Prims.bool",
"Vale.X64.State.__proj__Mkvale_state__item__vs_ok",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.State.eval_reg",
"Vale.X64.Flags.t",
"Vale.X64.State.__proj__Mkvale_state__item__vs_flags",
"Vale.Arch.HeapImpl.vale_heap",
"Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heap",
"Vale.X64.State.__proj__Mkvale_state__item__vs_heap",
"Vale.Arch.HeapImpl.vale_heap_layout",
"Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout",
"Vale.X64.Decls.heaplet_id",
"Vale.Lib.Map16.sel",
"Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets",
"Vale.X64.Stack_i.vale_stack",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stack",
"Vale.X64.Memory.memtaint",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint",
"Prims.logical"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t | false | true | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val state_mod_eq : m: Vale.X64.QuickCode.mod_t -> s1: Vale.X64.State.vale_state -> s2: Vale.X64.State.vale_state
-> Prims.logical | [] | Vale.X64.QuickCodes.state_mod_eq | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.X64.QuickCode.mod_t -> s1: Vale.X64.State.vale_state -> s2: Vale.X64.State.vale_state
-> Prims.logical | {
"end_col": 58,
"end_line": 30,
"start_col": 2,
"start_line": 21
} |
|
FStar.Pervasives.Lemma | val update_state_mods_from1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s') | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0 | val update_state_mods_from1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
let update_state_mods_from1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s') = | false | null | true | if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.mod_t",
"Prims.op_Negation",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCodes.update_state_mods_not1",
"Prims.bool",
"Prims.unit",
"Vale.X64.QuickCodes.state_mod_eq",
"Vale.X64.QuickCode.update_state_mods",
"Prims.squash",
"Prims.l_or",
"Prims.b2t",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s') | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_from1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s') | [] | Vale.X64.QuickCodes.update_state_mods_from1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
s': Vale.X64.State.vale_state ->
s: Vale.X64.State.vale_state ->
m0: Vale.X64.QuickCode.mod_t
-> FStar.Pervasives.Lemma
(requires
Vale.X64.QuickCodes.state_mod_eq m0 s' (Vale.X64.QuickCode.update_state_mods mods s' s))
(ensures
Vale.X64.QuickCodes.mods_contains1 mods m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s') | {
"end_col": 74,
"end_line": 51,
"start_col": 2,
"start_line": 51
} |
Prims.Ghost | val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0 | val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
let qblock_proof #a #cs qcs mods s0 k = | false | null | false | wp_sound cs (qcs s0) mods k s0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.codes",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCodes.wp_sound",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Decls.va_fuel"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0 | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [] | Vale.X64.QuickCodes.qblock_proof | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
qcs: (_: Vale.X64.Decls.va_state -> Prims.GTot (Vale.X64.QuickCodes.quickCodes a cs)) ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 32,
"end_line": 224,
"start_col": 2,
"start_line": 224
} |
FStar.Pervasives.Lemma | val update_state_mods_trans (mods: mods_t) (s0 s1 s2: vale_state)
: Lemma (requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0 | val update_state_mods_trans (mods: mods_t) (s0 s1 s2: vale_state)
: Lemma (requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
let update_state_mods_trans (mods: mods_t) (s0 s1 s2: vale_state)
: Lemma (requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2) = | false | null | true | update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCodes.update_state_mods_to",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_from",
"Prims.l_and",
"Prims.eq2",
"Vale.X64.QuickCode.update_state_mods",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_trans (mods: mods_t) (s0 s1 s2: vale_state)
: Lemma (requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2) | [] | Vale.X64.QuickCodes.update_state_mods_trans | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.State.vale_state ->
s1: Vale.X64.State.vale_state ->
s2: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma
(requires
Vale.X64.QuickCode.update_state_mods mods s1 s0 == s1 /\
Vale.X64.QuickCode.update_state_mods mods s2 s1 == s2)
(ensures Vale.X64.QuickCode.update_state_mods mods s2 s0 == s2) | {
"end_col": 33,
"end_line": 115,
"start_col": 2,
"start_line": 113
} |
Prims.Ghost | val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
) | val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k = | false | null | false | if b
then
(let sM, f0, g = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g))
else
(let sM, f0, g = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Prims.bool",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_weaken",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCode.__proj__QProc__item__proof"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0 | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [] | Vale.X64.QuickCodes.qInlineIf_proof | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Prims.bool ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2 ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 3,
"end_line": 238,
"start_col": 2,
"start_line": 227
} |
FStar.Pervasives.Lemma | val update_state_mods_from (mods: mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s')
(ensures
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s')) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1 | val update_state_mods_from (mods: mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s')
(ensures
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'))
let update_state_mods_from (mods: mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s')
(ensures
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s')) = | false | null | true | let f1 (m0: mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"FStar.Classical.forall_intro",
"Vale.X64.QuickCode.mod_t",
"Prims.l_or",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCodes.state_mod_eq",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.X64.QuickCodes.update_state_mods_from1",
"Prims.eq2",
"Vale.X64.QuickCode.update_state_mods",
"Prims.l_Forall"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s' | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_from (mods: mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s')
(ensures
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s')) | [] | Vale.X64.QuickCodes.update_state_mods_from | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | mods: Vale.X64.QuickCode.mods_t -> s': Vale.X64.State.vale_state -> s: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma (requires Vale.X64.QuickCode.update_state_mods mods s' s == s')
(ensures
forall (m0: Vale.X64.QuickCode.mod_t).
{:pattern
Vale.X64.QuickCodes.mods_contains1 mods m0\/Vale.X64.QuickCodes.state_mod_eq m0 s s'}
Vale.X64.QuickCodes.mods_contains1 mods m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s') | {
"end_col": 33,
"end_line": 76,
"start_col": 3,
"start_line": 72
} |
FStar.Pervasives.Lemma | val update_state_mods_weaken1 (mods mods': mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s')) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0 | val update_state_mods_weaken1 (mods mods': mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
let rec update_state_mods_weaken1 (mods mods': mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s')) = | false | null | true | match mods with
| [] -> ()
| _ :: mods ->
if mods_contains mods' mods && mods_contains1 mods m0
then update_state_mods_weaken1 mods mods' s' s m0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.mod_t",
"Prims.list",
"Prims.op_AmpAmp",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCodes.update_state_mods_weaken1",
"Prims.bool",
"Prims.unit",
"Prims.l_and",
"Prims.l_or",
"Prims.b2t",
"Vale.X64.QuickCodes.state_mod_eq",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s')) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_weaken1 (mods mods': mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s')) | [
"recursion"
] | Vale.X64.QuickCodes.update_state_mods_weaken1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
mods': Vale.X64.QuickCode.mods_t ->
s': Vale.X64.State.vale_state ->
s: Vale.X64.State.vale_state ->
m0: Vale.X64.QuickCode.mod_t
-> FStar.Pervasives.Lemma
(requires
(Vale.X64.QuickCodes.mods_contains1 mods m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s') /\
Vale.X64.QuickCodes.mods_contains mods' mods)
(ensures
Vale.X64.QuickCodes.mods_contains1 mods' m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s') | {
"end_col": 52,
"end_line": 125,
"start_col": 2,
"start_line": 121
} |
FStar.Pervasives.Lemma | val update_state_mods_refl (mods: mods_t) (s: vale_state)
: Lemma (ensures state_eq (update_state_mods mods s s) s) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s | val update_state_mods_refl (mods: mods_t) (s: vale_state)
: Lemma (ensures state_eq (update_state_mods mods s s) s)
let rec update_state_mods_refl (mods: mods_t) (s: vale_state)
: Lemma (ensures state_eq (update_state_mods mods s s) s) = | false | null | true | match mods with
| [] -> ()
| _ :: mods -> update_state_mods_refl mods s | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.mod_t",
"Prims.list",
"Vale.X64.QuickCodes.update_state_mods_refl",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Vale.X64.State.state_eq",
"Vale.X64.QuickCode.update_state_mods",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_refl (mods: mods_t) (s: vale_state)
: Lemma (ensures state_eq (update_state_mods mods s s) s) | [
"recursion"
] | Vale.X64.QuickCodes.update_state_mods_refl | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | mods: Vale.X64.QuickCode.mods_t -> s: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma
(ensures Vale.X64.State.state_eq (Vale.X64.QuickCode.update_state_mods mods s s) s) | {
"end_col": 44,
"end_line": 37,
"start_col": 2,
"start_line": 35
} |
FStar.Pervasives.Lemma | val update_state_mods_weaken (mods mods': mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s') | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s | val update_state_mods_weaken (mods mods': mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
let update_state_mods_weaken (mods mods': mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s') = | false | null | true | update_state_mods_from mods s' s;
let f1 (m0: mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCodes.update_state_mods_to",
"Prims.unit",
"FStar.Classical.forall_intro",
"Vale.X64.QuickCode.mod_t",
"Prims.l_or",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCodes.state_mod_eq",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.X64.QuickCodes.update_state_mods_weaken1",
"Vale.X64.QuickCodes.update_state_mods_from",
"Prims.l_and",
"Prims.eq2",
"Vale.X64.QuickCode.update_state_mods",
"Vale.X64.QuickCodes.mods_contains"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s') | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_weaken (mods mods': mods_t) (s' s: vale_state)
: Lemma (requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s') | [] | Vale.X64.QuickCodes.update_state_mods_weaken | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
mods': Vale.X64.QuickCode.mods_t ->
s': Vale.X64.State.vale_state ->
s: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma
(requires
Vale.X64.QuickCode.update_state_mods mods s' s == s' /\
Vale.X64.QuickCodes.mods_contains mods' mods)
(ensures Vale.X64.QuickCode.update_state_mods mods' s' s == s') | {
"end_col": 33,
"end_line": 136,
"start_col": 2,
"start_line": 131
} |
Prims.Ghost | val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k | val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
let wp_sound_code #a c qc k s0 = | false | null | false | let QProc c _ wp proof = qc in
proof s0 k | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_code",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCode.quickProc_wp",
"Vale.X64.QuickCode.t_proof",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCodes.fuel"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in () | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN) | [] | Vale.X64.QuickCodes.wp_sound_code | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
c: Vale.X64.QuickCodes.code ->
qc: Vale.X64.QuickCode.quickCode a c ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
s0: Vale.X64.Decls.va_state
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.QuickCodes.fuel) * a) | {
"end_col": 12,
"end_line": 319,
"start_col": 32,
"start_line": 317
} |
Prims.Tot | val qAssertLemma (p:Type0) : tAssertLemma p | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qAssertLemma p = fun () -> () | val qAssertLemma (p:Type0) : tAssertLemma p
let qAssertLemma p = | false | null | false | fun () -> () | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"total"
] | [
"Prims.unit"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qAssertLemma (p:Type0) : tAssertLemma p | [] | Vale.X64.QuickCodes.qAssertLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> Vale.X64.QuickCodes.tAssertLemma p | {
"end_col": 33,
"end_line": 310,
"start_col": 21,
"start_line": 310
} |
FStar.Pervasives.Lemma | val update_state_mods_not1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s)) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0 | val update_state_mods_not1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
let rec update_state_mods_not1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s)) = | false | null | true | match mods with
| [] -> ()
| _ :: mods -> update_state_mods_not1 mods s' s m0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.mod_t",
"Prims.list",
"Vale.X64.QuickCodes.update_state_mods_not1",
"Prims.unit",
"Prims.b2t",
"Prims.op_Negation",
"Vale.X64.QuickCodes.mods_contains1",
"Prims.squash",
"Vale.X64.QuickCodes.state_mod_eq",
"Vale.X64.QuickCode.update_state_mods",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s)) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_not1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s)) | [
"recursion"
] | Vale.X64.QuickCodes.update_state_mods_not1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
s': Vale.X64.State.vale_state ->
s: Vale.X64.State.vale_state ->
m0: Vale.X64.QuickCode.mod_t
-> FStar.Pervasives.Lemma
(requires Prims.op_Negation (Vale.X64.QuickCodes.mods_contains1 mods m0))
(ensures
Vale.X64.QuickCodes.state_mod_eq m0 s (Vale.X64.QuickCode.update_state_mods mods s' s)) | {
"end_col": 50,
"end_line": 45,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qAssertSquashLemma p = fun () -> () | val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
let qAssertSquashLemma p = | false | null | false | fun () -> () | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"total"
] | [
"Prims.unit",
"Prims.squash"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> () | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p | [] | Vale.X64.QuickCodes.qAssertSquashLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> Vale.X64.QuickCodes.tAssertSquashLemma p | {
"end_col": 39,
"end_line": 312,
"start_col": 27,
"start_line": 312
} |
FStar.Pervasives.Lemma | val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_state_match s0 s1 =
lemma_regs_match s0.vs_regs s1.vs_regs n_reg_files;
assert (Regs.equal s0.vs_regs s1.vs_regs) | val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
let lemma_state_match s0 s1 = | false | null | true | lemma_regs_match s0.vs_regs s1.vs_regs n_reg_files;
assert (Regs.equal s0.vs_regs s1.vs_regs) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.Decls.va_state",
"Prims._assert",
"Vale.X64.Regs.equal",
"Vale.X64.State.__proj__Mkvale_state__item__vs_regs",
"Prims.unit",
"Vale.X64.QuickCodes.lemma_regs_match",
"Vale.X64.Machine_s.n_reg_files"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in ()
let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k
let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1)
let rec lemma_regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Lemma
(requires regs_match r0 r1 k)
(ensures (forall (i j:nat).{:pattern (Reg i j)} i < k /\ j < n_regs i ==>
(let r = Reg i j in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then (lemma_regs_match_file r0 r1 (k - 1) (n_regs (k - 1)); lemma_regs_match r0 r1 (k - 1)) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1) | [] | Vale.X64.QuickCodes.lemma_state_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Vale.X64.Decls.va_state -> s1: Vale.X64.Decls.va_state
-> FStar.Pervasives.Lemma (requires Vale.X64.QuickCodes.state_match s0 s1)
(ensures Vale.X64.State.state_eq s0 s1) | {
"end_col": 43,
"end_line": 337,
"start_col": 2,
"start_line": 336
} |
Prims.Ghost | val wp_sound_code_wrap
(#a: Type0)
(c: code)
(qc: quickCode a c)
(s0: vale_state)
(k: (s0': vale_state{s0 == s0'} -> vale_state -> a -> Type0))
: Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_sound_code_wrap (#a:Type0) (c:code) (qc:quickCode a c) (s0:vale_state) (k:(s0':vale_state{s0 == s0'}) -> vale_state -> a -> Type0) :
Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k)
=
wp_sound_code c qc (k s0) s0 | val wp_sound_code_wrap
(#a: Type0)
(c: code)
(qc: quickCode a c)
(s0: vale_state)
(k: (s0': vale_state{s0 == s0'} -> vale_state -> a -> Type0))
: Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k)
let wp_sound_code_wrap
(#a: Type0)
(c: code)
(qc: quickCode a c)
(s0: vale_state)
(k: (s0': vale_state{s0 == s0'} -> vale_state -> a -> Type0))
: Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k) = | false | null | false | wp_sound_code c qc (k s0) s0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.State.vale_state",
"Prims.eq2",
"Vale.X64.QuickCodes.wp_sound_code",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCodes.fuel",
"Prims.l_and",
"Vale.X64.QuickCode.t_require",
"Vale.X64.QuickCodes.wp_sound_code_pre",
"Vale.X64.QuickCodes.wp_sound_code_post"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in ()
let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k
let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1)
let rec lemma_regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Lemma
(requires regs_match r0 r1 k)
(ensures (forall (i j:nat).{:pattern (Reg i j)} i < k /\ j < n_regs i ==>
(let r = Reg i j in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then (lemma_regs_match_file r0 r1 (k - 1) (n_regs (k - 1)); lemma_regs_match r0 r1 (k - 1))
let lemma_state_match s0 s1 =
lemma_regs_match s0.vs_regs s1.vs_regs n_reg_files;
assert (Regs.equal s0.vs_regs s1.vs_regs)
let wp_sound_code_wrap (#a:Type0) (c:code) (qc:quickCode a c) (s0:vale_state) (k:(s0':vale_state{s0 == s0'}) -> vale_state -> a -> Type0) :
Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_sound_code_wrap
(#a: Type0)
(c: code)
(qc: quickCode a c)
(s0: vale_state)
(k: (s0': vale_state{s0 == s0'} -> vale_state -> a -> Type0))
: Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k) | [] | Vale.X64.QuickCodes.wp_sound_code_wrap | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
c: Vale.X64.QuickCodes.code ->
qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.State.vale_state ->
k: (s0': Vale.X64.State.vale_state{s0 == s0'} -> _: Vale.X64.State.vale_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.State.vale_state * Vale.X64.QuickCodes.fuel) * a) | {
"end_col": 30,
"end_line": 344,
"start_col": 2,
"start_line": 344
} |
FStar.Pervasives.Lemma | val update_state_mods_to (mods: mods_t) (s' s: vale_state)
: Lemma
(requires
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'))
(ensures state_eq s' (update_state_mods mods s' s)) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
() | val update_state_mods_to (mods: mods_t) (s' s: vale_state)
: Lemma
(requires
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'))
(ensures state_eq s' (update_state_mods mods s' s))
let update_state_mods_to (mods: mods_t) (s' s: vale_state)
: Lemma
(requires
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'))
(ensures state_eq s' (update_state_mods mods s' s)) = | false | null | true | let s'' = update_state_mods mods s' s in
let f1 (m0: mod_t) : Lemma (state_mod_eq m0 s' s'') = update_state_mods_to1 mods s' s m0 in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r: reg)
: Lemma (ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)] =
f1 (Mod_reg r)
in
let f1_heaplet (n: heaplet_id)
: Lemma (ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)] =
f1 (Mod_mem_heaplet n)
in
() | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.Arch.HeapImpl.heaplet_id",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Arch.HeapImpl.vale_heap",
"Vale.Lib.Map16.sel",
"Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets",
"Vale.X64.State.__proj__Mkvale_state__item__vs_heap",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Vale.X64.QuickCode.Mod_mem_heaplet",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.Regs.sel",
"Vale.X64.State.__proj__Mkvale_state__item__vs_regs",
"Vale.X64.QuickCode.Mod_reg",
"Vale.X64.QuickCode.Mod_stackTaint",
"Vale.X64.QuickCode.Mod_stack",
"Vale.X64.QuickCode.Mod_mem_layout",
"Vale.X64.QuickCode.Mod_mem",
"Vale.X64.QuickCode.Mod_flags",
"Vale.X64.QuickCode.Mod_ok",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCodes.state_mod_eq",
"Vale.X64.QuickCodes.update_state_mods_to1",
"Vale.X64.QuickCode.update_state_mods",
"Prims.l_Forall",
"Prims.l_or",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.State.state_eq"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
)) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_to (mods: mods_t) (s' s: vale_state)
: Lemma
(requires
(forall (m0: mod_t). {:pattern mods_contains1 mods m0\/state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'))
(ensures state_eq s' (update_state_mods mods s' s)) | [] | Vale.X64.QuickCodes.update_state_mods_to | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | mods: Vale.X64.QuickCode.mods_t -> s': Vale.X64.State.vale_state -> s: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma
(requires
forall (m0: Vale.X64.QuickCode.mod_t).
{:pattern
Vale.X64.QuickCodes.mods_contains1 mods m0\/Vale.X64.QuickCodes.state_mod_eq m0 s s'}
Vale.X64.QuickCodes.mods_contains1 mods m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s')
(ensures Vale.X64.State.state_eq s' (Vale.X64.QuickCode.update_state_mods mods s' s)) | {
"end_col": 4,
"end_line": 107,
"start_col": 3,
"start_line": 84
} |
Prims.Ghost | val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k | val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k = | false | null | false | let ob = cmp_to_ocmp b in
let s1, f1 = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_fuel",
"Vale.X64.QuickCodes.qWhile_proof_rec",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_refl",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_while_total",
"Vale.X64.Decls.ocmp",
"Vale.X64.QuickCodes.cmp_to_ocmp"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [] | Vale.X64.QuickCodes.qWhile_proof | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
mods: Vale.X64.QuickCode.mods_t ->
inv: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
dec: (_: Vale.X64.Decls.va_state -> _: a -> d) ->
g0: a ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 50,
"end_line": 308,
"start_col": 53,
"start_line": 304
} |
FStar.Pervasives.Lemma | val call_QPURE
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l: (unit -> PURE unit (as_pure_wp pre)))
(qcs: quickCodes a cs)
(mods: mods_t)
(k: (vale_state -> a -> Type0))
(s0: vale_state)
: Lemma
(requires
(forall (p: (unit -> GTot Type0)). {:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p))) (ensures wp cs qcs mods k s0) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l () | val call_QPURE
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l: (unit -> PURE unit (as_pure_wp pre)))
(qcs: quickCodes a cs)
(mods: mods_t)
(k: (vale_state -> a -> Type0))
(s0: vale_state)
: Lemma
(requires
(forall (p: (unit -> GTot Type0)). {:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p))) (ensures wp cs qcs mods k s0)
let call_QPURE
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l: (unit -> PURE unit (as_pure_wp pre)))
(qcs: quickCodes a cs)
(mods: mods_t)
(k: (vale_state -> a -> Type0))
(s0: vale_state)
: Lemma
(requires
(forall (p: (unit -> GTot Type0)). {:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p))) (ensures wp cs qcs mods k s0) = | false | null | true | l () | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Prims.unit",
"FStar.Monotonic.Pure.is_monotonic",
"FStar.Monotonic.Pure.as_pure_wp",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Prims.l_Forall",
"Prims.l_imp",
"Vale.X64.QuickCodes.wp",
"Vale.X64.QuickCodes.label",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val call_QPURE
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l: (unit -> PURE unit (as_pure_wp pre)))
(qcs: quickCodes a cs)
(mods: mods_t)
(k: (vale_state -> a -> Type0))
(s0: vale_state)
: Lemma
(requires
(forall (p: (unit -> GTot Type0)). {:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p))) (ensures wp cs qcs mods k s0) | [] | Vale.X64.QuickCodes.call_QPURE | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
pre:
(_: (_: Prims.unit -> Prims.GTot Type0) -> Prims.GTot Type0)
{FStar.Monotonic.Pure.is_monotonic pre} ->
l: (_: Prims.unit -> Prims.PURE Prims.unit) ->
qcs: Vale.X64.QuickCodes.quickCodes a cs ->
mods: Vale.X64.QuickCode.mods_t ->
k: (_: Vale.X64.State.vale_state -> _: a -> Type0) ->
s0: Vale.X64.State.vale_state
-> FStar.Pervasives.Lemma
(requires
forall (p: (_: Prims.unit -> Prims.GTot Type0)). {:pattern pre p}
(Vale.X64.QuickCodes.wp cs qcs mods k s0 ==> p ()) ==>
Vale.X64.QuickCodes.label r msg (pre p)) (ensures Vale.X64.QuickCodes.wp cs qcs mods k s0) | {
"end_col": 6,
"end_line": 147,
"start_col": 2,
"start_line": 147
} |
FStar.Pervasives.Lemma | val update_state_mods_to1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s)) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2 | val update_state_mods_to1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
let rec update_state_mods_to1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s)) = | false | null | true | match mods with
| [] -> ()
| r :: mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_: squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_: squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_: squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.mod_t",
"Prims.list",
"FStar.Classical.or_elim",
"Prims.l_not",
"Prims.squash",
"Prims.unit",
"Prims.l_True",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.X64.QuickCodes.update_state_mods_to1",
"Prims.l_or",
"Vale.X64.QuickCodes.state_mod_eq",
"Vale.X64.QuickCode.update_state_mods",
"Prims.logical",
"Prims.eq2",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains1"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s)) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_to1 (mods: mods_t) (s' s: vale_state) (m0: mod_t)
: Lemma (requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s)) | [
"recursion"
] | Vale.X64.QuickCodes.update_state_mods_to1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
s': Vale.X64.State.vale_state ->
s: Vale.X64.State.vale_state ->
m0: Vale.X64.QuickCode.mod_t
-> FStar.Pervasives.Lemma
(requires
Vale.X64.QuickCodes.mods_contains1 mods m0 \/ Vale.X64.QuickCodes.state_mod_eq m0 s s')
(ensures
Vale.X64.QuickCodes.state_mod_eq m0 s' (Vale.X64.QuickCode.update_state_mods mods s' s)) | {
"end_col": 50,
"end_line": 64,
"start_col": 2,
"start_line": 57
} |
Prims.Ghost | val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0 | val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
let rec wp_sound #a cs qcs mods k s0 = | false | null | false | let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let sN, fN = va_lemma_empty_total s0 [] in
(sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c :: cs = cs in
let k' = wp_Seq cs qcs mods k in
let sM, fM, gM = proof s0 k' in
let sN, fN, gN = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c :: cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c :: cs = cs in
let k' = wp_Bind cs qcs mods k in
let sM, fM, gM = proof s0 k' in
let sN, fN, gN = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c :: cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c :: cs = cs in
let sM, fM = va_lemma_empty_total s0 [] in
let sN, fN, gN = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c :: cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c :: cs = cs in
let sM, fM = va_lemma_empty_total s0 [] in
let g = l () in
let sN, fN, gN = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c :: cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0 | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.codes",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_lemma_empty_total",
"Prims.Nil",
"Vale.X64.Decls.va_code",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_refl",
"Vale.X64.QuickCodes.code",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.quickProc_wp",
"Vale.X64.QuickCode.t_proof",
"Prims.list",
"Vale.X64.QuickCodes.update_state_mods_trans",
"Vale.X64.QuickCodes.update_state_mods_weaken",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.Decls.va_lemma_merge_total",
"Prims.Cons",
"Vale.X64.QuickCodes.wp_sound",
"Vale.X64.QuickCodes.wp_Seq_t",
"Vale.X64.QuickCodes.wp_Seq",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.QuickCodes.wp_Bind_t",
"Vale.X64.QuickCodes.wp_Bind",
"FStar.Monotonic.Pure.is_monotonic",
"FStar.Monotonic.Pure.as_pure_wp",
"Vale.X64.QuickCodes.call_QPURE",
"Prims.squash",
"FStar.Pervasives.pattern",
"Vale.X64.QuickCodes.k_AssertBy",
"Vale.X64.QuickCodes.empty_list_is_small"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
) | [
"recursion"
] | Vale.X64.QuickCodes.wp_sound | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
cs: Vale.X64.QuickCodes.codes ->
qcs: Vale.X64.QuickCodes.quickCodes a cs ->
mods: Vale.X64.QuickCode.mods_t ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
s0: Vale.X64.Decls.va_state
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 31,
"end_line": 221,
"start_col": 38,
"start_line": 164
} |
Prims.Ghost | val va_wp_sound_code_norm (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) :
Ghost (va_state & fuel & a)
(t_require s0 /\ normal (wp_sound_code_pre qc s0 k))
(wp_sound_code_post qc s0 k) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_wp_sound_code_norm #a c qc s0 k =
assert_normal (wp_sound_code_pre qc s0 k);
wp_sound_code_wrap c qc s0 k | val va_wp_sound_code_norm (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) :
Ghost (va_state & fuel & a)
(t_require s0 /\ normal (wp_sound_code_pre qc s0 k))
(wp_sound_code_post qc s0 k)
let va_wp_sound_code_norm #a c qc s0 k = | false | null | false | assert_normal (wp_sound_code_pre qc s0 k);
wp_sound_code_wrap c qc s0 k | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Prims.eq2",
"Vale.X64.QuickCodes.wp_sound_code_wrap",
"Prims.unit",
"Vale.X64.QuickCodes.assert_normal",
"Vale.X64.QuickCodes.wp_sound_code_pre",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCodes.fuel"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in ()
let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k
let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1)
let rec lemma_regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Lemma
(requires regs_match r0 r1 k)
(ensures (forall (i j:nat).{:pattern (Reg i j)} i < k /\ j < n_regs i ==>
(let r = Reg i j in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then (lemma_regs_match_file r0 r1 (k - 1) (n_regs (k - 1)); lemma_regs_match r0 r1 (k - 1))
let lemma_state_match s0 s1 =
lemma_regs_match s0.vs_regs s1.vs_regs n_reg_files;
assert (Regs.equal s0.vs_regs s1.vs_regs)
let wp_sound_code_wrap (#a:Type0) (c:code) (qc:quickCode a c) (s0:vale_state) (k:(s0':vale_state{s0 == s0'}) -> vale_state -> a -> Type0) :
Ghost (vale_state & fuel & a)
(t_require s0 /\ wp_sound_code_pre qc s0 k)
(wp_sound_code_post qc s0 k)
=
wp_sound_code c qc (k s0) s0
let assert_normal (p:Type) : Lemma
(requires normal p)
(ensures p)
=
() | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_wp_sound_code_norm (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) :
Ghost (va_state & fuel & a)
(t_require s0 /\ normal (wp_sound_code_pre qc s0 k))
(wp_sound_code_post qc s0 k) | [] | Vale.X64.QuickCodes.va_wp_sound_code_norm | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
c: Vale.X64.QuickCodes.code ->
qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.Decls.va_state ->
k: (s0': Vale.X64.Decls.va_state{s0 == s0'} -> _: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.QuickCodes.fuel) * a) | {
"end_col": 30,
"end_line": 354,
"start_col": 2,
"start_line": 353
} |
Prims.Ghost | val qWhile_proof_rec
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (vale_state -> a -> Type0))
(dec: (vale_state -> a -> d))
(s0 s1: vale_state)
(g1: a)
(f1: fuel)
(k: (vale_state -> a -> Type0))
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\ wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\ update_state_mods mods s1 s0 == s1)
(ensures
fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\ update_state_mods mods s2 s0 == s2 /\
state_inv s2 /\ k s2 g2)
(decreases (dec s1 g1)) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
) | val qWhile_proof_rec
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (vale_state -> a -> Type0))
(dec: (vale_state -> a -> d))
(s0 s1: vale_state)
(g1: a)
(f1: fuel)
(k: (vale_state -> a -> Type0))
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\ wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\ update_state_mods mods s1 s0 == s1)
(ensures
fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\ update_state_mods mods s2 s0 == s2 /\
state_inv s2 /\ k s2 g2)
(decreases (dec s1 g1))
let rec qWhile_proof_rec
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (vale_state -> a -> Type0))
(dec: (vale_state -> a -> d))
(s0 s1: vale_state)
(g1: a)
(f1: fuel)
(k: (vale_state -> a -> Type0))
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\ wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\ update_state_mods mods s1 s0 == s1)
(ensures
fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\ update_state_mods mods s2 s0 == s2 /\
state_inv s2 /\ k s2 g2)
(decreases (dec s1 g1)) = | false | null | false | let ob = cmp_to_ocmp b in
let s1' = { s1 with vs_flags = havoc_flags } in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b
then
(let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let s2, f2 = va_lemma_whileTrue_total ob c s0 s1 f1 in
let sc, fc, gc = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k)
else
(let s2, f2 = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
""
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCodes.fuel",
"Vale.X64.QuickCodes.eval_cmp",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_fuel",
"Vale.X64.QuickCodes.qWhile_proof_rec",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_trans",
"Vale.X64.QuickCodes.update_state_mods_weaken",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.Decls.va_lemma_whileMerge_total",
"Vale.X64.Machine_s.While",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCode.__proj__QProc__item__proof",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Decls.va_lemma_whileTrue_total",
"Vale.X64.QuickCode.quickProc_wp",
"Vale.X64.QuickCode.__proj__QProc__item__wp",
"Vale.X64.QuickCodes.wp_While_inv",
"Prims.bool",
"FStar.Pervasives.Native.Mktuple3",
"Vale.X64.Decls.va_lemma_whileFalse_total",
"Vale.X64.QuickCodes.update_state_mods_to",
"Vale.X64.State.Mkvale_state",
"Vale.X64.State.__proj__Mkvale_state__item__vs_ok",
"Vale.X64.State.__proj__Mkvale_state__item__vs_regs",
"Vale.X64.Decls.havoc_flags",
"Vale.X64.State.__proj__Mkvale_state__item__vs_heap",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stack",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint",
"Vale.X64.QuickCodes.cmp_to_ocmp",
"Prims.l_and",
"Vale.X64.Decls.state_inv",
"Vale.X64.QuickCodes.wp_While",
"Vale.X64.Decls.eval_while_inv",
"Prims.eq2",
"Vale.X64.QuickCode.update_state_mods",
"Vale.X64.Decls.eval_code"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qWhile_proof_rec
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (vale_state -> a -> Type0))
(dec: (vale_state -> a -> d))
(s0 s1: vale_state)
(g1: a)
(f1: fuel)
(k: (vale_state -> a -> Type0))
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\ wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\ update_state_mods mods s1 s0 == s1)
(ensures
fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\ update_state_mods mods s2 s0 == s2 /\
state_inv s2 /\ k s2 g2)
(decreases (dec s1 g1)) | [
"recursion"
] | Vale.X64.QuickCodes.qWhile_proof_rec | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
mods: Vale.X64.QuickCode.mods_t ->
inv: (_: Vale.X64.State.vale_state -> _: a -> Type0) ->
dec: (_: Vale.X64.State.vale_state -> _: a -> d) ->
s0: Vale.X64.State.vale_state ->
s1: Vale.X64.State.vale_state ->
g1: a ->
f1: Vale.X64.QuickCodes.fuel ->
k: (_: Vale.X64.State.vale_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.State.vale_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 3,
"end_line": 302,
"start_col": 3,
"start_line": 282
} |
Prims.Ghost | val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
) | val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k = | false | null | false | (match b with
| Cmp_eq o1 o2 ->
lemma_valid_cmp_eq s0 o1 o2;
lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 ->
lemma_valid_cmp_ne s0 o1 o2;
lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 ->
lemma_valid_cmp_le s0 o1 o2;
lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 ->
lemma_valid_cmp_ge s0 o1 o2;
lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 ->
lemma_valid_cmp_lt s0 o1 o2;
lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 ->
lemma_valid_cmp_gt s0 o1 o2;
lemma_cmp_gt s0 o1 o2);
let s1 = { s0 with vs_flags = havoc_flags } in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b
then
(let sM, f0, g = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g))
else
(let sM, f0, g = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.eval_cmp",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple3",
"Prims.unit",
"Vale.X64.QuickCodes.update_state_mods_trans",
"Vale.X64.QuickCodes.update_state_mods_weaken",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.Decls.va_lemma_ifElseTrue_total",
"Vale.X64.QuickCodes.cmp_to_ocmp",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.QuickCode.__proj__QProc__item__proof",
"Prims.bool",
"Vale.X64.Decls.va_lemma_ifElseFalse_total",
"Vale.X64.QuickCodes.update_state_mods_to",
"Vale.X64.State.Mkvale_state",
"Vale.X64.State.__proj__Mkvale_state__item__vs_ok",
"Vale.X64.State.__proj__Mkvale_state__item__vs_regs",
"Vale.X64.Decls.havoc_flags",
"Vale.X64.State.__proj__Mkvale_state__item__vs_heap",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stack",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint",
"Vale.X64.Machine_s.operand64",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_BarBar",
"Vale.X64.Machine_s.uu___is_OMem",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.uu___is_OStack",
"Vale.X64.Decls.lemma_cmp_eq",
"Vale.X64.Decls.lemma_valid_cmp_eq",
"Vale.X64.Decls.lemma_cmp_ne",
"Vale.X64.Decls.lemma_valid_cmp_ne",
"Vale.X64.Decls.lemma_cmp_le",
"Vale.X64.Decls.lemma_valid_cmp_le",
"Vale.X64.Decls.lemma_cmp_ge",
"Vale.X64.Decls.lemma_valid_cmp_ge",
"Vale.X64.Decls.lemma_cmp_lt",
"Vale.X64.Decls.lemma_valid_cmp_lt",
"Vale.X64.Decls.lemma_cmp_gt",
"Vale.X64.Decls.lemma_valid_cmp_gt"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
) | [] | Vale.X64.QuickCodes.qIf_proof | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2 ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * a) | {
"end_col": 3,
"end_line": 266,
"start_col": 2,
"start_line": 241
} |
FStar.Pervasives.Lemma | val lemma_regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf})
: Lemma (requires regs_match_file r0 r1 rf k)
(ensures
(forall (i: nat). {:pattern (Reg rf i)}
i < k ==>
(let r = Reg rf i in
Regs.sel r r0 == Regs.sel r r1))) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1) | val lemma_regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf})
: Lemma (requires regs_match_file r0 r1 rf k)
(ensures
(forall (i: nat). {:pattern (Reg rf i)}
i < k ==>
(let r = Reg rf i in
Regs.sel r r0 == Regs.sel r r1)))
let rec lemma_regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf})
: Lemma (requires regs_match_file r0 r1 rf k)
(ensures
(forall (i: nat). {:pattern (Reg rf i)}
i < k ==>
(let r = Reg rf i in
Regs.sel r r0 == Regs.sel r r1))) = | false | null | true | if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.Regs.t",
"Vale.X64.Machine_s.reg_file_id",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.X64.Machine_s.n_regs",
"Prims.op_GreaterThan",
"Vale.X64.QuickCodes.lemma_regs_match_file",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.unit",
"Vale.X64.QuickCodes.regs_match_file",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.eq2",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.Regs.sel",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.Reg",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in ()
let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k
let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1))) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf})
: Lemma (requires regs_match_file r0 r1 rf k)
(ensures
(forall (i: nat). {:pattern (Reg rf i)}
i < k ==>
(let r = Reg rf i in
Regs.sel r r0 == Regs.sel r r1))) | [
"recursion"
] | Vale.X64.QuickCodes.lemma_regs_match_file | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r0: Vale.X64.Regs.t ->
r1: Vale.X64.Regs.t ->
rf: Vale.X64.Machine_s.reg_file_id ->
k: Prims.nat{k <= Vale.X64.Machine_s.n_regs rf}
-> FStar.Pervasives.Lemma (requires Vale.X64.QuickCodes.regs_match_file r0 r1 rf k)
(ensures
forall (i: Prims.nat). {:pattern Vale.X64.Machine_s.Reg rf i}
i < k ==>
(let r = Vale.X64.Machine_s.Reg rf i in
Vale.X64.Regs.sel r r0 == Vale.X64.Regs.sel r r1)) | {
"end_col": 54,
"end_line": 326,
"start_col": 2,
"start_line": 326
} |
FStar.Pervasives.Lemma | val lemma_regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files})
: Lemma (requires regs_match r0 r1 k)
(ensures
(forall (i: nat) (j: nat). {:pattern (Reg i j)}
i < k /\ j < n_regs i ==>
(let r = Reg i j in
Regs.sel r r0 == Regs.sel r r1))) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Lemma
(requires regs_match r0 r1 k)
(ensures (forall (i j:nat).{:pattern (Reg i j)} i < k /\ j < n_regs i ==>
(let r = Reg i j in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then (lemma_regs_match_file r0 r1 (k - 1) (n_regs (k - 1)); lemma_regs_match r0 r1 (k - 1)) | val lemma_regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files})
: Lemma (requires regs_match r0 r1 k)
(ensures
(forall (i: nat) (j: nat). {:pattern (Reg i j)}
i < k /\ j < n_regs i ==>
(let r = Reg i j in
Regs.sel r r0 == Regs.sel r r1)))
let rec lemma_regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files})
: Lemma (requires regs_match r0 r1 k)
(ensures
(forall (i: nat) (j: nat). {:pattern (Reg i j)}
i < k /\ j < n_regs i ==>
(let r = Reg i j in
Regs.sel r r0 == Regs.sel r r1))) = | false | null | true | if k > 0
then
(lemma_regs_match_file r0 r1 (k - 1) (n_regs (k - 1));
lemma_regs_match r0 r1 (k - 1)) | {
"checked_file": "Vale.X64.QuickCodes.fst.checked",
"dependencies": [
"Vale.X64.Regs.fsti.checked",
"Vale.Lib.Map16.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.X64.QuickCodes.fst"
} | [
"lemma"
] | [
"Vale.X64.Regs.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.X64.Machine_s.n_reg_files",
"Prims.op_GreaterThan",
"Vale.X64.QuickCodes.lemma_regs_match",
"Prims.op_Subtraction",
"Prims.unit",
"Vale.X64.QuickCodes.lemma_regs_match_file",
"Vale.X64.Machine_s.n_regs",
"Prims.bool",
"Vale.X64.QuickCodes.regs_match",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.eq2",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.Regs.sel",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.Reg",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
open FStar.Mul
open Vale.Arch.HeapImpl
open FStar.Range
module Map16 = Vale.Lib.Map16
#reset-options "--initial_ifuel 1 --z3rlimit 30"
let lemma_label_Type0 (r:range) (msg:string) (p:Type0) : Lemma
(requires True) (ensures label r msg p ==> p)
= ()
let lemma_label_bool r msg b = lemma_label_Type0 r msg b
let rec empty_list_is_small #a x =
match x with
| [] -> ()
| h::t -> empty_list_is_small t
let state_mod_eq (m:mod_t) (s1 s2:vale_state) =
match m with
| Mod_None -> True
| Mod_ok -> s1.vs_ok == s2.vs_ok
| Mod_reg r -> eval_reg r s1 == eval_reg r s2
| Mod_flags -> s1.vs_flags == s2.vs_flags
| Mod_mem -> s1.vs_heap.vf_heap == s2.vs_heap.vf_heap
| Mod_mem_layout -> s1.vs_heap.vf_layout == s2.vs_heap.vf_layout
| Mod_mem_heaplet n -> Map16.sel s1.vs_heap.vf_heaplets n == Map16.sel s2.vs_heap.vf_heaplets n
| Mod_stack -> s1.vs_stack == s2.vs_stack
| Mod_stackTaint -> s1.vs_stackTaint == s2.vs_stackTaint
let rec update_state_mods_refl (mods:mods_t) (s:vale_state) : Lemma
(ensures state_eq (update_state_mods mods s s) s)
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_refl mods s
let rec update_state_mods_not1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires not (mods_contains1 mods m0))
(ensures state_mod_eq m0 s (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| _::mods -> update_state_mods_not1 mods s' s m0
let update_state_mods_from1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires state_mod_eq m0 s' (update_state_mods mods s' s))
(ensures mods_contains1 mods m0 \/ state_mod_eq m0 s s')
=
if not (mods_contains1 mods m0) then update_state_mods_not1 mods s' s m0
let rec update_state_mods_to1 (mods:mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires mods_contains1 mods m0 \/ state_mod_eq m0 s s')
(ensures state_mod_eq m0 s' (update_state_mods mods s' s))
=
match mods with
| [] -> ()
| r::mods' ->
let b = r =!= m0 \/ state_mod_eq m0 s s' in
let goal (_:squash (b \/ ~b)) : Type0 = state_mod_eq m0 s' (update_state_mods mods s' s) in
let l1 (_:squash b) : Lemma (goal ()) = update_state_mods_to1 mods' s' s m0 in
let l2 (_:squash (~b)) : Lemma (goal ()) = () in
FStar.Classical.or_elim #b #(~b) #goal l1 l2
let update_state_mods_from (mods:mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s')
(ensures (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
=
let f1 (m0:mod_t) : Lemma (mods_contains1 mods m0 \/ state_mod_eq m0 s s') =
update_state_mods_from1 mods s' s m0
in
FStar.Classical.forall_intro f1
let update_state_mods_to (mods:mods_t) (s' s:vale_state) : Lemma
(requires (
forall (m0:mod_t).{:pattern mods_contains1 mods m0 \/ state_mod_eq m0 s s'}
mods_contains1 mods m0 \/ state_mod_eq m0 s s'
))
(ensures state_eq s' (update_state_mods mods s' s))
=
let s'' = update_state_mods mods s' s in
let f1 (m0:mod_t) : Lemma (state_mod_eq m0 s' s'') =
update_state_mods_to1 mods s' s m0
in
f1 Mod_ok;
f1 Mod_flags;
f1 Mod_mem;
f1 Mod_mem_layout;
f1 Mod_stack;
f1 Mod_stackTaint;
let f1_reg (r:reg) : Lemma
(ensures Regs.sel r s'.vs_regs == Regs.sel r s''.vs_regs)
[SMTPat (Regs.sel r s'.vs_regs)]
=
f1 (Mod_reg r)
in
let f1_heaplet (n:heaplet_id) : Lemma
(ensures Map16.sel s'.vs_heap.vf_heaplets n == Map16.sel s''.vs_heap.vf_heaplets n)
[SMTPat (Map16.sel s'.vs_heap.vf_heaplets n)]
=
f1 (Mod_mem_heaplet n)
in
()
let update_state_mods_trans (mods:mods_t) (s0 s1 s2:vale_state) : Lemma
(requires update_state_mods mods s1 s0 == s1 /\ update_state_mods mods s2 s1 == s2)
(ensures update_state_mods mods s2 s0 == s2)
=
update_state_mods_from mods s1 s0;
update_state_mods_from mods s2 s1;
update_state_mods_to mods s2 s0
let rec update_state_mods_weaken1 (mods mods':mods_t) (s' s:vale_state) (m0:mod_t) : Lemma
(requires (mods_contains1 mods m0 \/ state_mod_eq m0 s s') /\ mods_contains mods' mods)
(ensures (mods_contains1 mods' m0 \/ state_mod_eq m0 s s'))
=
match mods with
| [] -> ()
| _::mods ->
if mods_contains mods' mods && mods_contains1 mods m0 then
update_state_mods_weaken1 mods mods' s' s m0
let update_state_mods_weaken (mods mods':mods_t) (s' s:vale_state) : Lemma
(requires update_state_mods mods s' s == s' /\ mods_contains mods' mods)
(ensures update_state_mods mods' s' s == s')
=
update_state_mods_from mods s' s;
let f1 (m0:mod_t) : Lemma (mods_contains1 mods' m0 \/ state_mod_eq m0 s s') =
update_state_mods_weaken1 mods mods' s' s m0
in
FStar.Classical.forall_intro f1;
update_state_mods_to mods' s' s
let call_QPURE
(#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(l:unit -> PURE unit (as_pure_wp pre)) (qcs:quickCodes a cs) (mods:mods_t) (k:vale_state -> a -> Type0) (s0:vale_state)
: Lemma
(requires
(forall (p:unit -> GTot Type0).{:pattern pre p}
(wp cs qcs mods k s0 ==> p ()) ==> label r msg (pre p)))
(ensures wp cs qcs mods k s0)
=
l ()
(*
let call_QBindPURE
(#a #b:Type0) (#cs:codes) (r:range) (msg:string) (pre:((b -> GTot Type0) -> GTot Type0))
(l:unit -> PURE b pre) (qcs:vale_state -> b -> GTot (quickCodes a cs)) (mods:mods_t)
(k:vale_state -> a -> Type0) (s0:vale_state)
: Ghost b
(requires
(forall (p:b -> GTot Type0).{:pattern pre p}
(forall (g:b).{:pattern guard_free (p g)}
wp cs (qcs s0 g) mods k s0 ==> p g) ==> label r msg (pre p)))
(ensures fun g -> (wp cs (qcs s0 g) mods k s0))
=
l ()
*)
let rec wp_sound #a cs qcs mods k s0 =
let qcs0 = qcs in
match qcs with
| QEmpty g ->
update_state_mods_refl mods s0;
let (sN, fN) = va_lemma_empty_total s0 [] in (sN, fN, g)
| QSeq _ _ qc qcs ->
let QProc _ _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Seq cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs qcs mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QBind _ _ qc qcs ->
let QProc c' _ wp1' proof = qc in
let c::cs = cs in
let k' = wp_Bind cs qcs mods k in
let (sM, fM, gM) = proof s0 k' in
let (sN, fN, gN) = wp_sound cs (qcs sM gM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
update_state_mods_weaken qc.mods mods sM s0;
update_state_mods_trans mods s0 sM sN;
(sN, fN', gN)
| QGetState f ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let (sN, fN, gN) = wp_sound cs (f sM) mods k sM in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QPURE r msg pre l qcs' ->
call_QPURE r msg pre l qcs' mods k s0;
wp_sound cs qcs' mods k s0
(*
| QBindPURE b r msg pre l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = call_QBindPURE r msg pre l qcs' mods k s0 in
let (sN, fN, gN) = wp_sound cs (qcs' s0 g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
*)
| QLemma _ _ pre post l qcs' ->
l ();
wp_sound cs qcs' mods k s0
| QGhost b _ _ pre post l qcs' ->
let c::cs = cs in
let (sM, fM) = va_lemma_empty_total s0 [] in
let g = l () in
let (sN, fN, gN) = wp_sound cs (qcs' g) mods k s0 in
let fN' = va_lemma_merge_total (c::cs) s0 fM sM fN sN in
(sN, fN', gN)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
let _ = wp_sound [] qcsBy mods (k_AssertBy p) s0 in
wp_sound cs qcs mods k s0
let qblock_proof #a #cs qcs mods s0 k =
wp_sound cs (qcs s0) mods k s0
let qInlineIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
if b then
(
let (sM, f0, g) = QProc?.proof qc1 s0 k in
update_state_mods_weaken qc1.mods mods sM s0;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s0 k in
update_state_mods_weaken qc2.mods mods sM s0;
(sM, f0, g)
)
let qIf_proof #a #c1 #c2 b qc1 qc2 mods s0 k =
( match b with
| Cmp_eq o1 o2 -> lemma_valid_cmp_eq s0 o1 o2; lemma_cmp_eq s0 o1 o2
| Cmp_ne o1 o2 -> lemma_valid_cmp_ne s0 o1 o2; lemma_cmp_ne s0 o1 o2
| Cmp_le o1 o2 -> lemma_valid_cmp_le s0 o1 o2; lemma_cmp_le s0 o1 o2
| Cmp_ge o1 o2 -> lemma_valid_cmp_ge s0 o1 o2; lemma_cmp_ge s0 o1 o2
| Cmp_lt o1 o2 -> lemma_valid_cmp_lt s0 o1 o2; lemma_cmp_lt s0 o1 o2
| Cmp_gt o1 o2 -> lemma_valid_cmp_gt s0 o1 o2; lemma_cmp_gt s0 o1 o2
);
let s1 = {s0 with vs_flags = havoc_flags} in
update_state_mods_to mods s1 s0;
if eval_cmp s0 b then
(
let (sM, f0, g) = QProc?.proof qc1 s1 k in
va_lemma_ifElseTrue_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc1.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
else
(
let (sM, f0, g) = QProc?.proof qc2 s1 k in
va_lemma_ifElseFalse_total (cmp_to_ocmp b) c1 c2 s0 f0 sM;
update_state_mods_weaken qc2.mods mods sM s1;
update_state_mods_trans mods s0 s1 sM;
(sM, f0, g)
)
let rec qWhile_proof_rec
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:vale_state -> a -> Type0)
(dec:vale_state -> a -> d) (s0 s1:vale_state) (g1:a) (f1:fuel) (k:vale_state -> a -> Type0)
: Ghost (vale_state & va_fuel & a)
(requires
state_inv s1 /\
wp_While b qc mods inv dec g1 s1 k /\
eval_while_inv (While (cmp_to_ocmp b) c) s0 f1 s1 /\
update_state_mods mods s1 s0 == s1)
(ensures fun (s2, f2, g2) ->
eval_code (While (cmp_to_ocmp b) c) s0 f2 s2 /\
update_state_mods mods s2 s0 == s2 /\ state_inv s2 /\ k s2 g2
)
(decreases (dec s1 g1))
=
let ob = cmp_to_ocmp b in
let s1' = {s1 with vs_flags = havoc_flags} in
update_state_mods_to mods s1' s1;
update_state_mods_trans mods s0 s1 s1';
if eval_cmp s1 b then
(
let inv2 = wp_While_inv qc mods inv dec s1 g1 in
let wp = QProc?.wp (qc g1) in
let (s2, f2) = va_lemma_whileTrue_total ob c s0 s1 f1 in
let (sc, fc, gc) = QProc?.proof (qc g1) s2 inv2 in
let fN = va_lemma_whileMerge_total (While ob c) s0 f2 s1 fc sc in
update_state_mods_weaken (qc g1).mods mods sc s2;
update_state_mods_trans mods s0 s2 sc;
qWhile_proof_rec b qc mods inv dec s0 sc gc fN k
)
else
(
let (s2, f2) = va_lemma_whileFalse_total ob c s0 s1 f1 in
(s2, f2, g1)
)
let qWhile_proof #a #d #c b qc mods inv dec g0 s0 k =
let ob = cmp_to_ocmp b in
let (s1, f1) = va_lemma_while_total ob c s0 in
update_state_mods_refl mods s0;
qWhile_proof_rec b qc mods inv dec s0 s1 g0 f1 k
let qAssertLemma p = fun () -> ()
let qAssumeLemma p = fun () -> assume p
let qAssertSquashLemma p = fun () -> ()
//let qAssertByLemma #a p qcs mods s0 =
// fun () -> let _ = wp_sound [] qcs mods (fun _ _ -> p) s0 in ()
let wp_sound_code #a c qc k s0 =
let QProc c _ wp proof = qc in
proof s0 k
let rec lemma_regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Lemma
(requires regs_match_file r0 r1 rf k)
(ensures (forall (i:nat).{:pattern (Reg rf i)} i < k ==>
(let r = Reg rf i in Regs.sel r r0 == Regs.sel r r1)))
=
if k > 0 then lemma_regs_match_file r0 r1 rf (k - 1)
let rec lemma_regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Lemma
(requires regs_match r0 r1 k)
(ensures (forall (i j:nat).{:pattern (Reg i j)} i < k /\ j < n_regs i ==>
(let r = Reg i j in Regs.sel r r0 == Regs.sel r r1))) | false | false | Vale.X64.QuickCodes.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files})
: Lemma (requires regs_match r0 r1 k)
(ensures
(forall (i: nat) (j: nat). {:pattern (Reg i j)}
i < k /\ j < n_regs i ==>
(let r = Reg i j in
Regs.sel r r0 == Regs.sel r r1))) | [
"recursion"
] | Vale.X64.QuickCodes.lemma_regs_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r0: Vale.X64.Regs.t -> r1: Vale.X64.Regs.t -> k: Prims.nat{k <= Vale.X64.Machine_s.n_reg_files}
-> FStar.Pervasives.Lemma (requires Vale.X64.QuickCodes.regs_match r0 r1 k)
(ensures
forall (i: Prims.nat) (j: Prims.nat). {:pattern Vale.X64.Machine_s.Reg i j}
i < k /\ j < Vale.X64.Machine_s.n_regs i ==>
(let r = Vale.X64.Machine_s.Reg i j in
Vale.X64.Regs.sel r r0 == Vale.X64.Regs.sel r r1)) | {
"end_col": 102,
"end_line": 333,
"start_col": 2,
"start_line": 333
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let supported_alg = a:hash_alg{ is_supported_alg a } | let supported_alg = | false | null | false | a: hash_alg{is_supported_alg a} | {
"checked_file": "Spec.HMAC_DRBG.Test.Vectors.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.Test.Vectors.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.HMAC_DRBG.Test.Vectors.is_supported_alg"
] | [] | module Spec.HMAC_DRBG.Test.Vectors
open Lib.Meta
open Spec.Hash.Definitions
#set-options "--fuel 0 --ifuel 0"
///
/// HMAC-DRBG test vectors from NIST CAVP
/// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators#DRBG
///
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | false | true | Spec.HMAC_DRBG.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val supported_alg : Type0 | [] | Spec.HMAC_DRBG.Test.Vectors.supported_alg | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 52,
"end_line": 17,
"start_col": 20,
"start_line": 17
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | let is_supported_alg = | false | null | false | function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false | {
"checked_file": "Spec.HMAC_DRBG.Test.Vectors.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.Test.Vectors.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.bool"
] | [] | module Spec.HMAC_DRBG.Test.Vectors
open Lib.Meta
open Spec.Hash.Definitions
#set-options "--fuel 0 --ifuel 0"
///
/// HMAC-DRBG test vectors from NIST CAVP
/// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators#DRBG
/// | false | true | Spec.HMAC_DRBG.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val is_supported_alg : _: Spec.Hash.Definitions.hash_alg -> Prims.bool | [] | Spec.HMAC_DRBG.Test.Vectors.is_supported_alg | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Spec.Hash.Definitions.hash_alg -> Prims.bool | {
"end_col": 14,
"end_line": 15,
"start_col": 23,
"start_line": 13
} |
|
Prims.Tot | val test_vectors:list vec | [
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Meta",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.HMAC_DRBG.Test",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let test_vectors : list vec = [
{ a = SHA1;
entropy_input = "7cad65e5cc2888ae4e960f5d143c1425";
nonce = "fc0785db471cc55e";
personalization_string = "";
entropy_input_reseed = "66451d29cf65d899a281905ff9b29e87";
additional_input_reseed = "800d583b2560d2a2300132ee2d13f19f";
additional_input_1 = "42eae705c2225d212fa0554ac6ac564b";
additional_input_2 = "72081e7e70200f1982c3ad9cb1d3ddbe";
returned_bits = "953e92258be7ff61b97077252ab9835231e366dfa5b635fb889c337562a2641d3aa9e46feeb2a4ea03cb73f1f801594c3cc71d2945c11a52bb0e93419df5d0854ad5f2e36d223c119e145cad507495a7";
} ;
{ a = SHA1;
entropy_input = "0736a083595a8397cb9e676cb37bfb5a";
nonce = "0b184a6d0a630abb";
personalization_string = "c302503d86a2bde46a0c63561a86cfd9";
entropy_input_reseed = "4b50977033483277647945ffefa109e2";
additional_input_reseed = "4dad813744f54324b3046a85be3cc3c8";
additional_input_1 = "7441fefa60f7ee48ff387b587efcb3e6";
additional_input_2 = "f0d005289a9d3993c44bb750d96cc1bc";
returned_bits = "c03971897b854585994eeb8e3d6b556e1a8df18a7ff88f83e8fe17e6dd9071070a6dbef67cb612acf122caa7f817704b3efc6e1b1fd6c330e0a732abea93c00818e12c504fd8e0b36c88f84a95b49362";
} ;
{ a = SHA1;
entropy_input = "172054c827aa895fa1239b7a484752f2";
nonce = "edb272c0a98c7592";
personalization_string = "47bc78bfbd1bb7e2dcdbf4ebe42c5293";
entropy_input_reseed = "29f92a0e5d24e19af698877f69a0efb5";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "6464bdaed23245db1f6510f8659e1b19881d606220997b837684a7f88a166cb75ce6829cb3f11e55d2b7ad349cc1f4ba02e30a76f970613aa74635b0034f8e985cde4f1fddb964657a169386e20767d1";
} ;
{ a = SHA1;
entropy_input = "b1a19bb07c30ca4f49dc69130d23c0a7";
nonce = "2c06067297058ec5";
personalization_string = "";
entropy_input_reseed = "840802cea2e55a3b1e487bb7aee62b42";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "f41bb7ae532344a90d413b66a94ee1d0254a5d5e974e36b1993b1042586f54728d1ebb7c5d351558ed675177e432360708c008984c41bc4c828d83ddeca9ef8ecd9da880a135400a43f91f4ca6d59d00";
} ;
{ a = SHA1;
entropy_input = "343f9dde89a9e3ecc4f9653c8b392dab";
nonce = "c4fb3606d8f62db1";
personalization_string = "";
entropy_input_reseed = "021fc3ead46ff8bda3b79701b7893a39";
additional_input_reseed = "8918831e15d430616f4bd91046fe0930";
additional_input_1 = "a8772304a1accb16662218a748bb4fd8";
additional_input_2 = "4bf9f2b9d15ec3071ff3674ad7418759";
returned_bits = "9782b2111c985bcaab0b8905ad9bcb97eb3f3554c68d79ee5ca1dcfbd0d7850f65090c79d21d1c6253cf493f08392cfb60461fbc20beb4cf3e022123816f0bc597abebc775633db324c7c1c7cd5e8c56";
} ;
{ a = SHA1;
entropy_input = "0a086726f66f2ac9e7daa61908f63319";
nonce = "debf011d406a5b23";
personalization_string = "58582da74f8f91db0444beae39016857";
entropy_input_reseed = "c92ba2900ab0a4ca3553806392b6b3e5";
additional_input_reseed = "5604a76e74ef4b304466f21df57c70f3";
additional_input_1 = "e1e4d0754cc306a1752b50c5c446a3d0";
additional_input_2 = "71dacf61875cbf3655e4f7d2e081d493";
returned_bits = "afbb3a05e753f6ebf026594a03b22b3f032edb873b9e1e22532e360a097d7e0d4585bbf82f9b12d7a88630efcadeb8ffdc8b7c8a53fe94eea9d2cd6cf90828c3511fc936222ba845fc77995a03855578";
} ;
{ a = SHA2_256;
entropy_input = "14683ec508a29d7812e0f04a3e9d87897000dc07b4fbcfda58eb7cdabc492e58";
nonce = "b2243e744eb980b3ece25ce76383fd46";
personalization_string = "";
entropy_input_reseed = "18590e0ef4ee2bdae462f76d9324b3002559f74c370cfccf96a571d6955703a7";
additional_input_reseed = "9ea3ccca1e8d791d22fcda621fc4d51b882df32d94ea8f20ee449313e6909b78";
additional_input_1 = "16366a578b5ea4d0cb547790ef5b4fd45d7cd845bc8a7c45e99419c8737debb4";
additional_input_2 = "a68caa29a53f1ba857e484d095805dc319fe6963e4c4daaf355f722eba746b92";
returned_bits = "c4e7532ee816789c2d3da9ff9f4b37139a8515dbf8f9e1d0bf00c12addd79ebbd76236f75f2aa705a09f7955038ebff0d566911c5ea13214e2c2eeb46d23ad86a33b60f7b9448d63eec3e1d59f48b39552857447dc5d7944667a230e3dbfa30ca322f6eacaf7536a286706a627c5083c32de0658b9073857c30fb1d86eb8ad1b";
} ;
{ a = SHA2_256;
entropy_input = "a1d5bb7d70621dee6b668b28c56d5610c2f8ced30284cc3e0e48de331af05062";
nonce = "88a49e3e54c5ea54c98b95de81bcc807";
personalization_string = "";
entropy_input_reseed = "b4e2426e98f6eed97a6cdf690a89ee109e84c3dca16c883c26fa4ac671638d8d";
additional_input_reseed = "5bd1e086ed228cfd8b55c1731fea40c3a63d022599ca2da4bb23118f4821ba62";
additional_input_1 = "b754b53ac226e8ebe47a3d31496ec822de06fca2e7ef5bf1dec6c83d05368ec3";
additional_input_2 = "fa7e76b2805d90b3d89fff545010d84f67aa3a2c9eb2ba232e75f4d53267dac3";
returned_bits = "df6b2460688fa537df3ddfe5575fca5eb8abad56cbc4e5a618a2b4a7daf6e215c3a497974c502f9d0ec35de3fc2ea5d4f10de9b2aee66dcc7e7ae6357983095959b817f0383e3030771bd2ed97406acf78a1a4a5f30fa0992289c9202e69e3eb1eabe227c11409ff430f6dfca1a923a8b17bc4b87e908007f5e9759c41482b01";
} ;
{ a = SHA2_256;
entropy_input = "68f21d14525d56233c7e263482d344c388a840103a77fb20ac60ce463cabdc79";
nonce = "59fa80ae570f3e0c60ac7e2578cec3cb";
personalization_string = "";
entropy_input_reseed = "7584b4166530442f06e241dd904f562167e2fdae3247ab853a4a9d4884a5fa46";
additional_input_reseed = "f6a5482f139045c5389c9246d772c782c4ebf79c3a84b5cf779f458a69a52914";
additional_input_1 = "9d37b1ce99f8079993ddf0bd54bab218016685b22655a678ce4300105f3a45b7";
additional_input_2 = "4c97c67026ff43c2ee730e7b2ce8cce4794fd0588deb16185fa6792ddd0d46de";
returned_bits = "e5f8874be0a8345aabf2f829a7c06bb40e60869508c2bdef071d73692c0265f6a5bf9ca6cf47d75cbd9df88b9cb236cdfce37d2fd4913f177dbd41887dae116edfbdad4fd6e4c1a51aad9f9d6afe7fcafced45a4913d742a7ec00fd6170d63a68f986d8c2357765e4d38835d3fea301afab43a50bd9edd2dec6a979732b25292";
} ;
{ a = SHA2_256;
entropy_input = "1ae12a5e4e9a4a5bfa79da30a9e6c62ffc639572ef1254194d129a16eb53c716";
nonce = "5399b3481fdf24d373222267790a0fec";
personalization_string = "8280cfdcd7a575816e0199e115da0ea77cae9d30b49c891a6c225e9037ba67e2";
entropy_input_reseed = "681554ff702658122e91ba017450cfdfc8e3f4911153f7bcc428403e9c7b9d68";
additional_input_reseed = "226732b7a457cf0ac0ef09fd4f81296573b49a68de5e7ac3070e148c95e8e323";
additional_input_1 = "45942b5e9a1a128e85e12c34596374ddc85fd7502e5633c7390fc6e6f1e5ef56";
additional_input_2 = "6fc59929b41e77072886aff45f737b449b105ed7eacbd74c7cbfedf533dbeaa1";
returned_bits = "b7547332e1509663fcfea2128f7f3a3df484cd8df034b00199157d35d61e35f1a9d481c7d2e81305616d70fc371ee459b0b2267d627e928590edcac3231898b24ef378aa9c3d381619f665379be76c7c1bd535505c563db3725f034786e35bdd90429305fd71d7bf680e8cdd6d4c348d97078f5cf5e89dee2dc410fad4f2a30f";
} ;
{ a = SHA2_256;
entropy_input = "10b8789cdbd6778442a45edf228b9923f452631ad0fe9e608d10826ba71da7ca";
nonce = "159fc5d8e50eb56e22974789b1dc20d1";
personalization_string = "2dd59e37766c667571b779c06e12ba219188489772f48631a6728b5b867e3cf4";
entropy_input_reseed = "966d942038030509b20e610062042b6bf104812818893292a68d57d1ce865151";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "3e6acd8b4e85b4a0f7928f6bd41a8e6b52524fe72723a0509637d33f15afe7d8da6a15209b9e4149576fbb1fd831f784c04439abda4605d06556dc3002055b5855fba201f6daef79f78d001ed69eca8a418513d02464e8d742c2799cd68edfbe88ae9b35a0aa065c42a4770058c4b026d0350a7afa9c52c3c7fa054f8a96d887";
} ;
{ a = SHA2_256;
entropy_input = "e5fa73bed99340c91ab17d039efd248fcd1ab8b0a0f655dd3149949685ecadbd";
nonce = "af4b94f08300a1eb059ad6a687a22fd1";
personalization_string = "d0095a4fd7f6d6de2a1f0b292c47ece8565bf8c202f0723d0de7f2f7904537bf";
entropy_input_reseed = "4dd81fad534aa36e174d06666e95a4d9b3622bf60d8a562c764541ea7c974fe9";
additional_input_reseed = "117ca0aa9d57973005fad1f8a02f2d62ac701758556b42a8d5382ee55540a86b";
additional_input_1 = "a36ba41e095a40f37985a5cd7315f3773132f491ef8a453d3970ae72f41c5365";
additional_input_2 = "abba1d162556eaab729252cd48dead2d7d50a6385b1d270591d465fa38c5597d";
returned_bits = "2bef01bea1fb0ab5fccbb474a1bacb361ffcc326f1d9f1969048c392f2761ed0a37126433311dec9db18596448cb814eda151b264e3ca464b25de401b0e38b43e93c64f675f37ad91e95c24e6997dc4032fa62ba00f3c8a792d6b539a4e8290b10173b6b35f7278f34f40df7c4cf26518350dfa7e24362320c8446963a9a1369";
} ;
{ a = SHA2_256;
entropy_input = "0c2c24287f264c1d5329d18989e7f9ce06b8a9446d26cd90ed718792b13dad94";
nonce = "fd01d038386b37709f8da03579f82bcc";
personalization_string = "";
entropy_input_reseed = "05b523ccf880bfb0da83a05e4eb2ea28cc75a1e4f9e09c8a3959b18622453bdc";
additional_input_reseed = "85e06a8ca3a741821c3a2a8818131675136efd5841cb96e7ddec7943cc169fa3";
additional_input_1 = "6b842e1cfdcc6203fa3750cfb3c722f7a85014c06e78da8ea61f0f9e7c20cb4a";
additional_input_2 = "7ba4a1494a0b498388f94d1726b8baf63e44a03c2bfbbff35ad039b39881720a";
returned_bits = "b1001e78fdb26dc92e2389ec0eb5eb3059f44ab4f2ead6c74a7615ab8687381898f5b0d838247f41786bb83c077713ff84540ed54061f4d00264699df476873c0dd0c363b998054edc64084efeed7dcf28d7719979978448d7dce8f8aa3868e56b89eebf275f000a39c4cfb5af16a64302a90986cc3042d8826f2e3f7fdb859d";
} ;
{ a = SHA2_256;
entropy_input = "c13d6cd63bb7931174696f3e04a0c41cb0b2561134e847ce03e36326b803f8ab";
nonce = "2084ab32374392ea9f6e8a474f18e9d7";
personalization_string = "";
entropy_input_reseed = "aec5a6a7232a52b81ce7e981a359cef1bbd2f1eff8488371468cd1f4147a89c2";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "daea78881737cb26d60c36ceb9fec3d281c7aec54b4b9850937b373b2b2621fe077585a1fe88265d84f225552e5c85cbec8d00069648065ac12073aedce8c940460949b597667ecfcedabd7a86a979b904a24d32db10223eae5a98a0d1b6571b8643df2c6265a5d66cee9f4abfc5778146d6fb2b853d82636c1325b2d1ef4576";
} ;
{ a = SHA2_256;
entropy_input = "88a76c16d3270ed3fcd176f9d793fa0c35516574c1cef425b6007628afa35e2b";
nonce = "ff16cf7cb8e49d482cfd3994abc5ef8a";
personalization_string = "9213c54e3d002df8741163ab9d7e0757cd512c691ad64bafef95cb72539b0ac6";
entropy_input_reseed = "493b647ff0b3faa2921f12f8f57b919329f2af2fc1f14576d9df2f8cc2ada7a6";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "f1330a85f90037876b3749203e849287444a827f0a58c249ff868fc1adba4dce285e076a1f8ae1da8cf9fe14931e8164186c97a8feaf24583451f116e65f8e432e7ed55a36683120377e23128dca1540fefbf3af1b56d5c74187f5286d0a95fb55931770543060ce8df08f3c1959a1f4fc36b64671e0654fffe70d96d521be21";
} ;
{ a = SHA2_384;
entropy_input = "e8e99ffcf08aad8e50386f5d079d79d3db783a74165c6126b42b3140f744a7c7";
nonce = "23541930c8c772adb62981dbef8d054e";
personalization_string = "";
entropy_input_reseed = "cdcf1c30228904bd7ba31798bfbbd64757aa251ac9a1ae8c20a050670feac59b";
additional_input_reseed = "546e04247d6cb5212a57b62f99e1cca767a5768cf79296f45f0db24732ba6368";
additional_input_1 = "fd45f66c8dede41387373c38674605f3e075c9b7cfc66123a5478b8f8e3ab276";
additional_input_2 = "39911a79c6edbbc805a50d2aa018742094177a8e216d647c64428c00169ab2d6";
returned_bits = "871577ddf34b29e5caf132aa82e1d2f1586b76e39aab62acd02f6d4440908a772ac5f6fd48c5f55f1ebe0e76221ac46b834a8a4f5dd9958721ee053ba3aef1574ebd980a5da6a94693662717ee548af0f921421d1afb814e4d1799d351889d2a1bdd57570a913e428e6613b16e158c1cfed038f6578920d60db73dc10a40da9bc363a0206b4e7e49670eccea866efd9a05bc237042cf052f2a4140f9377e3c6792b88ea06323fcebb99c643fc1c3653758d6866cdb148837fb0fdf77de1564cf";
} ;
{ a = SHA2_384;
entropy_input = "9319148fb7c2389793e9f53cd3b4ad8f1bb75710088f1c9a18434ce13b190da2";
nonce = "11fdc53c13aea33985ba2678e8d86d09";
personalization_string = "";
entropy_input_reseed = "8619290e975f1c50f6606c7027efe9c8438d3209db71edd023af0eb024a282d2";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "30c2327eddb5c3942d90006eadccfc26d27b149f195389abba507c0746e41d7fb8cf30c15f2cdff73ff3d77b4ca0d289f0660073f2c73f83ce819a6a7d8fe911fd109778b501357eca73079d86bed0916deede54e2e86eca2c04f3d0706e2a55ff84942cbfee22b5a92d309b84b8dd3decb9f3f2c4b24efb4f382833ffb867b5fe054b21d47db6c52ff52faa13ce2abdf7996e23a8c96bac48c02980d96234e478370027d55ba8752c17c7a1bf6253084654e79c13bacc51c1815c8b647e36cb";
} ;
{ a = SHA2_384;
entropy_input = "f9e25060675e4c5734d818d9c31a0b232474520577e42f8c53f803aee2349f4a";
nonce = "9a62a41cf3f5a9e198dff8c907a35a3f";
personalization_string = "";
entropy_input_reseed = "888a7529909ae36053c75badb44d103118e171784a7b67dc0d7a4e1b1d44391a";
additional_input_reseed = "10a25d0027b1c55f615d3b7c3f235d791a81dfe8215315e0c38fccde27a5d8da";
additional_input_1 = "7b10e25044abd0917490e7f1a8cfd24966803fc9be260f3ab5bf954693f60885";
additional_input_2 = "a3563ec5c089fff127b2a2eaef12bd0cb3b18f3a0999754666113a052fd443f9";
returned_bits = "83b9fef4f31c71aebf3753d0404208678987fc4cb2d293a8ac8a547aed18a7a9e09d8196a07d6e97c909e64aef00d9b9530ca1cd69d65807857d9b30a74924a6be96dd96fc48ad5931892736a77f62f68c3fca75af3e2ea5b2a336f1e080a24fa28f81fd8b1a34d3c8aac650acaad25ed1e00bc44092a13940c821942add18bf0ed70c578c305711b0a4991ec5bddfaecee804619b197fd716aa2e6713c0cf91ea0a6d46a4d0ea80a7f70f4fc75307d342e69d1fdff989808b7500275cd05218";
} ;
{ a = SHA2_512;
entropy_input = "58ebcec4539f4af1b32a854181dd0f512b8c704fa47537096a769eff28c59165";
nonce = "a18226cfc779efc9550f7be02006d83c";
personalization_string = "";
entropy_input_reseed = "230cd6e6909e301d1e99ecd1fff2b2cd00a56c7a684c8907bbb13ce3e9a0cbce";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "6f4e86f309f69144603961c5366e4f9b16d10c10593ea689a8e7435a327d2524f4468813ea7f3248d8d4bbe17b175cfc40617149983928b267dc0c4db46d2c17fe8bc0764386758af1a824e12eb897feafc1c7ef66f80ffcd993aa016e139991cde8435ee6bb0de45a7fb61eb1a6beb76e012b848ea003f687537e4bd00ced37efdda66333b53a8dd5220c281fbf68bfd9e72285e78197881efc540da4c1ba80a226013a2d7098d34af4112e7b8c865af15409f6901b952fee4a474e4027051e1dce879ddf5e84f3947dc9b94119d67e6b48ed6fd6b1f813c13d3ff30e121efce7918533925f50c8e381e87ea685f993619bacc9efc0aebc884b450646eeaa5e";
} ;
{ a = SHA2_512;
entropy_input = "e1d2d72e7907e7214cb266f1ef641395e54b39e8365304661b0bee371f324652";
nonce = "8417ffd58420e48ec063de5df4462e39";
personalization_string = "";
entropy_input_reseed = "e6cae1b5f3a3a12faaaf39b98ee592c8d4f56b9d4534add5104b357d788c23ab";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "626a0863321ac75e0b6240ea6a619458634a978245c1533819c97114e63914009c9cab732f1310f60f64f033b00729424228671f33425099820ab108412d460f32c0015b73987e937b9bbdd29e5bfb8dbb6c95d2b69fccbc26b060cf0a5dc0992fb0e76b38bcd64fd7a726714e8c8542d44b2f9c5d2f2f8cb370b95e086b07e88f492f51fe6c288d78b76d0c3a6146c9dfce53e76cdbbd158d2944dd10197247004954d92f6b1df4badeb4bb1c98d7d3da2054e3300f6d8dda8863422e6a042c2d84b2bbed6be88f0704763410771b3786d2f6d968b6c224e0cf535e8d02c178b2e0b90e8a7fca0c431b7f3cf41b0a7c17778fe8c2eeb442c910ba88c7c364cd";
} ;
{ a = SHA2_512;
entropy_input = "47c42df62b4dd570efd3c2722ad39a2df5f969a13f645fd27b5290877ba70916";
nonce = "c591934d4f66000ebf8c508fafc44f75";
personalization_string = "94822903cb5c2003c31c6d072ab0dda435add0de7d8f9d5f08b5cba410d888fd";
entropy_input_reseed = "d16a2c72c63580b9bcf156862214533a47b1686c871a0165604fdd00a412a484";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "f78e61b443b5a97b7e493a8ce35a43545290dd33d15ba4bf0ff78f34a25c46c4ff4cd485964cc96e90fe847d9fc9e42d96e4f5aaccf976a84e3e12100c28b0f7addb1c76f89663e11890f09e4beefe928a1e0b304f1d9dd0414cd115a01b641fd69c7071f2ca7c7f2e53560f4e91010ba11948195bc5deb556686feb0bb92fe61b3171e639ef47418f02be37796efdb6920952f3a8c766b52fccfa757e923e38028a84f9be1b802c1fbbbb4aef825f4c5e4fc1bf6e96f33ab90ea486710718c9e4f3247b2a55ccef5a5d342cac757f0b9f90bcdcc8c2ec3a43149bbd3924c85f0b5b7ae42151f4ded826ee6d47849ef4e8af64adf6863982503c23c4a0514ce0";
} ;
{ a = SHA2_512;
entropy_input = "f840c75ce0cdb200a3bd980d6cedf1c7321e5f303cd0446c7afd2d2d66657447";
nonce = "b215333b15d55326bc9bebae6ae36efe";
personalization_string = "6d5ca4b1edf6c0afbdce02ecb30923b2f4f2b33121e21b2ffee964cc7de1abe8";
entropy_input_reseed = "a3a337c6fbeb6a979a4783f2b7f0f0dd6d3a9d3747de639a9047248a04a19f5b";
additional_input_reseed = "f56d2b1584ba2f129c77b29590c4e1dfdab5527b1791e3e445750ca6d4ae3542";
additional_input_1 = "05bd799249411b37b80590d49f3348631b06a2408a61635c70687003a8485302";
additional_input_2 = "12d26ac3b87924cda5d78a3e3c0bd81280e340723643ed1b2ebf2dfd52f5dc43";
returned_bits = "b48c13af7a9b6fa6385a7ee5d2ab97dcebf71a715dc465f413cb0962292df84c9c83c4093309f749359b0a0ddcc13162cb4ab8ff7b3a6336351ed79ebf47730f97accb6a960a9c5c25e0920a06cccc3b3f62b616c15ca18d7e0b5c2e7d8ad2518d1ef0bef515af866893e9378b56deec32825fe0a2c5a9729f658915b99ab22a03b7187e83d2d0f41b9467c8326f7bc87189dd8ade18b3a7edf0c0ea462dc22109ec91294cf8ce69c8cd0c129b423edadda8fbd25f4983a70d75001576a26405188bb0284975203694c318f3aa7fe47ec041bc4c11c9bceb1b131f74adcd72fc4d2813564de6d4711017800377be9e4c579e88464d67ea6e457a30f8f652375a";
} ;
{ a = SHA2_512;
entropy_input = "46dfb4e82fc784ad0094dc81136834e5abc767fff2b876a06b1dbd2508dbed3a";
nonce = "64d40d3886ac152838f6853121fd68b7";
personalization_string = "";
entropy_input_reseed = "329004b8bb439305c4b2dcdd54ca97a4f54cb720a8582cdc03ac26f8a603f3fd";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits = "1887eb4c57b63109f7e446bf0a6c598de093a6013009503925d620f40cf98c8774a6c4a1affe57f8e6b190d0504ff4c4eb55ba4e8a2642d230ee845ed4e31d8adddb1a21dd45346cbda9884a322e6e8f38a82e888f81264a2e254ec2ad5ad4d60a162287e48bc39776eb57dce88cfe467b042d037d1b06877acc39f31b08b1aa13805fe0440a3506a7f59dc6e2376147acf87b78bbaef4c15b579335794688d142eedc231829a34a5c6976e0c8c4649edc178c8f7d8f9ae92f05e3d54df6e47cf9260a5a582a7d3b0030e9a5de912d0f7e4d3103233dcfa8dc0caeddf12a8502c7d941de883690d47bd1a1b61d723abaf0c31d67136fb427edcaa9526a9dc9fa";
} ;
{ a = SHA2_512;
entropy_input = "12738c0ddd0c9ce0393d2acabdfa592286072a362e332ca3f8c401f01d610026";
nonce = "b983dcfd4af5e451f6efe155fcf3ec14";
personalization_string = "";
entropy_input_reseed = "07c8b69898caec3a1104e2e30b811ea095384cc636b9bd24e0f9837d3b8e0b4c";
additional_input_reseed = "fee06814eab6e55cb799e815d84f07278ec6c12d82dea12e261c5b72d0a4eaa5";
additional_input_1 = "f29287d46d517f090df11af46703d5de778028c787a3aa1e5904ed737b776912";
additional_input_2 = "0ce576cae56c46042ff27f9f11ed88f1ba534cf5f2581e5ad6bb69b642897886";
returned_bits = "6293103d028540484c262770ecf7c47c93e778daeda0a5d17a838a5933871af041ac603d81c4a8d73f4cacff06cee74424b57e8440e83939509ea1861adcaa29332bbce015c2b4d6c74154b52a6de9b4c5ec9edb4f54b7be42142b9be07bec5052b78bbc4bb742ee89f0399071f49a73df87b3fe762d1656346c9e8bf8e4b4b8b55e4e1ff23662b6586bf0f105e9d001f1593c175c9a234cbb17cfdafd90ba85f347cb79b0046fb5715bbf35f08345c8fbc26e4722425f04ba431c48ecffcacf15d09ea5abda92f541e46bb63e3933a2c053be4565275d34fa085baf555f92f446ba5e5d05fa0c63c53042092cb66c406d9b6b36b00e76d51b49b75c36e41e52";
} ;
{ a = SHA2_512;
entropy_input = "6a2baf90d2e8b83355a0230a8fc7237c140f7699f40026e276deaefd4faa8e06";
nonce = "b2eecce638bd9fa485e9c9e0d94c3a78";
personalization_string = "a9ea2c4b2aba1f48f2c71ae1a7fee90e073912c833f2de9c5f802ac2ddc57fbd";
entropy_input_reseed = "820fc963827166de710208a7dc33936471e491fc21fb0119a252b49fefb28a01";
additional_input_reseed = "9a463484d172108807c43c048bd13a72d15b470c3443390774a55572d03f47b1";
additional_input_1 = "d98671978ae14b3531394a0785f78242d4b32eb61cffec6088efb8625693276a";
additional_input_2 = "b9aef32c40b7aa4fd732e4431bedce071e4f64405be1c85de03c7faa0aa7270f";
returned_bits = "f55791fdc9d763c34c0fc4cc457a438496f18f483cc60c493fcd0549812fad792f92381532548a8c2257c6e424fa570af260bd47de92f248f57291fead3a68c94be9dc12a656630622be9b602d4fc5037c29bbb5fa92fed2235186048f652131f845f01ed718baf05957e863239e94a5613aa47dd25d5bc9f170e4047e86ef1eefa60e359f2204a3f453c9b37dcfd9410736ee14e296abcdc185f3ed31d8ad461a81479f957e69c34334a24e22f4a69606db8bca6cb189e7de4b83d8a10461fba1942c83aa2e5f84dced9440f10a54c74153643287313ae7fe1bf23c6abecc55c4a3f5540495b7d29a302d426ee2f13dd9ed7a5a6618724544da63527c702e4c";
} ;
{ a = SHA2_512;
entropy_input = "47139f544af9f6b0b8022bbae5b936a3f4bf8a0f1cd10c8c5fb8bb7363df6411";
nonce = "b99640f70c7b55605f7bee6753f30675";
personalization_string = "0f88357519e8f2c05495c595056e6023460bea47e79f72b113784eb6a77f9f28";
entropy_input_reseed = "83ed7fb5ae85138161fe90b14b15295b11d81b0ecbd9f1838a2858cf9e822886";
additional_input_reseed = "e973ea2d399b9c4ad685411a619b7a5ce6f6568bc66efb8855a69f256829a62d";
additional_input_1 = "1bd8090104b78844f6d615e93b7ae0c921517c97735c0aaa28cdee1eb0a14659";
additional_input_2 = "4d57d04fc0a2adc6ebb618f1236fee0eb00e38ff82137f5e375be00ad1aac35e";
returned_bits = "8c4ce3292ae500557b40e4215665c8db5ccba13fbd2d26ca8d1fdad9dca158371ec0003cf801fd28741a2fd31d15e4c0612c68e19fa4e19c626ce4b0184303f4544c414a6541c7d4ac5e6555d22e21c09a096aa9ec09c902eb67a2de9eba94b719ec1ba4dd5dbafee93fcd5125223eaae0bf0d8e7eb92ea0610cc32b69584c0a1565802028f31e6910021d618e5138137eccab894a5385ca4544fdf20919ef2216a3eaf44fdacc7fe05ce22e565a5ab013cd6c9e0a80b430fa8b72127f84f3a780d4ee92c72901eafc8a21c56dcc687ac4ce464cce068895471b36f7b58987ae3272581f00f8d667085bdeadcb06ffef5b1b329bf1db71ce101a2d694de9e322";
} ;
{ a = SHA2_512;
entropy_input = "2886ff4e11950c1e639398b2c7d6908d5c2e4daeb7719e6dd98a39b1428ea7df";
nonce = "8cbb97f58cf243045bdadb2f9bbdab10";
personalization_string = "";
entropy_input_reseed = "f487b94b5e4eda49e933e0c268eb5042c422df88061ebffd893d39fafd58efd3";
additional_input_reseed = "ff8e7656a21bcced082972719ebf87539c4825cb0f4beabd12a12d544dea87af";
additional_input_1 = "f64dd3b0efc5c8c146f9b9b8f0ec7ccb784e87c16268a4aab31e9eddf2c9b83e";
additional_input_2 = "9dc16b955ae805f10ebbdc3794a2abe671a339ca148b46ef6ea208698a54a0d8";
returned_bits = "0e8c9cb99fec37602b291e508e43c2ab323d05764184379ca3a2ca4080ed26c2dbfdf3d1916485c7eba49077ca881fb03d07f967cad9b477959f007a6188150b6630218af55fdd7be2eb88d48b5ec6b6876ec25665c0310624283d2b5460e3736f8b9f0b84095aa4754ac59067a7cc73402c09b1768972b3abd49e0e237a741649ea7888ea4a024c0952b94af27c53b13afcaa4fb7976f65443809d1bbd7e4b741bcd6c4a3f2cdf863e719e5d5e60043e771ce5355dee1c5299ddfa54d77ddde2924271c0ece1e1e1e8aa6218c08aee40993eed58959af430c7d53b4179aa355febcc40124cb7a1d2965e36832e5f42f9a48275888725cba28d72398fbefac94";
} ;
{ a = SHA2_512;
entropy_input = "2886ff4e11950c1e639398b2c7d6908d5c2e4daeb7719e6dd98a39b1428ea7df";
nonce = "8cbb97f58cf243045bdadb2f9bbdab10";
personalization_string = "";
entropy_input_reseed = "f487b94b5e4eda49e933e0c268eb5042c422df88061ebffd893d39fafd58efd3";
additional_input_reseed = "ff8e7656a21bcced082972719ebf87539c4825cb0f4beabd12a12d544dea87af";
additional_input_1 = "f64dd3b0efc5c8c146f9b9b8f0ec7ccb784e87c16268a4aab31e9eddf2c9b83e";
additional_input_2 = "9dc16b955ae805f10ebbdc3794a2abe671a339ca148b46ef6ea208698a54a0d8";
returned_bits = "0e8c9cb99fec37602b291e508e43c2ab323d05764184379ca3a2ca4080ed26c2dbfdf3d1916485c7eba49077ca881fb03d07f967cad9b477959f007a6188150b6630218af55fdd7be2eb88d48b5ec6b6876ec25665c0310624283d2b5460e3736f8b9f0b84095aa4754ac59067a7cc73402c09b1768972b3abd49e0e237a741649ea7888ea4a024c0952b94af27c53b13afcaa4fb7976f65443809d1bbd7e4b741bcd6c4a3f2cdf863e719e5d5e60043e771ce5355dee1c5299ddfa54d77ddde2924271c0ece1e1e1e8aa6218c08aee40993eed58959af430c7d53b4179aa355febcc40124cb7a1d2965e36832e5f42f9a48275888725cba28d72398fbefac";
} ;
] | val test_vectors:list vec
let test_vectors:list vec = | false | null | false | [
{
a = SHA1;
entropy_input = "7cad65e5cc2888ae4e960f5d143c1425";
nonce = "fc0785db471cc55e";
personalization_string = "";
entropy_input_reseed = "66451d29cf65d899a281905ff9b29e87";
additional_input_reseed = "800d583b2560d2a2300132ee2d13f19f";
additional_input_1 = "42eae705c2225d212fa0554ac6ac564b";
additional_input_2 = "72081e7e70200f1982c3ad9cb1d3ddbe";
returned_bits
=
"953e92258be7ff61b97077252ab9835231e366dfa5b635fb889c337562a2641d3aa9e46feeb2a4ea03cb73f1f801594c3cc71d2945c11a52bb0e93419df5d0854ad5f2e36d223c119e145cad507495a7"
};
{
a = SHA1;
entropy_input = "0736a083595a8397cb9e676cb37bfb5a";
nonce = "0b184a6d0a630abb";
personalization_string = "c302503d86a2bde46a0c63561a86cfd9";
entropy_input_reseed = "4b50977033483277647945ffefa109e2";
additional_input_reseed = "4dad813744f54324b3046a85be3cc3c8";
additional_input_1 = "7441fefa60f7ee48ff387b587efcb3e6";
additional_input_2 = "f0d005289a9d3993c44bb750d96cc1bc";
returned_bits
=
"c03971897b854585994eeb8e3d6b556e1a8df18a7ff88f83e8fe17e6dd9071070a6dbef67cb612acf122caa7f817704b3efc6e1b1fd6c330e0a732abea93c00818e12c504fd8e0b36c88f84a95b49362"
};
{
a = SHA1;
entropy_input = "172054c827aa895fa1239b7a484752f2";
nonce = "edb272c0a98c7592";
personalization_string = "47bc78bfbd1bb7e2dcdbf4ebe42c5293";
entropy_input_reseed = "29f92a0e5d24e19af698877f69a0efb5";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"6464bdaed23245db1f6510f8659e1b19881d606220997b837684a7f88a166cb75ce6829cb3f11e55d2b7ad349cc1f4ba02e30a76f970613aa74635b0034f8e985cde4f1fddb964657a169386e20767d1"
};
{
a = SHA1;
entropy_input = "b1a19bb07c30ca4f49dc69130d23c0a7";
nonce = "2c06067297058ec5";
personalization_string = "";
entropy_input_reseed = "840802cea2e55a3b1e487bb7aee62b42";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"f41bb7ae532344a90d413b66a94ee1d0254a5d5e974e36b1993b1042586f54728d1ebb7c5d351558ed675177e432360708c008984c41bc4c828d83ddeca9ef8ecd9da880a135400a43f91f4ca6d59d00"
};
{
a = SHA1;
entropy_input = "343f9dde89a9e3ecc4f9653c8b392dab";
nonce = "c4fb3606d8f62db1";
personalization_string = "";
entropy_input_reseed = "021fc3ead46ff8bda3b79701b7893a39";
additional_input_reseed = "8918831e15d430616f4bd91046fe0930";
additional_input_1 = "a8772304a1accb16662218a748bb4fd8";
additional_input_2 = "4bf9f2b9d15ec3071ff3674ad7418759";
returned_bits
=
"9782b2111c985bcaab0b8905ad9bcb97eb3f3554c68d79ee5ca1dcfbd0d7850f65090c79d21d1c6253cf493f08392cfb60461fbc20beb4cf3e022123816f0bc597abebc775633db324c7c1c7cd5e8c56"
};
{
a = SHA1;
entropy_input = "0a086726f66f2ac9e7daa61908f63319";
nonce = "debf011d406a5b23";
personalization_string = "58582da74f8f91db0444beae39016857";
entropy_input_reseed = "c92ba2900ab0a4ca3553806392b6b3e5";
additional_input_reseed = "5604a76e74ef4b304466f21df57c70f3";
additional_input_1 = "e1e4d0754cc306a1752b50c5c446a3d0";
additional_input_2 = "71dacf61875cbf3655e4f7d2e081d493";
returned_bits
=
"afbb3a05e753f6ebf026594a03b22b3f032edb873b9e1e22532e360a097d7e0d4585bbf82f9b12d7a88630efcadeb8ffdc8b7c8a53fe94eea9d2cd6cf90828c3511fc936222ba845fc77995a03855578"
};
{
a = SHA2_256;
entropy_input = "14683ec508a29d7812e0f04a3e9d87897000dc07b4fbcfda58eb7cdabc492e58";
nonce = "b2243e744eb980b3ece25ce76383fd46";
personalization_string = "";
entropy_input_reseed = "18590e0ef4ee2bdae462f76d9324b3002559f74c370cfccf96a571d6955703a7";
additional_input_reseed = "9ea3ccca1e8d791d22fcda621fc4d51b882df32d94ea8f20ee449313e6909b78";
additional_input_1 = "16366a578b5ea4d0cb547790ef5b4fd45d7cd845bc8a7c45e99419c8737debb4";
additional_input_2 = "a68caa29a53f1ba857e484d095805dc319fe6963e4c4daaf355f722eba746b92";
returned_bits
=
"c4e7532ee816789c2d3da9ff9f4b37139a8515dbf8f9e1d0bf00c12addd79ebbd76236f75f2aa705a09f7955038ebff0d566911c5ea13214e2c2eeb46d23ad86a33b60f7b9448d63eec3e1d59f48b39552857447dc5d7944667a230e3dbfa30ca322f6eacaf7536a286706a627c5083c32de0658b9073857c30fb1d86eb8ad1b"
};
{
a = SHA2_256;
entropy_input = "a1d5bb7d70621dee6b668b28c56d5610c2f8ced30284cc3e0e48de331af05062";
nonce = "88a49e3e54c5ea54c98b95de81bcc807";
personalization_string = "";
entropy_input_reseed = "b4e2426e98f6eed97a6cdf690a89ee109e84c3dca16c883c26fa4ac671638d8d";
additional_input_reseed = "5bd1e086ed228cfd8b55c1731fea40c3a63d022599ca2da4bb23118f4821ba62";
additional_input_1 = "b754b53ac226e8ebe47a3d31496ec822de06fca2e7ef5bf1dec6c83d05368ec3";
additional_input_2 = "fa7e76b2805d90b3d89fff545010d84f67aa3a2c9eb2ba232e75f4d53267dac3";
returned_bits
=
"df6b2460688fa537df3ddfe5575fca5eb8abad56cbc4e5a618a2b4a7daf6e215c3a497974c502f9d0ec35de3fc2ea5d4f10de9b2aee66dcc7e7ae6357983095959b817f0383e3030771bd2ed97406acf78a1a4a5f30fa0992289c9202e69e3eb1eabe227c11409ff430f6dfca1a923a8b17bc4b87e908007f5e9759c41482b01"
};
{
a = SHA2_256;
entropy_input = "68f21d14525d56233c7e263482d344c388a840103a77fb20ac60ce463cabdc79";
nonce = "59fa80ae570f3e0c60ac7e2578cec3cb";
personalization_string = "";
entropy_input_reseed = "7584b4166530442f06e241dd904f562167e2fdae3247ab853a4a9d4884a5fa46";
additional_input_reseed = "f6a5482f139045c5389c9246d772c782c4ebf79c3a84b5cf779f458a69a52914";
additional_input_1 = "9d37b1ce99f8079993ddf0bd54bab218016685b22655a678ce4300105f3a45b7";
additional_input_2 = "4c97c67026ff43c2ee730e7b2ce8cce4794fd0588deb16185fa6792ddd0d46de";
returned_bits
=
"e5f8874be0a8345aabf2f829a7c06bb40e60869508c2bdef071d73692c0265f6a5bf9ca6cf47d75cbd9df88b9cb236cdfce37d2fd4913f177dbd41887dae116edfbdad4fd6e4c1a51aad9f9d6afe7fcafced45a4913d742a7ec00fd6170d63a68f986d8c2357765e4d38835d3fea301afab43a50bd9edd2dec6a979732b25292"
};
{
a = SHA2_256;
entropy_input = "1ae12a5e4e9a4a5bfa79da30a9e6c62ffc639572ef1254194d129a16eb53c716";
nonce = "5399b3481fdf24d373222267790a0fec";
personalization_string = "8280cfdcd7a575816e0199e115da0ea77cae9d30b49c891a6c225e9037ba67e2";
entropy_input_reseed = "681554ff702658122e91ba017450cfdfc8e3f4911153f7bcc428403e9c7b9d68";
additional_input_reseed = "226732b7a457cf0ac0ef09fd4f81296573b49a68de5e7ac3070e148c95e8e323";
additional_input_1 = "45942b5e9a1a128e85e12c34596374ddc85fd7502e5633c7390fc6e6f1e5ef56";
additional_input_2 = "6fc59929b41e77072886aff45f737b449b105ed7eacbd74c7cbfedf533dbeaa1";
returned_bits
=
"b7547332e1509663fcfea2128f7f3a3df484cd8df034b00199157d35d61e35f1a9d481c7d2e81305616d70fc371ee459b0b2267d627e928590edcac3231898b24ef378aa9c3d381619f665379be76c7c1bd535505c563db3725f034786e35bdd90429305fd71d7bf680e8cdd6d4c348d97078f5cf5e89dee2dc410fad4f2a30f"
};
{
a = SHA2_256;
entropy_input = "10b8789cdbd6778442a45edf228b9923f452631ad0fe9e608d10826ba71da7ca";
nonce = "159fc5d8e50eb56e22974789b1dc20d1";
personalization_string = "2dd59e37766c667571b779c06e12ba219188489772f48631a6728b5b867e3cf4";
entropy_input_reseed = "966d942038030509b20e610062042b6bf104812818893292a68d57d1ce865151";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"3e6acd8b4e85b4a0f7928f6bd41a8e6b52524fe72723a0509637d33f15afe7d8da6a15209b9e4149576fbb1fd831f784c04439abda4605d06556dc3002055b5855fba201f6daef79f78d001ed69eca8a418513d02464e8d742c2799cd68edfbe88ae9b35a0aa065c42a4770058c4b026d0350a7afa9c52c3c7fa054f8a96d887"
};
{
a = SHA2_256;
entropy_input = "e5fa73bed99340c91ab17d039efd248fcd1ab8b0a0f655dd3149949685ecadbd";
nonce = "af4b94f08300a1eb059ad6a687a22fd1";
personalization_string = "d0095a4fd7f6d6de2a1f0b292c47ece8565bf8c202f0723d0de7f2f7904537bf";
entropy_input_reseed = "4dd81fad534aa36e174d06666e95a4d9b3622bf60d8a562c764541ea7c974fe9";
additional_input_reseed = "117ca0aa9d57973005fad1f8a02f2d62ac701758556b42a8d5382ee55540a86b";
additional_input_1 = "a36ba41e095a40f37985a5cd7315f3773132f491ef8a453d3970ae72f41c5365";
additional_input_2 = "abba1d162556eaab729252cd48dead2d7d50a6385b1d270591d465fa38c5597d";
returned_bits
=
"2bef01bea1fb0ab5fccbb474a1bacb361ffcc326f1d9f1969048c392f2761ed0a37126433311dec9db18596448cb814eda151b264e3ca464b25de401b0e38b43e93c64f675f37ad91e95c24e6997dc4032fa62ba00f3c8a792d6b539a4e8290b10173b6b35f7278f34f40df7c4cf26518350dfa7e24362320c8446963a9a1369"
};
{
a = SHA2_256;
entropy_input = "0c2c24287f264c1d5329d18989e7f9ce06b8a9446d26cd90ed718792b13dad94";
nonce = "fd01d038386b37709f8da03579f82bcc";
personalization_string = "";
entropy_input_reseed = "05b523ccf880bfb0da83a05e4eb2ea28cc75a1e4f9e09c8a3959b18622453bdc";
additional_input_reseed = "85e06a8ca3a741821c3a2a8818131675136efd5841cb96e7ddec7943cc169fa3";
additional_input_1 = "6b842e1cfdcc6203fa3750cfb3c722f7a85014c06e78da8ea61f0f9e7c20cb4a";
additional_input_2 = "7ba4a1494a0b498388f94d1726b8baf63e44a03c2bfbbff35ad039b39881720a";
returned_bits
=
"b1001e78fdb26dc92e2389ec0eb5eb3059f44ab4f2ead6c74a7615ab8687381898f5b0d838247f41786bb83c077713ff84540ed54061f4d00264699df476873c0dd0c363b998054edc64084efeed7dcf28d7719979978448d7dce8f8aa3868e56b89eebf275f000a39c4cfb5af16a64302a90986cc3042d8826f2e3f7fdb859d"
};
{
a = SHA2_256;
entropy_input = "c13d6cd63bb7931174696f3e04a0c41cb0b2561134e847ce03e36326b803f8ab";
nonce = "2084ab32374392ea9f6e8a474f18e9d7";
personalization_string = "";
entropy_input_reseed = "aec5a6a7232a52b81ce7e981a359cef1bbd2f1eff8488371468cd1f4147a89c2";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"daea78881737cb26d60c36ceb9fec3d281c7aec54b4b9850937b373b2b2621fe077585a1fe88265d84f225552e5c85cbec8d00069648065ac12073aedce8c940460949b597667ecfcedabd7a86a979b904a24d32db10223eae5a98a0d1b6571b8643df2c6265a5d66cee9f4abfc5778146d6fb2b853d82636c1325b2d1ef4576"
};
{
a = SHA2_256;
entropy_input = "88a76c16d3270ed3fcd176f9d793fa0c35516574c1cef425b6007628afa35e2b";
nonce = "ff16cf7cb8e49d482cfd3994abc5ef8a";
personalization_string = "9213c54e3d002df8741163ab9d7e0757cd512c691ad64bafef95cb72539b0ac6";
entropy_input_reseed = "493b647ff0b3faa2921f12f8f57b919329f2af2fc1f14576d9df2f8cc2ada7a6";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"f1330a85f90037876b3749203e849287444a827f0a58c249ff868fc1adba4dce285e076a1f8ae1da8cf9fe14931e8164186c97a8feaf24583451f116e65f8e432e7ed55a36683120377e23128dca1540fefbf3af1b56d5c74187f5286d0a95fb55931770543060ce8df08f3c1959a1f4fc36b64671e0654fffe70d96d521be21"
};
{
a = SHA2_384;
entropy_input = "e8e99ffcf08aad8e50386f5d079d79d3db783a74165c6126b42b3140f744a7c7";
nonce = "23541930c8c772adb62981dbef8d054e";
personalization_string = "";
entropy_input_reseed = "cdcf1c30228904bd7ba31798bfbbd64757aa251ac9a1ae8c20a050670feac59b";
additional_input_reseed = "546e04247d6cb5212a57b62f99e1cca767a5768cf79296f45f0db24732ba6368";
additional_input_1 = "fd45f66c8dede41387373c38674605f3e075c9b7cfc66123a5478b8f8e3ab276";
additional_input_2 = "39911a79c6edbbc805a50d2aa018742094177a8e216d647c64428c00169ab2d6";
returned_bits
=
"871577ddf34b29e5caf132aa82e1d2f1586b76e39aab62acd02f6d4440908a772ac5f6fd48c5f55f1ebe0e76221ac46b834a8a4f5dd9958721ee053ba3aef1574ebd980a5da6a94693662717ee548af0f921421d1afb814e4d1799d351889d2a1bdd57570a913e428e6613b16e158c1cfed038f6578920d60db73dc10a40da9bc363a0206b4e7e49670eccea866efd9a05bc237042cf052f2a4140f9377e3c6792b88ea06323fcebb99c643fc1c3653758d6866cdb148837fb0fdf77de1564cf"
};
{
a = SHA2_384;
entropy_input = "9319148fb7c2389793e9f53cd3b4ad8f1bb75710088f1c9a18434ce13b190da2";
nonce = "11fdc53c13aea33985ba2678e8d86d09";
personalization_string = "";
entropy_input_reseed = "8619290e975f1c50f6606c7027efe9c8438d3209db71edd023af0eb024a282d2";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"30c2327eddb5c3942d90006eadccfc26d27b149f195389abba507c0746e41d7fb8cf30c15f2cdff73ff3d77b4ca0d289f0660073f2c73f83ce819a6a7d8fe911fd109778b501357eca73079d86bed0916deede54e2e86eca2c04f3d0706e2a55ff84942cbfee22b5a92d309b84b8dd3decb9f3f2c4b24efb4f382833ffb867b5fe054b21d47db6c52ff52faa13ce2abdf7996e23a8c96bac48c02980d96234e478370027d55ba8752c17c7a1bf6253084654e79c13bacc51c1815c8b647e36cb"
};
{
a = SHA2_384;
entropy_input = "f9e25060675e4c5734d818d9c31a0b232474520577e42f8c53f803aee2349f4a";
nonce = "9a62a41cf3f5a9e198dff8c907a35a3f";
personalization_string = "";
entropy_input_reseed = "888a7529909ae36053c75badb44d103118e171784a7b67dc0d7a4e1b1d44391a";
additional_input_reseed = "10a25d0027b1c55f615d3b7c3f235d791a81dfe8215315e0c38fccde27a5d8da";
additional_input_1 = "7b10e25044abd0917490e7f1a8cfd24966803fc9be260f3ab5bf954693f60885";
additional_input_2 = "a3563ec5c089fff127b2a2eaef12bd0cb3b18f3a0999754666113a052fd443f9";
returned_bits
=
"83b9fef4f31c71aebf3753d0404208678987fc4cb2d293a8ac8a547aed18a7a9e09d8196a07d6e97c909e64aef00d9b9530ca1cd69d65807857d9b30a74924a6be96dd96fc48ad5931892736a77f62f68c3fca75af3e2ea5b2a336f1e080a24fa28f81fd8b1a34d3c8aac650acaad25ed1e00bc44092a13940c821942add18bf0ed70c578c305711b0a4991ec5bddfaecee804619b197fd716aa2e6713c0cf91ea0a6d46a4d0ea80a7f70f4fc75307d342e69d1fdff989808b7500275cd05218"
};
{
a = SHA2_512;
entropy_input = "58ebcec4539f4af1b32a854181dd0f512b8c704fa47537096a769eff28c59165";
nonce = "a18226cfc779efc9550f7be02006d83c";
personalization_string = "";
entropy_input_reseed = "230cd6e6909e301d1e99ecd1fff2b2cd00a56c7a684c8907bbb13ce3e9a0cbce";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"6f4e86f309f69144603961c5366e4f9b16d10c10593ea689a8e7435a327d2524f4468813ea7f3248d8d4bbe17b175cfc40617149983928b267dc0c4db46d2c17fe8bc0764386758af1a824e12eb897feafc1c7ef66f80ffcd993aa016e139991cde8435ee6bb0de45a7fb61eb1a6beb76e012b848ea003f687537e4bd00ced37efdda66333b53a8dd5220c281fbf68bfd9e72285e78197881efc540da4c1ba80a226013a2d7098d34af4112e7b8c865af15409f6901b952fee4a474e4027051e1dce879ddf5e84f3947dc9b94119d67e6b48ed6fd6b1f813c13d3ff30e121efce7918533925f50c8e381e87ea685f993619bacc9efc0aebc884b450646eeaa5e"
};
{
a = SHA2_512;
entropy_input = "e1d2d72e7907e7214cb266f1ef641395e54b39e8365304661b0bee371f324652";
nonce = "8417ffd58420e48ec063de5df4462e39";
personalization_string = "";
entropy_input_reseed = "e6cae1b5f3a3a12faaaf39b98ee592c8d4f56b9d4534add5104b357d788c23ab";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"626a0863321ac75e0b6240ea6a619458634a978245c1533819c97114e63914009c9cab732f1310f60f64f033b00729424228671f33425099820ab108412d460f32c0015b73987e937b9bbdd29e5bfb8dbb6c95d2b69fccbc26b060cf0a5dc0992fb0e76b38bcd64fd7a726714e8c8542d44b2f9c5d2f2f8cb370b95e086b07e88f492f51fe6c288d78b76d0c3a6146c9dfce53e76cdbbd158d2944dd10197247004954d92f6b1df4badeb4bb1c98d7d3da2054e3300f6d8dda8863422e6a042c2d84b2bbed6be88f0704763410771b3786d2f6d968b6c224e0cf535e8d02c178b2e0b90e8a7fca0c431b7f3cf41b0a7c17778fe8c2eeb442c910ba88c7c364cd"
};
{
a = SHA2_512;
entropy_input = "47c42df62b4dd570efd3c2722ad39a2df5f969a13f645fd27b5290877ba70916";
nonce = "c591934d4f66000ebf8c508fafc44f75";
personalization_string = "94822903cb5c2003c31c6d072ab0dda435add0de7d8f9d5f08b5cba410d888fd";
entropy_input_reseed = "d16a2c72c63580b9bcf156862214533a47b1686c871a0165604fdd00a412a484";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"f78e61b443b5a97b7e493a8ce35a43545290dd33d15ba4bf0ff78f34a25c46c4ff4cd485964cc96e90fe847d9fc9e42d96e4f5aaccf976a84e3e12100c28b0f7addb1c76f89663e11890f09e4beefe928a1e0b304f1d9dd0414cd115a01b641fd69c7071f2ca7c7f2e53560f4e91010ba11948195bc5deb556686feb0bb92fe61b3171e639ef47418f02be37796efdb6920952f3a8c766b52fccfa757e923e38028a84f9be1b802c1fbbbb4aef825f4c5e4fc1bf6e96f33ab90ea486710718c9e4f3247b2a55ccef5a5d342cac757f0b9f90bcdcc8c2ec3a43149bbd3924c85f0b5b7ae42151f4ded826ee6d47849ef4e8af64adf6863982503c23c4a0514ce0"
};
{
a = SHA2_512;
entropy_input = "f840c75ce0cdb200a3bd980d6cedf1c7321e5f303cd0446c7afd2d2d66657447";
nonce = "b215333b15d55326bc9bebae6ae36efe";
personalization_string = "6d5ca4b1edf6c0afbdce02ecb30923b2f4f2b33121e21b2ffee964cc7de1abe8";
entropy_input_reseed = "a3a337c6fbeb6a979a4783f2b7f0f0dd6d3a9d3747de639a9047248a04a19f5b";
additional_input_reseed = "f56d2b1584ba2f129c77b29590c4e1dfdab5527b1791e3e445750ca6d4ae3542";
additional_input_1 = "05bd799249411b37b80590d49f3348631b06a2408a61635c70687003a8485302";
additional_input_2 = "12d26ac3b87924cda5d78a3e3c0bd81280e340723643ed1b2ebf2dfd52f5dc43";
returned_bits
=
"b48c13af7a9b6fa6385a7ee5d2ab97dcebf71a715dc465f413cb0962292df84c9c83c4093309f749359b0a0ddcc13162cb4ab8ff7b3a6336351ed79ebf47730f97accb6a960a9c5c25e0920a06cccc3b3f62b616c15ca18d7e0b5c2e7d8ad2518d1ef0bef515af866893e9378b56deec32825fe0a2c5a9729f658915b99ab22a03b7187e83d2d0f41b9467c8326f7bc87189dd8ade18b3a7edf0c0ea462dc22109ec91294cf8ce69c8cd0c129b423edadda8fbd25f4983a70d75001576a26405188bb0284975203694c318f3aa7fe47ec041bc4c11c9bceb1b131f74adcd72fc4d2813564de6d4711017800377be9e4c579e88464d67ea6e457a30f8f652375a"
};
{
a = SHA2_512;
entropy_input = "46dfb4e82fc784ad0094dc81136834e5abc767fff2b876a06b1dbd2508dbed3a";
nonce = "64d40d3886ac152838f6853121fd68b7";
personalization_string = "";
entropy_input_reseed = "329004b8bb439305c4b2dcdd54ca97a4f54cb720a8582cdc03ac26f8a603f3fd";
additional_input_reseed = "";
additional_input_1 = "";
additional_input_2 = "";
returned_bits
=
"1887eb4c57b63109f7e446bf0a6c598de093a6013009503925d620f40cf98c8774a6c4a1affe57f8e6b190d0504ff4c4eb55ba4e8a2642d230ee845ed4e31d8adddb1a21dd45346cbda9884a322e6e8f38a82e888f81264a2e254ec2ad5ad4d60a162287e48bc39776eb57dce88cfe467b042d037d1b06877acc39f31b08b1aa13805fe0440a3506a7f59dc6e2376147acf87b78bbaef4c15b579335794688d142eedc231829a34a5c6976e0c8c4649edc178c8f7d8f9ae92f05e3d54df6e47cf9260a5a582a7d3b0030e9a5de912d0f7e4d3103233dcfa8dc0caeddf12a8502c7d941de883690d47bd1a1b61d723abaf0c31d67136fb427edcaa9526a9dc9fa"
};
{
a = SHA2_512;
entropy_input = "12738c0ddd0c9ce0393d2acabdfa592286072a362e332ca3f8c401f01d610026";
nonce = "b983dcfd4af5e451f6efe155fcf3ec14";
personalization_string = "";
entropy_input_reseed = "07c8b69898caec3a1104e2e30b811ea095384cc636b9bd24e0f9837d3b8e0b4c";
additional_input_reseed = "fee06814eab6e55cb799e815d84f07278ec6c12d82dea12e261c5b72d0a4eaa5";
additional_input_1 = "f29287d46d517f090df11af46703d5de778028c787a3aa1e5904ed737b776912";
additional_input_2 = "0ce576cae56c46042ff27f9f11ed88f1ba534cf5f2581e5ad6bb69b642897886";
returned_bits
=
"6293103d028540484c262770ecf7c47c93e778daeda0a5d17a838a5933871af041ac603d81c4a8d73f4cacff06cee74424b57e8440e83939509ea1861adcaa29332bbce015c2b4d6c74154b52a6de9b4c5ec9edb4f54b7be42142b9be07bec5052b78bbc4bb742ee89f0399071f49a73df87b3fe762d1656346c9e8bf8e4b4b8b55e4e1ff23662b6586bf0f105e9d001f1593c175c9a234cbb17cfdafd90ba85f347cb79b0046fb5715bbf35f08345c8fbc26e4722425f04ba431c48ecffcacf15d09ea5abda92f541e46bb63e3933a2c053be4565275d34fa085baf555f92f446ba5e5d05fa0c63c53042092cb66c406d9b6b36b00e76d51b49b75c36e41e52"
};
{
a = SHA2_512;
entropy_input = "6a2baf90d2e8b83355a0230a8fc7237c140f7699f40026e276deaefd4faa8e06";
nonce = "b2eecce638bd9fa485e9c9e0d94c3a78";
personalization_string = "a9ea2c4b2aba1f48f2c71ae1a7fee90e073912c833f2de9c5f802ac2ddc57fbd";
entropy_input_reseed = "820fc963827166de710208a7dc33936471e491fc21fb0119a252b49fefb28a01";
additional_input_reseed = "9a463484d172108807c43c048bd13a72d15b470c3443390774a55572d03f47b1";
additional_input_1 = "d98671978ae14b3531394a0785f78242d4b32eb61cffec6088efb8625693276a";
additional_input_2 = "b9aef32c40b7aa4fd732e4431bedce071e4f64405be1c85de03c7faa0aa7270f";
returned_bits
=
"f55791fdc9d763c34c0fc4cc457a438496f18f483cc60c493fcd0549812fad792f92381532548a8c2257c6e424fa570af260bd47de92f248f57291fead3a68c94be9dc12a656630622be9b602d4fc5037c29bbb5fa92fed2235186048f652131f845f01ed718baf05957e863239e94a5613aa47dd25d5bc9f170e4047e86ef1eefa60e359f2204a3f453c9b37dcfd9410736ee14e296abcdc185f3ed31d8ad461a81479f957e69c34334a24e22f4a69606db8bca6cb189e7de4b83d8a10461fba1942c83aa2e5f84dced9440f10a54c74153643287313ae7fe1bf23c6abecc55c4a3f5540495b7d29a302d426ee2f13dd9ed7a5a6618724544da63527c702e4c"
};
{
a = SHA2_512;
entropy_input = "47139f544af9f6b0b8022bbae5b936a3f4bf8a0f1cd10c8c5fb8bb7363df6411";
nonce = "b99640f70c7b55605f7bee6753f30675";
personalization_string = "0f88357519e8f2c05495c595056e6023460bea47e79f72b113784eb6a77f9f28";
entropy_input_reseed = "83ed7fb5ae85138161fe90b14b15295b11d81b0ecbd9f1838a2858cf9e822886";
additional_input_reseed = "e973ea2d399b9c4ad685411a619b7a5ce6f6568bc66efb8855a69f256829a62d";
additional_input_1 = "1bd8090104b78844f6d615e93b7ae0c921517c97735c0aaa28cdee1eb0a14659";
additional_input_2 = "4d57d04fc0a2adc6ebb618f1236fee0eb00e38ff82137f5e375be00ad1aac35e";
returned_bits
=
"8c4ce3292ae500557b40e4215665c8db5ccba13fbd2d26ca8d1fdad9dca158371ec0003cf801fd28741a2fd31d15e4c0612c68e19fa4e19c626ce4b0184303f4544c414a6541c7d4ac5e6555d22e21c09a096aa9ec09c902eb67a2de9eba94b719ec1ba4dd5dbafee93fcd5125223eaae0bf0d8e7eb92ea0610cc32b69584c0a1565802028f31e6910021d618e5138137eccab894a5385ca4544fdf20919ef2216a3eaf44fdacc7fe05ce22e565a5ab013cd6c9e0a80b430fa8b72127f84f3a780d4ee92c72901eafc8a21c56dcc687ac4ce464cce068895471b36f7b58987ae3272581f00f8d667085bdeadcb06ffef5b1b329bf1db71ce101a2d694de9e322"
};
{
a = SHA2_512;
entropy_input = "2886ff4e11950c1e639398b2c7d6908d5c2e4daeb7719e6dd98a39b1428ea7df";
nonce = "8cbb97f58cf243045bdadb2f9bbdab10";
personalization_string = "";
entropy_input_reseed = "f487b94b5e4eda49e933e0c268eb5042c422df88061ebffd893d39fafd58efd3";
additional_input_reseed = "ff8e7656a21bcced082972719ebf87539c4825cb0f4beabd12a12d544dea87af";
additional_input_1 = "f64dd3b0efc5c8c146f9b9b8f0ec7ccb784e87c16268a4aab31e9eddf2c9b83e";
additional_input_2 = "9dc16b955ae805f10ebbdc3794a2abe671a339ca148b46ef6ea208698a54a0d8";
returned_bits
=
"0e8c9cb99fec37602b291e508e43c2ab323d05764184379ca3a2ca4080ed26c2dbfdf3d1916485c7eba49077ca881fb03d07f967cad9b477959f007a6188150b6630218af55fdd7be2eb88d48b5ec6b6876ec25665c0310624283d2b5460e3736f8b9f0b84095aa4754ac59067a7cc73402c09b1768972b3abd49e0e237a741649ea7888ea4a024c0952b94af27c53b13afcaa4fb7976f65443809d1bbd7e4b741bcd6c4a3f2cdf863e719e5d5e60043e771ce5355dee1c5299ddfa54d77ddde2924271c0ece1e1e1e8aa6218c08aee40993eed58959af430c7d53b4179aa355febcc40124cb7a1d2965e36832e5f42f9a48275888725cba28d72398fbefac94"
};
{
a = SHA2_512;
entropy_input = "2886ff4e11950c1e639398b2c7d6908d5c2e4daeb7719e6dd98a39b1428ea7df";
nonce = "8cbb97f58cf243045bdadb2f9bbdab10";
personalization_string = "";
entropy_input_reseed = "f487b94b5e4eda49e933e0c268eb5042c422df88061ebffd893d39fafd58efd3";
additional_input_reseed = "ff8e7656a21bcced082972719ebf87539c4825cb0f4beabd12a12d544dea87af";
additional_input_1 = "f64dd3b0efc5c8c146f9b9b8f0ec7ccb784e87c16268a4aab31e9eddf2c9b83e";
additional_input_2 = "9dc16b955ae805f10ebbdc3794a2abe671a339ca148b46ef6ea208698a54a0d8";
returned_bits
=
"0e8c9cb99fec37602b291e508e43c2ab323d05764184379ca3a2ca4080ed26c2dbfdf3d1916485c7eba49077ca881fb03d07f967cad9b477959f007a6188150b6630218af55fdd7be2eb88d48b5ec6b6876ec25665c0310624283d2b5460e3736f8b9f0b84095aa4754ac59067a7cc73402c09b1768972b3abd49e0e237a741649ea7888ea4a024c0952b94af27c53b13afcaa4fb7976f65443809d1bbd7e4b741bcd6c4a3f2cdf863e719e5d5e60043e771ce5355dee1c5299ddfa54d77ddde2924271c0ece1e1e1e8aa6218c08aee40993eed58959af430c7d53b4179aa355febcc40124cb7a1d2965e36832e5f42f9a48275888725cba28d72398fbefac"
}
] | {
"checked_file": "Spec.HMAC_DRBG.Test.Vectors.fst.checked",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.Meta.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.HMAC_DRBG.Test.Vectors.fst"
} | [
"total"
] | [
"Prims.Cons",
"Spec.HMAC_DRBG.Test.Vectors.vec",
"Spec.HMAC_DRBG.Test.Vectors.Mkvec",
"Spec.Hash.Definitions.SHA1",
"Spec.Hash.Definitions.SHA2_256",
"Spec.Hash.Definitions.SHA2_384",
"Spec.Hash.Definitions.SHA2_512",
"Prims.Nil"
] | [] | module Spec.HMAC_DRBG.Test.Vectors
open Lib.Meta
open Spec.Hash.Definitions
#set-options "--fuel 0 --ifuel 0"
///
/// HMAC-DRBG test vectors from NIST CAVP
/// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators#DRBG
///
let is_supported_alg = function
| SHA1 | SHA2_256 | SHA2_384 | SHA2_512 -> true
| _ -> false
let supported_alg = a:hash_alg{ is_supported_alg a }
type vec = {
a: supported_alg;
entropy_input: hex_string;
nonce: hex_string;
personalization_string: hex_string;
entropy_input_reseed: hex_string;
additional_input_reseed: hex_string;
additional_input_1: hex_string;
additional_input_2: hex_string;
returned_bits: hex_string;
} | false | true | Spec.HMAC_DRBG.Test.Vectors.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val test_vectors:list vec | [] | Spec.HMAC_DRBG.Test.Vectors.test_vectors | {
"file_name": "specs/drbg/Spec.HMAC_DRBG.Test.Vectors.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Spec.HMAC_DRBG.Test.Vectors.vec | {
"end_col": 1,
"end_line": 312,
"start_col": 30,
"start_line": 31
} |
Prims.Tot | val ___UINT32BE:eqtype | [
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Kinds",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude.StaticHeader",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ___UINT32BE : eqtype = U32.t | val ___UINT32BE:eqtype
let ___UINT32BE:eqtype = | false | null | false | U32.t | {
"checked_file": "EverParse3d.Prelude.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int.Cast.fst.checked",
"EverParse3d.Prelude.StaticHeader.fst.checked",
"EverParse3d.Kinds.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.fsti"
} | [
"total"
] | [
"FStar.UInt32.t"
] | [] | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module EverParse3d.Prelude
include EverParse3d.Prelude.StaticHeader
include EverParse3d.Kinds
open FStar.Range
module U8 = FStar.UInt8
module U16 = FStar.UInt16
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module C = FStar.Int.Cast
let pow2_values (x:nat) : Lemma
(let p = pow2 x in
match x with
| 0 -> p=1
| 1 -> p=2
| 2 -> p=4
| 3 -> p=8
| 4 -> p=16
| 5 -> p=32
| 6 -> p=64
| 7 -> p=128
| 8 -> p=256
| _ -> True)
[SMTPat (pow2 x)]
= norm_spec [delta;zeta;primops] (pow2 0);
norm_spec [delta;zeta;primops] (pow2 1);
norm_spec [delta;zeta;primops] (pow2 2);
norm_spec [delta;zeta;primops] (pow2 3);
norm_spec [delta;zeta;primops] (pow2 4);
norm_spec [delta;zeta;primops] (pow2 5);
norm_spec [delta;zeta;primops] (pow2 6);
norm_spec [delta;zeta;primops] (pow2 7);
norm_spec [delta;zeta;primops] (pow2 8)
////////////////////////////////////////////////////////////////////////////////
// Parsers
////////////////////////////////////////////////////////////////////////////////
[@@erasable]
inline_for_extraction
noextract
val parser (#nz:bool) (#wk: weak_kind) (k:parser_kind nz wk) (t:Type u#r) : Type u#r
inline_for_extraction noextract
val parse_ret (#t:Type) (v:t)
: Tot (parser ret_kind t)
inline_for_extraction noextract
val parse_dep_pair (#nz1:_) (#k1:parser_kind nz1 WeakKindStrongPrefix) (#t1: Type) (p1: parser k1 t1)
(#nz2:_) (#wk2: _) (#k2:parser_kind nz2 wk2) (#t2: (t1 -> Tot Type)) (p2: (x: t1) -> parser k2 (t2 x))
: Tot (parser (and_then_kind k1 k2) (dtuple2 t1 t2) )
/// Parser: sequencing
inline_for_extraction noextract
val parse_pair (#nz1:_) (#k1:parser_kind nz1 WeakKindStrongPrefix) (#t1:_) (p1:parser k1 t1)
(#nz2:_) (#wk2: _) (#k2:parser_kind nz2 wk2) (#t2:_) (p2:parser k2 t2)
: Tot (parser (and_then_kind k1 k2) (t1 * t2))
/// Parser: filter
let refine t (f:t -> bool) = x:t{f x}
inline_for_extraction noextract
val parse_filter (#nz:_) (#wk: _) (#k:parser_kind nz wk) (#t:_) (p:parser k t) (f:(t -> bool))
: Tot (parser (filter_kind k) (refine t f))
inline_for_extraction noextract
val parse_weaken_left (#nz:_) (#wk: _) (#k:parser_kind nz wk) (#t:_) (p:parser k t)
(#nz':_) (#wk': _) (k':parser_kind nz' wk')
: Tot (parser (glb k' k) t)
inline_for_extraction noextract
val parse_weaken_right (#nz:_) (#wk: _) (#k:parser_kind nz wk) (#t:_) (p:parser k t)
(#nz':_) (#wk': _) (k':parser_kind nz' wk')
: Tot (parser (glb k k') t)
/// Parser: unreachable, for default cases of exhaustive pattern matching
inline_for_extraction noextract
val parse_impos (_:unit)
: parser impos_kind False
let t_ite (e:bool) (a:squash e -> Type) (b:squash (not e) -> Type)
: Type
= if e then a() else b()
val parse_ite (#nz:_) (#wk: _) (#k:parser_kind nz wk)
(e:bool)
(#a:squash e -> Type)
(#b:squash (not e) -> Type)
(p1:squash e -> parser k (a()))
(p2:squash (not e) -> parser k (b()))
: Tot (parser k (t_ite e a b))
////////////////////////////////////////////////////////////////////////////////
// Variable-sized list whose size in bytes is exactly n
////////////////////////////////////////////////////////////////////////////////
val nlist (n:U32.t) (t:Type u#r) : Type u#r
inline_for_extraction noextract
val parse_nlist (n:U32.t) (#wk: _) (#k:parser_kind true wk) (#t:_) (p:parser k t)
: Tot (parser kind_nlist (nlist n t))
/////
// Parse all of the remaining bytes of the input buffer
/////
noextract
val all_bytes: Type0
val parse_all_bytes: parser kind_all_bytes all_bytes
////////////////////////////////////////////////////////////////////////////////
// Variable-sized element whose size in bytes is at most n
////////////////////////////////////////////////////////////////////////////////
val t_at_most (n:U32.t) (t:Type u#r) : Type u#r
inline_for_extraction noextract
val parse_t_at_most (n:U32.t) (#nz: _) (#wk: _) (#k:parser_kind nz wk) (#t:_) (p:parser k t)
: Tot (parser kind_t_at_most (t_at_most n t))
////////////////////////////////////////////////////////////////////////////////
// Variable-sized element whose size in bytes is exactly n
////////////////////////////////////////////////////////////////////////////////
val t_exact (n:U32.t) (t:Type u#r) : Type u#r
inline_for_extraction noextract
val parse_t_exact (n:U32.t) (#nz:bool) (#wk: _) (#k:parser_kind nz wk) (#t:_) (p:parser k t)
: Tot (parser kind_t_exact (t_exact n t))
////////////////////////////////////////////////////////////////////////////////
// Readers
////////////////////////////////////////////////////////////////////////////////
inline_for_extraction noextract
val reader (#nz:_) (#k:parser_kind nz WeakKindStrongPrefix) (#t:_) (p:parser k t) : Type u#1
inline_for_extraction noextract
val read_filter (#nz:_)
(#k: parser_kind nz WeakKindStrongPrefix)
(#t: Type)
(#p: parser k t)
(p32: reader p)
(f: (t -> bool))
: reader (parse_filter p f)
inline_for_extraction noextract
val read_impos : reader (parse_impos())
/// Parse a zero-terminated string
noextract
val cstring
(t: eqtype)
(terminator: t)
: Tot Type0
val parse_string
(#k: parser_kind true WeakKindStrongPrefix)
(#t: eqtype)
(p: parser k t)
(terminator: t)
: Tot (parser parse_string_kind (cstring t terminator))
noextract
val all_zeros: Type0
val parse_all_zeros: parser kind_all_zeros all_zeros
////////////////////////////////////////////////////////////////////////////////
// Base types
////////////////////////////////////////////////////////////////////////////////
inline_for_extraction
let ___Bool = bool
/// UINT8
let ___UINT8 : eqtype = FStar.UInt8.t
val parse____UINT8 : parser kind____UINT8 ___UINT8
val read____UINT8 : reader parse____UINT8
// Big-endian (or "network order")
/// UINT8BE
let ___UINT8BE : eqtype = FStar.UInt8.t
val parse____UINT8BE : parser kind____UINT8BE ___UINT8BE
val read____UINT8BE : reader parse____UINT8BE
/// UInt16BE
let ___UINT16BE : eqtype = U16.t
val parse____UINT16BE : parser kind____UINT16BE ___UINT16BE
val read____UINT16BE : reader parse____UINT16BE | false | true | EverParse3d.Prelude.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ___UINT32BE:eqtype | [] | EverParse3d.Prelude.___UINT32BE | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Prims.eqtype | {
"end_col": 32,
"end_line": 209,
"start_col": 27,
"start_line": 209
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.