effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_eq8_lhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot U8.t
= x `U8.logand` bitfield_mask8 lo hi | val bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t
let bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t = | false | null | false | x `U8.logand` (bitfield_mask8 lo hi) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt8.logand",
"LowParse.BitFields.bitfield_mask8"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
inline_for_extraction
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) =
U8.lognot (bitfield_mask8 lo hi)
inline_for_extraction
let u8_shift_left
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_left` amount
in
y
inline_for_extraction
let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) })
= if lo = hi then begin
set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x
end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
inline_for_extraction
let bitfield_eq8_lhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_eq8_lhs (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8}) : Tot U8.t | [] | LowParse.BitFields.bitfield_eq8_lhs | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt8.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8} -> FStar.UInt8.t | {
"end_col": 36,
"end_line": 1190,
"start_col": 2,
"start_line": 1190
} |
FStar.Pervasives.Lemma | val nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2})
: Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i | val nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2})
: Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
let rec nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2})
: Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) = | false | null | true | M.pow2_le_compat n2 n1;
if i < n1
then if i = 0 then () else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
else nth_le_pow2_m #n2 x n1 i | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt.uint_t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"LowParse.BitFields.nth_size",
"Prims.op_Subtraction",
"Prims.op_Division",
"Prims.unit",
"LowParse.BitFields.nth_le_pow2_m",
"FStar.Math.Lemmas.pow2_le_compat",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.pow2",
"Prims.eq2",
"LowParse.BitFields.nth",
"Prims.op_AmpAmp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nth_size (n1: nat) (n2: nat{n1 <= n2}) (x: U.uint_t n1) (i: nat{i < n2})
: Lemma (x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i)) | [
"recursion"
] | LowParse.BitFields.nth_size | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | n1: Prims.nat -> n2: Prims.nat{n1 <= n2} -> x: FStar.UInt.uint_t n1 -> i: Prims.nat{i < n2}
-> FStar.Pervasives.Lemma
(ensures
x < Prims.pow2 n2 /\ LowParse.BitFields.nth x i == (i < n1 && LowParse.BitFields.nth x i)) | {
"end_col": 35,
"end_line": 706,
"start_col": 2,
"start_line": 700
} |
FStar.Pervasives.Lemma | val set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end | val set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat{bound <= tot /\ x < pow2 bound})
(lo: nat)
(hi: nat{lo <= hi /\ hi <= bound})
(v: ubitfield tot (hi - lo))
: Lemma (set_bitfield x lo hi v < pow2 bound) = | false | null | true | if bound = 0
then set_bitfield_empty x lo v
else
(M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.pow2",
"LowParse.BitFields.ubitfield",
"Prims.op_Subtraction",
"Prims.op_Equality",
"Prims.int",
"LowParse.BitFields.set_bitfield_empty",
"Prims.bool",
"LowParse.BitFields.set_bitfield_size",
"Prims.unit",
"FStar.Math.Lemmas.pow2_le_compat",
"Prims.l_True",
"Prims.squash",
"LowParse.BitFields.set_bitfield",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound) | [] | LowParse.BitFields.set_bitfield_bound | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt.uint_t tot ->
bound: Prims.nat{bound <= tot /\ x < Prims.pow2 bound} ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= bound} ->
v: LowParse.BitFields.ubitfield tot (hi - lo)
-> FStar.Pervasives.Lemma (ensures LowParse.BitFields.set_bitfield x lo hi v < Prims.pow2 bound) | {
"end_col": 5,
"end_line": 770,
"start_col": 2,
"start_line": 764
} |
FStar.Pervasives.Lemma | val get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
) | val get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
let get_bitfield_eq_2 (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma (get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) = | false | null | true | eq_nth (get_bitfield x lo hi)
((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
(fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot then nth_shift_left x (tot - hi) j) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.get_bitfield",
"FStar.UInt.shift_right",
"FStar.UInt.shift_left",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Prims.op_LessThan",
"LowParse.BitFields.nth_shift_left",
"Prims.bool",
"Prims.unit",
"Prims.int",
"LowParse.BitFields.nth_shift_right",
"LowParse.BitFields.nth_get_bitfield",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) | [] | LowParse.BitFields.get_bitfield_eq_2 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot}
-> FStar.Pervasives.Lemma
(ensures
LowParse.BitFields.get_bitfield x lo hi ==
FStar.UInt.shift_right (FStar.UInt.shift_left x (tot - hi)) (tot - hi + lo)) | {
"end_col": 3,
"end_line": 856,
"start_col": 2,
"start_line": 850
} |
FStar.Pervasives.Lemma | val bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g () | val bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo)
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo) = | false | null | true | let y = x `U.logand` (bitfield_mask tot lo hi) in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma (requires (y == w)) (ensures (z == v)) =
eq_nth z
v
(fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i then nth_le_pow2_m v (hi - lo) i else nth_shift_left v lo (i + lo))
in
let g () : Lemma (requires (z == v)) (ensures (y == w)) =
eq_nth y
w
(fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i then nth_get_bitfield x lo hi (i - lo))
in
Classical.move_requires f ();
Classical.move_requires g () | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.ubitfield",
"Prims.op_Subtraction",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.eq2",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"LowParse.BitFields.eq_nth",
"Prims.op_LessThan",
"LowParse.BitFields.nth_le_pow2_m",
"Prims.bool",
"LowParse.BitFields.nth_get_bitfield",
"LowParse.BitFields.nth_shift_left",
"LowParse.BitFields.nth_bitfield_mask",
"LowParse.BitFields.nth_logand",
"LowParse.BitFields.bitfield_mask",
"Prims.op_Addition",
"FStar.UInt.shift_left",
"LowParse.BitFields.get_bitfield",
"FStar.UInt.logand",
"Prims.l_True",
"Prims.l_iff"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` (bitfield_mask tot lo hi) == v `U.shift_left` lo) | [] | LowParse.BitFields.bitfield_eq_shift | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt.uint_t tot ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= tot} ->
v: LowParse.BitFields.ubitfield tot (hi - lo)
-> FStar.Pervasives.Lemma
(ensures
LowParse.BitFields.get_bitfield x lo hi == v <==>
FStar.UInt.logand x (LowParse.BitFields.bitfield_mask tot lo hi) == FStar.UInt.shift_left v lo
) | {
"end_col": 30,
"end_line": 610,
"start_col": 1,
"start_line": 577
} |
FStar.Pervasives.Lemma | val get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end | val get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
let get_bitfield_hi_lt_pow2 (#tot: pos) (x: U.uint_t tot) (mi: nat{mi <= tot})
: Lemma (requires (get_bitfield x mi tot == 0)) (ensures (x < pow2 mi)) = | false | null | true | if mi = 0
then get_bitfield_full x
else
if mi < tot
then
(M.pow2_le_compat tot mi;
eq_nth x
(x `U.logand` (pow2 mi - 1))
(fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then
(nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)));
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"LowParse.BitFields.get_bitfield_full",
"Prims.bool",
"Prims.op_LessThan",
"FStar.Math.Lemmas.lemma_mod_lt",
"Prims.pow2",
"Prims.unit",
"FStar.UInt.logand_mask",
"LowParse.BitFields.eq_nth",
"FStar.UInt.logand",
"Prims.op_Subtraction",
"LowParse.BitFields.nth_zero",
"LowParse.BitFields.nth_get_bitfield",
"LowParse.BitFields.nth_pow2_minus_one",
"FStar.Math.Lemmas.pow2_le_compat",
"Prims.eq2",
"LowParse.BitFields.get_bitfield",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0)) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi)) | [] | LowParse.BitFields.get_bitfield_hi_lt_pow2 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt.uint_t tot -> mi: Prims.nat{mi <= tot}
-> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield x mi tot == 0)
(ensures x < Prims.pow2 mi) | {
"end_col": 5,
"end_line": 487,
"start_col": 2,
"start_line": 472
} |
FStar.Pervasives.Lemma | val get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
) | val get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(lo': nat)
(hi': nat{lo' <= hi' /\ hi' <= hi - lo})
: Lemma (get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) = | false | null | true | eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi')
(get_bitfield x (lo + lo') (lo + hi'))
(fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i;
if i < hi' - lo' then nth_get_bitfield x lo hi (i + lo')) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.get_bitfield",
"Prims.op_Addition",
"Prims.op_LessThan",
"LowParse.BitFields.nth_get_bitfield",
"Prims.bool",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.l_or",
"Prims.pow2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi')) | [] | LowParse.BitFields.get_bitfield_get_bitfield | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt.uint_t tot ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= tot} ->
lo': Prims.nat ->
hi': Prims.nat{lo' <= hi' /\ hi' <= hi - lo}
-> FStar.Pervasives.Lemma
(ensures
LowParse.BitFields.get_bitfield (LowParse.BitFields.get_bitfield x lo hi) lo' hi' ==
LowParse.BitFields.get_bitfield x (lo + lo') (lo + hi')) | {
"end_col": 3,
"end_line": 501,
"start_col": 2,
"start_line": 496
} |
Prims.Tot | val u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount | val u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)})
let u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)}) = | false | null | false | if amount = 64ul then 0uL else x `U64.shift_right` amount | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"Prims.op_Equality",
"FStar.UInt32.__uint_to_t",
"FStar.UInt64.__uint_to_t",
"Prims.bool",
"FStar.UInt64.shift_right",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt.shift_right"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u64_shift_right (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_right` (U32.v amount)}) | [] | LowParse.BitFields.u64_shift_right | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt64.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 64}
-> y:
FStar.UInt64.t
{FStar.UInt64.v y == FStar.UInt.shift_right (FStar.UInt64.v x) (FStar.UInt32.v amount)} | {
"end_col": 59,
"end_line": 897,
"start_col": 2,
"start_line": 897
} |
FStar.Pervasives.Lemma | val set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
) | val set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
: Lemma (set_bitfield x lo hi (get_bitfield x lo hi) == x) = | false | null | true | eq_nth (set_bitfield x lo hi (get_bitfield x lo hi))
x
(fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi then nth_get_bitfield x lo hi (i - lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.set_bitfield",
"LowParse.BitFields.get_bitfield",
"Prims.op_LessThan",
"Prims.op_AmpAmp",
"LowParse.BitFields.nth_get_bitfield",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.unit",
"LowParse.BitFields.nth_set_bitfield",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x) | [] | LowParse.BitFields.set_bitfield_get_bitfield | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot}
-> FStar.Pervasives.Lemma
(ensures LowParse.BitFields.set_bitfield x lo hi (LowParse.BitFields.get_bitfield x lo hi) == x) | {
"end_col": 3,
"end_line": 625,
"start_col": 2,
"start_line": 621
} |
Prims.Tot | val bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64})
: Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end | val bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64})
: Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi})
let bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64})
: Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi}) = | false | null | false | if lo = hi
then 0uL
else
(bitfield_mask_eq_2 64 lo hi;
((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo))))
`U64.shift_left`
(U32.uint_to_t lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"FStar.UInt64.__uint_to_t",
"Prims.bool",
"FStar.UInt64.shift_left",
"FStar.UInt64.shift_right",
"FStar.UInt64.lognot",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"FStar.UInt64.t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.UInt64.v",
"LowParse.BitFields.bitfield_mask"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_mask64 (lo: nat) (hi: nat{lo <= hi /\ hi <= 64})
: Tot (x: U64.t{U64.v x == bitfield_mask 64 lo hi}) | [] | LowParse.BitFields.bitfield_mask64 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 64}
-> x: FStar.UInt64.t{FStar.UInt64.v x == LowParse.BitFields.bitfield_mask 64 lo hi} | {
"end_col": 5,
"end_line": 890,
"start_col": 2,
"start_line": 885
} |
Prims.Tot | val u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount | val u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)})
let u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)}) = | false | null | false | if amount = 64ul then 0uL else x `U64.shift_left` amount | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"Prims.op_Equality",
"FStar.UInt32.__uint_to_t",
"FStar.UInt64.__uint_to_t",
"Prims.bool",
"FStar.UInt64.shift_left",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"FStar.UInt64.v",
"FStar.UInt.shift_left"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u64_shift_left (x: U64.t) (amount: U32.t{U32.v amount <= 64})
: Tot (y: U64.t{U64.v y == (U64.v x) `U.shift_left` (U32.v amount)}) | [] | LowParse.BitFields.u64_shift_left | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt64.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 64}
-> y:
FStar.UInt64.t
{FStar.UInt64.v y == FStar.UInt.shift_left (FStar.UInt64.v x) (FStar.UInt32.v amount)} | {
"end_col": 58,
"end_line": 914,
"start_col": 2,
"start_line": 914
} |
Prims.Tot | val u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32})
: Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount | val u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32})
: Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)})
let u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32})
: Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)}) = | false | null | false | if amount = 32ul then 0ul else x `U32.shift_left` amount | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"Prims.op_Equality",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"FStar.UInt32.shift_left",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt32.n",
"FStar.UInt.shift_left"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u32_shift_left (x: U32.t) (amount: U32.t{U32.v amount <= 32})
: Tot (y: U32.t{U32.v y == (U32.v x) `U.shift_left` (U32.v amount)}) | [] | LowParse.BitFields.u32_shift_left | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt32.t -> amount: FStar.UInt32.t{FStar.UInt32.v amount <= 32}
-> y:
FStar.UInt32.t
{FStar.UInt32.v y == FStar.UInt.shift_left (FStar.UInt32.v x) (FStar.UInt32.v amount)} | {
"end_col": 58,
"end_line": 991,
"start_col": 2,
"start_line": 991
} |
FStar.Pervasives.Lemma | val lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end | val lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
let lt_pow2_get_bitfield_hi (#tot: pos) (x: U.uint_t tot) (mi: nat{mi <= tot})
: Lemma (requires (x < pow2 mi)) (ensures (get_bitfield x mi tot == 0)) = | false | null | true | if mi = 0
then get_bitfield_zero tot mi tot
else
if mi < tot
then
(M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot)
0
(fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"LowParse.BitFields.get_bitfield_zero",
"Prims.bool",
"Prims.op_LessThan",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.get_bitfield",
"LowParse.BitFields.nth_pow2_minus_one",
"Prims.unit",
"LowParse.BitFields.nth_get_bitfield",
"FStar.UInt.logand",
"Prims.op_Subtraction",
"Prims.pow2",
"LowParse.BitFields.nth_zero",
"FStar.UInt.logand_mask",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi)) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0)) | [] | LowParse.BitFields.lt_pow2_get_bitfield_hi | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt.uint_t tot -> mi: Prims.nat{mi <= tot}
-> FStar.Pervasives.Lemma (requires x < Prims.pow2 mi)
(ensures LowParse.BitFields.get_bitfield x mi tot == 0) | {
"end_col": 5,
"end_line": 463,
"start_col": 2,
"start_line": 451
} |
FStar.Pervasives.Lemma | val bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g () | val bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0)
let bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0) = | false | null | true | let y = x `U.logand` (bitfield_mask tot lo hi) in
let z = get_bitfield x lo hi in
let f () : Lemma (requires (y == 0)) (ensures (z == 0)) =
eq_nth z
0
(fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo then nth_zero tot (i + lo))
in
let g () : Lemma (requires (z == 0)) (ensures (y == 0)) =
eq_nth y
0
(fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then
(nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)))
in
Classical.move_requires f ();
Classical.move_requires g () | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.eq2",
"Prims.int",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"LowParse.BitFields.eq_nth",
"Prims.op_LessThan",
"Prims.op_AmpAmp",
"LowParse.BitFields.nth_zero",
"Prims.op_Subtraction",
"LowParse.BitFields.nth_get_bitfield",
"Prims.bool",
"LowParse.BitFields.nth_bitfield_mask",
"LowParse.BitFields.nth_logand",
"LowParse.BitFields.bitfield_mask",
"Prims.op_Addition",
"LowParse.BitFields.ubitfield",
"LowParse.BitFields.get_bitfield",
"FStar.UInt.logand",
"Prims.l_True",
"Prims.l_iff"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_is_zero (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot})
: Lemma (get_bitfield x lo hi == 0 <==> x `U.logand` (bitfield_mask tot lo hi) == 0) | [] | LowParse.BitFields.bitfield_is_zero | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt.uint_t tot -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot}
-> FStar.Pervasives.Lemma
(ensures
LowParse.BitFields.get_bitfield x lo hi == 0 <==>
FStar.UInt.logand x (LowParse.BitFields.bitfield_mask tot lo hi) == 0) | {
"end_col": 30,
"end_line": 565,
"start_col": 1,
"start_line": 535
} |
Prims.Tot | val set_bitfield_gen64
(x: U64.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo) | val set_bitfield_gen64
(x: U64.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)})
let set_bitfield_gen64
(x: U64.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)}) = | false | null | false | bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x
`U64.logand`
(U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo)))
`U64.shift_left`
lo)))
`U64.logor`
(v `U64.shift_left` lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"FStar.UInt64.v",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.UInt64.logor",
"FStar.UInt64.logand",
"FStar.UInt64.lognot",
"FStar.UInt64.shift_left",
"FStar.UInt64.shift_right",
"FStar.UInt64.__uint_to_t",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt64.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield_gen64
(x: U64.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t{U64.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U64.t{U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v)}) | [] | LowParse.BitFields.set_bitfield_gen64 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt64.t ->
lo: FStar.UInt32.t ->
hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 64} ->
v: FStar.UInt64.t{FStar.UInt64.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)}
-> y:
FStar.UInt64.t
{ FStar.UInt64.v y ==
LowParse.BitFields.set_bitfield (FStar.UInt64.v x)
(FStar.UInt32.v lo)
(FStar.UInt32.v hi)
(FStar.UInt64.v v) } | {
"end_col": 159,
"end_line": 956,
"start_col": 2,
"start_line": 955
} |
Prims.Tot | val not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi) | val not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi})
let not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi}) = | false | null | false | U16.lognot (bitfield_mask16 lo hi) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt16.lognot",
"LowParse.BitFields.bitfield_mask16",
"FStar.UInt16.t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt16.v",
"LowParse.BitFields.not_bitfield_mask"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val not_bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == not_bitfield_mask 16 lo hi}) | [] | LowParse.BitFields.not_bitfield_mask16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16}
-> x: FStar.UInt16.t{FStar.UInt16.v x == LowParse.BitFields.not_bitfield_mask 16 lo hi} | {
"end_col": 36,
"end_line": 1061,
"start_col": 2,
"start_line": 1061
} |
Prims.Tot | val set_bitfield32
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo) | val set_bitfield32
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)})
let set_bitfield32
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)}) = | false | null | false | (x `U32.logand` (not_bitfield_mask32 lo hi)) `U32.logor` (v `u32_shift_left` (U32.uint_to_t lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.UInt32.logor",
"FStar.UInt32.logand",
"LowParse.BitFields.not_bitfield_mask32",
"LowParse.BitFields.u32_shift_left",
"FStar.UInt32.uint_to_t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt32.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield32
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) lo hi (U32.v v)}) | [] | LowParse.BitFields.set_bitfield32 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt32.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 32} ->
v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt32.t
{ FStar.UInt32.v y ==
LowParse.BitFields.set_bitfield (FStar.UInt32.v x) lo hi (FStar.UInt32.v v) } | {
"end_col": 94,
"end_line": 998,
"start_col": 2,
"start_line": 998
} |
FStar.Pervasives.Lemma | val get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
) | val get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
let get_bitfield_set_bitfield_same
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(v: ubitfield tot (hi - lo))
: Lemma (get_bitfield (set_bitfield x lo hi v) lo hi == v) = | false | null | true | eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi)
v
(fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo then nth_set_bitfield x lo hi v (i + lo) else nth_le_pow2_m v (hi - lo) i) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.ubitfield",
"Prims.op_Subtraction",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.get_bitfield",
"LowParse.BitFields.set_bitfield",
"Prims.op_LessThan",
"LowParse.BitFields.nth_set_bitfield",
"Prims.op_Addition",
"Prims.bool",
"LowParse.BitFields.nth_le_pow2_m",
"Prims.unit",
"LowParse.BitFields.nth_get_bitfield",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v) | [] | LowParse.BitFields.get_bitfield_set_bitfield_same | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt.uint_t tot ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= tot} ->
v: LowParse.BitFields.ubitfield tot (hi - lo)
-> FStar.Pervasives.Lemma
(ensures LowParse.BitFields.get_bitfield (LowParse.BitFields.set_bitfield x lo hi v) lo hi == v) | {
"end_col": 3,
"end_line": 343,
"start_col": 2,
"start_line": 336
} |
Prims.Tot | val uint16 : uint_t 16 U16.t | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint16 : uint_t 16 U16.t = {
v = U16.v;
uint_to_t = U16.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen16 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen16 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield16 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield16 x lo hi z);
logor = (fun x y -> U16.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq16_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq16_rhs x lo hi z);
} | val uint16 : uint_t 16 U16.t
let uint16:uint_t 16 U16.t = | false | null | false | {
v = U16.v;
uint_to_t = U16.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen16 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen16 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield16 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield16 x lo hi z);
logor = (fun x y -> U16.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq16_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq16_rhs x lo hi z)
} | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"LowParse.BitFields.Mkuint_t",
"FStar.UInt16.n",
"FStar.UInt16.t",
"FStar.UInt16.v",
"FStar.UInt16.uint_to_t",
"FStar.UInt.uint_t",
"Prims.unit",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.get_bitfield_gen16",
"Prims.eq2",
"LowParse.BitFields.get_bitfield",
"Prims.pow2",
"Prims.op_Subtraction",
"LowParse.BitFields.set_bitfield_gen16",
"LowParse.BitFields.set_bitfield",
"Prims.nat",
"LowParse.BitFields.get_bitfield16",
"LowParse.BitFields.set_bitfield16",
"FStar.UInt16.logor",
"FStar.UInt.logor",
"LowParse.BitFields.bitfield_eq16_lhs",
"LowParse.BitFields.bitfield_eq16_rhs",
"Prims.l_iff",
"LowParse.BitFields.uint_t"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
inline_for_extraction
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) =
U8.lognot (bitfield_mask8 lo hi)
inline_for_extraction
let u8_shift_left
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_left` amount
in
y
inline_for_extraction
let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) })
= if lo = hi then begin
set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x
end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
inline_for_extraction
let bitfield_eq8_lhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot U8.t
= x `U8.logand` bitfield_mask8 lo hi
inline_for_extraction
let bitfield_eq8_rhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U8.v x) lo hi (U8.v v)
in
v `u8_shift_left` U32.uint_to_t lo
inline_for_extraction
noextract
let uint64 : uint_t 64 U64.t = {
v = U64.v;
uint_to_t = U64.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z);
logor = (fun x y -> U64.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z);
}
let uint64_v_eq x = ()
let uint64_uint_to_t_eq x = ()
inline_for_extraction
noextract
let uint32 : uint_t 32 U32.t = {
v = U32.v;
uint_to_t = U32.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z);
logor = (fun x y -> U32.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z);
}
let uint32_v_eq x = ()
let uint32_uint_to_t_eq x = ()
inline_for_extraction
noextract | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint16 : uint_t 16 U16.t | [] | LowParse.BitFields.uint16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.BitFields.uint_t 16 FStar.UInt16.t | {
"end_col": 67,
"end_line": 1253,
"start_col": 2,
"start_line": 1243
} |
Prims.Tot | val uint32 : uint_t 32 U32.t | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint32 : uint_t 32 U32.t = {
v = U32.v;
uint_to_t = U32.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z);
logor = (fun x y -> U32.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z);
} | val uint32 : uint_t 32 U32.t
let uint32:uint_t 32 U32.t = | false | null | false | {
v = U32.v;
uint_to_t = U32.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen32 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen32 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield32 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield32 x lo hi z);
logor = (fun x y -> U32.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq32_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq32_rhs x lo hi z)
} | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"LowParse.BitFields.Mkuint_t",
"FStar.UInt32.n",
"FStar.UInt32.t",
"FStar.UInt32.v",
"FStar.UInt32.uint_to_t",
"FStar.UInt.uint_t",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.get_bitfield_gen32",
"Prims.eq2",
"LowParse.BitFields.get_bitfield",
"Prims.pow2",
"Prims.op_Subtraction",
"LowParse.BitFields.set_bitfield_gen32",
"LowParse.BitFields.set_bitfield",
"Prims.nat",
"LowParse.BitFields.get_bitfield32",
"LowParse.BitFields.set_bitfield32",
"FStar.UInt32.logor",
"FStar.UInt.logor",
"LowParse.BitFields.bitfield_eq32_lhs",
"LowParse.BitFields.bitfield_eq32_rhs",
"Prims.l_iff",
"LowParse.BitFields.uint_t"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
inline_for_extraction
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) =
U8.lognot (bitfield_mask8 lo hi)
inline_for_extraction
let u8_shift_left
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_left` amount
in
y
inline_for_extraction
let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) })
= if lo = hi then begin
set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x
end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
inline_for_extraction
let bitfield_eq8_lhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot U8.t
= x `U8.logand` bitfield_mask8 lo hi
inline_for_extraction
let bitfield_eq8_rhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U8.v x) lo hi (U8.v v)
in
v `u8_shift_left` U32.uint_to_t lo
inline_for_extraction
noextract
let uint64 : uint_t 64 U64.t = {
v = U64.v;
uint_to_t = U64.uint_to_t;
v_uint_to_t = (fun _ -> ());
uint_to_t_v = (fun _ -> ());
get_bitfield_gen = (fun x lo hi -> get_bitfield_gen64 x lo hi);
set_bitfield_gen = (fun x lo hi z -> set_bitfield_gen64 x lo hi z);
get_bitfield = (fun x lo hi -> get_bitfield64 x lo hi);
set_bitfield = (fun x lo hi z -> set_bitfield64 x lo hi z);
logor = (fun x y -> U64.logor x y);
bitfield_eq_lhs = (fun x lo hi -> bitfield_eq64_lhs x lo hi);
bitfield_eq_rhs = (fun x lo hi z -> bitfield_eq64_rhs x lo hi z);
}
let uint64_v_eq x = ()
let uint64_uint_to_t_eq x = ()
inline_for_extraction
noextract | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint32 : uint_t 32 U32.t | [] | LowParse.BitFields.uint32 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.BitFields.uint_t 32 FStar.UInt32.t | {
"end_col": 67,
"end_line": 1234,
"start_col": 2,
"start_line": 1224
} |
Prims.Tot | val set_bitfield8
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) })
= if lo = hi then begin
set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x
end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v | val set_bitfield8
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)})
let set_bitfield8
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)}) = | false | null | false | if lo = hi
then
(set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x)
else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt8.v",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.op_Equality",
"Prims.unit",
"LowParse.BitFields.set_bitfield_empty",
"Prims.bool",
"LowParse.BitFields.set_bitfield_gen8",
"FStar.UInt32.uint_to_t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
inline_for_extraction
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) =
U8.lognot (bitfield_mask8 lo hi)
inline_for_extraction
let u8_shift_left
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_left` amount
in
y
inline_for_extraction
let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield8
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{U8.v y == set_bitfield (U8.v x) lo hi (U8.v v)}) | [] | LowParse.BitFields.set_bitfield8 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt8.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 8} ->
v: FStar.UInt8.t{FStar.UInt8.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt8.t
{FStar.UInt8.v y == LowParse.BitFields.set_bitfield (FStar.UInt8.v x) lo hi (FStar.UInt8.v v)} | {
"end_col": 70,
"end_line": 1184,
"start_col": 2,
"start_line": 1181
} |
Prims.Tot | val get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) | val get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)}) = | false | null | false | get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.shift_right",
"FStar.UInt32.shift_left",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.add",
"Prims.unit",
"LowParse.BitFields.get_bitfield_eq_2",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt32.n",
"LowParse.BitFields.get_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32}) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_gen32 (x lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t{U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi)}) | [] | LowParse.BitFields.get_bitfield_gen32 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt32.t ->
lo: FStar.UInt32.t ->
hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 32}
-> y:
FStar.UInt32.t
{ FStar.UInt32.v y ==
LowParse.BitFields.get_bitfield (FStar.UInt32.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) } | {
"end_col": 95,
"end_line": 1021,
"start_col": 2,
"start_line": 1020
} |
Prims.Tot | val bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end | val bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi})
let bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi}) = | false | null | false | if lo = hi
then 0us
else
(bitfield_mask_eq_2 16 lo hi;
((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo))))
`U16.shift_left`
(U32.uint_to_t lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"FStar.UInt16.__uint_to_t",
"Prims.bool",
"FStar.UInt16.shift_left",
"FStar.UInt16.shift_right",
"FStar.UInt16.lognot",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"FStar.UInt16.t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt16.n",
"FStar.UInt16.v",
"LowParse.BitFields.bitfield_mask"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_mask16 (lo: nat) (hi: nat{lo <= hi /\ hi <= 16})
: Tot (x: U16.t{U16.v x == bitfield_mask 16 lo hi}) | [] | LowParse.BitFields.bitfield_mask16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 16}
-> x: FStar.UInt16.t{FStar.UInt16.v x == LowParse.BitFields.bitfield_mask 16 lo hi} | {
"end_col": 5,
"end_line": 1044,
"start_col": 2,
"start_line": 1039
} |
Prims.Tot | val bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end | val bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi})
let bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi}) = | false | null | false | if lo = hi
then 0uy
else
(bitfield_mask_eq_2 8 lo hi;
((U8.lognot 0uy) `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo))))
`U8.shift_left`
(U32.uint_to_t lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"FStar.UInt8.__uint_to_t",
"Prims.bool",
"FStar.UInt8.shift_left",
"FStar.UInt8.shift_right",
"FStar.UInt8.lognot",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"FStar.UInt8.t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"FStar.UInt8.v",
"LowParse.BitFields.bitfield_mask"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_mask8 (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (x: U8.t{U8.v x == bitfield_mask 8 lo hi}) | [] | LowParse.BitFields.bitfield_mask8 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8}
-> x: FStar.UInt8.t{FStar.UInt8.v x == LowParse.BitFields.bitfield_mask 8 lo hi} | {
"end_col": 5,
"end_line": 1117,
"start_col": 2,
"start_line": 1112
} |
FStar.Pervasives.Lemma | val get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f () | val get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= tot})
(lo': nat{lo <= lo'})
(hi': nat{lo' <= hi' /\ hi' <= hi})
: Lemma (ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) = | false | null | true | let f () : Lemma (requires (get_bitfield x lo hi == 0)) (ensures (get_bitfield x lo' hi' == 0)) =
eq_nth (get_bitfield x lo' hi')
0
(fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo')
then
(nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)))
in
Classical.move_requires f () | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.eq2",
"Prims.int",
"LowParse.BitFields.get_bitfield",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"LowParse.BitFields.eq_nth",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"LowParse.BitFields.nth_zero",
"Prims.op_Addition",
"LowParse.BitFields.nth_get_bitfield",
"Prims.bool",
"Prims.l_True",
"Prims.l_imp"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 2,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0)) | [] | LowParse.BitFields.get_bitfield_zero_inner | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt.uint_t tot ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= tot} ->
lo': Prims.nat{lo <= lo'} ->
hi': Prims.nat{lo' <= hi' /\ hi' <= hi}
-> FStar.Pervasives.Lemma
(ensures
LowParse.BitFields.get_bitfield x lo hi == 0 ==>
LowParse.BitFields.get_bitfield x lo' hi' == 0) | {
"end_col": 30,
"end_line": 525,
"start_col": 1,
"start_line": 511
} |
Prims.Tot | val bitfield_eq64_rhs
(x: U64.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 64})
(v: U64.t{U64.v v < pow2 (hi - lo)})
: Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo | val bitfield_eq64_rhs
(x: U64.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 64})
(v: U64.t{U64.v v < pow2 (hi - lo)})
: Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v})
let bitfield_eq64_rhs
(x: U64.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 64})
(v: U64.t{U64.v v < pow2 (hi - lo)})
: Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v}) = | false | null | false | [@@ inline_let ]let _ = bitfield_eq_shift (U64.v x) lo hi (U64.v v) in
v `u64_shift_left` (U32.uint_to_t lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt64.v",
"Prims.pow2",
"Prims.op_Subtraction",
"LowParse.BitFields.u64_shift_left",
"FStar.UInt32.uint_to_t",
"Prims.unit",
"LowParse.BitFields.bitfield_eq_shift",
"FStar.UInt64.n",
"Prims.l_iff",
"Prims.eq2",
"LowParse.BitFields.bitfield_eq64_lhs",
"LowParse.BitFields.get_bitfield64"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_eq64_rhs
(x: U64.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 64})
(v: U64.t{U64.v v < pow2 (hi - lo)})
: Tot (y: U64.t{bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v}) | [] | LowParse.BitFields.bitfield_eq64_rhs | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt64.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 64} ->
v: FStar.UInt64.t{FStar.UInt64.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt64.t
{ LowParse.BitFields.bitfield_eq64_lhs x lo hi == y <==>
LowParse.BitFields.get_bitfield64 x lo hi == v } | {
"end_col": 37,
"end_line": 939,
"start_col": 2,
"start_line": 936
} |
Prims.Tot | val get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) | val get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)})
let get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)}) = | false | null | false | get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
let bf:U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"FStar.UInt16.shift_right",
"FStar.UInt32.add",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt16.shift_left",
"Prims.unit",
"LowParse.BitFields.get_bitfield_eq_2",
"FStar.UInt16.v",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt16.n",
"LowParse.BitFields.get_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16}) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_gen16 (x: U16.t) (lo: U32.t) (hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t{U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi)}) | [] | LowParse.BitFields.get_bitfield_gen16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt16.t ->
lo: FStar.UInt32.t ->
hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 16}
-> y:
FStar.UInt16.t
{ FStar.UInt16.v y ==
LowParse.BitFields.get_bitfield (FStar.UInt16.v x) (FStar.UInt32.v lo) (FStar.UInt32.v hi) } | {
"end_col": 57,
"end_line": 1100,
"start_col": 2,
"start_line": 1097
} |
Prims.Tot | val set_bitfield_gen16
(x: U16.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo) | val set_bitfield_gen16
(x: U16.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)})
let set_bitfield_gen16
(x: U16.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)}) = | false | null | false | bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x
`U16.logand`
(U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo)))
`U16.shift_left`
lo)))
`U16.logor`
(v `U16.shift_left` lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"FStar.UInt16.v",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.UInt16.logor",
"FStar.UInt16.logand",
"FStar.UInt16.lognot",
"FStar.UInt16.shift_left",
"FStar.UInt16.shift_right",
"FStar.UInt16.__uint_to_t",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt16.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield_gen16
(x: U16.t)
(lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t{U16.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v)}) | [] | LowParse.BitFields.set_bitfield_gen16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt16.t ->
lo: FStar.UInt32.t ->
hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 16} ->
v: FStar.UInt16.t{FStar.UInt16.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)}
-> y:
FStar.UInt16.t
{ FStar.UInt16.v y ==
LowParse.BitFields.set_bitfield (FStar.UInt16.v x)
(FStar.UInt32.v lo)
(FStar.UInt32.v hi)
(FStar.UInt16.v v) } | {
"end_col": 159,
"end_line": 1108,
"start_col": 2,
"start_line": 1107
} |
Prims.Tot | val bitfield_eq32_rhs
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo | val bitfield_eq32_rhs
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v})
let bitfield_eq32_rhs
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v}) = | false | null | false | [@@ inline_let ]let _ = bitfield_eq_shift (U32.v x) lo hi (U32.v v) in
v `u32_shift_left` (U32.uint_to_t lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.pow2",
"Prims.op_Subtraction",
"LowParse.BitFields.u32_shift_left",
"FStar.UInt32.uint_to_t",
"Prims.unit",
"LowParse.BitFields.bitfield_eq_shift",
"FStar.UInt32.n",
"Prims.l_iff",
"Prims.eq2",
"LowParse.BitFields.bitfield_eq32_lhs",
"LowParse.BitFields.get_bitfield32"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_eq32_rhs
(x: U32.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 32})
(v: U32.t{U32.v v < pow2 (hi - lo)})
: Tot (y: U32.t{bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v}) | [] | LowParse.BitFields.bitfield_eq32_rhs | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt32.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 32} ->
v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt32.t
{ LowParse.BitFields.bitfield_eq32_lhs x lo hi == y <==>
LowParse.BitFields.get_bitfield32 x lo hi == v } | {
"end_col": 37,
"end_line": 1014,
"start_col": 2,
"start_line": 1011
} |
FStar.Pervasives.Lemma | val logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n})
: Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m | val logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n})
: Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b))
let logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n})
: Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b)) = | false | null | true | if m = 0
then U.logor_lemma_1 a
else
if m = n
then
(M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b)
else U.logor_disjoint a b m | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt.logor_lemma_1",
"Prims.bool",
"Prims.l_or",
"Prims.op_GreaterThan",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.unit",
"FStar.UInt.logor_commutative",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.pow2",
"FStar.UInt.logor_disjoint",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_LessThan",
"Prims.squash",
"FStar.UInt.logor",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
)) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val logor_disjoint (#n: pos) (a b: U.uint_t n) (m: nat{m <= n})
: Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (U.logor #n a b == a + b)) | [] | LowParse.BitFields.logor_disjoint | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> m: Prims.nat{m <= n}
-> FStar.Pervasives.Lemma (requires a % Prims.pow2 m == 0 /\ b < Prims.pow2 m)
(ensures FStar.UInt.logor a b == a + b) | {
"end_col": 26,
"end_line": 254,
"start_col": 2,
"start_line": 245
} |
Prims.Tot | val set_bitfield16
(x: U16.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 16})
(v: U16.t{U16.v v < pow2 (hi - lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo) | val set_bitfield16
(x: U16.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 16})
(v: U16.t{U16.v v < pow2 (hi - lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)})
let set_bitfield16
(x: U16.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 16})
(v: U16.t{U16.v v < pow2 (hi - lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)}) = | false | null | false | (x `U16.logand` (not_bitfield_mask16 lo hi)) `U16.logor` (v `u16_shift_left` (U32.uint_to_t lo)) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt16.v",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.UInt16.logor",
"FStar.UInt16.logand",
"LowParse.BitFields.not_bitfield_mask16",
"LowParse.BitFields.u16_shift_left",
"FStar.UInt32.uint_to_t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt16.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield16
(x: U16.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 16})
(v: U16.t{U16.v v < pow2 (hi - lo)})
: Tot (y: U16.t{U16.v y == set_bitfield (U16.v x) lo hi (U16.v v)}) | [] | LowParse.BitFields.set_bitfield16 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt16.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 16} ->
v: FStar.UInt16.t{FStar.UInt16.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt16.t
{ FStar.UInt16.v y ==
LowParse.BitFields.set_bitfield (FStar.UInt16.v x) lo hi (FStar.UInt16.v v) } | {
"end_col": 94,
"end_line": 1075,
"start_col": 2,
"start_line": 1075
} |
Prims.Tot | val bitfield_eq8_rhs
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bitfield_eq8_rhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U8.v x) lo hi (U8.v v)
in
v `u8_shift_left` U32.uint_to_t lo | val bitfield_eq8_rhs
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v})
let bitfield_eq8_rhs
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v}) = | false | null | false | [@@ inline_let ]let _ = bitfield_eq_shift (U8.v x) lo hi (U8.v v) in
v `u8_shift_left` (U32.uint_to_t lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt8.v",
"Prims.pow2",
"Prims.op_Subtraction",
"LowParse.BitFields.u8_shift_left",
"FStar.UInt32.uint_to_t",
"Prims.unit",
"LowParse.BitFields.bitfield_eq_shift",
"FStar.UInt8.n",
"Prims.l_iff",
"Prims.eq2",
"LowParse.BitFields.bitfield_eq8_lhs",
"LowParse.BitFields.get_bitfield8"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi)
inline_for_extraction
let not_bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == not_bitfield_mask 8 lo hi }) =
U8.lognot (bitfield_mask8 lo hi)
inline_for_extraction
let u8_shift_left
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_left` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_left` amount
in
y
inline_for_extraction
let set_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) lo hi (U8.v v) })
= if lo = hi then begin
set_bitfield_empty #8 (U8.v x) lo (U8.v v);
x
end else set_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) v
inline_for_extraction
let bitfield_eq8_lhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot U8.t
= x `U8.logand` bitfield_mask8 lo hi
inline_for_extraction
let bitfield_eq8_rhs
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
(v: U8.t { U8.v v < pow2 (hi - lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bitfield_eq8_rhs
(x: U8.t)
(lo: nat)
(hi: nat{lo <= hi /\ hi <= 8})
(v: U8.t{U8.v v < pow2 (hi - lo)})
: Tot (y: U8.t{bitfield_eq8_lhs x lo hi == y <==> (get_bitfield8 x lo hi <: U8.t) == v}) | [] | LowParse.BitFields.bitfield_eq8_rhs | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt8.t ->
lo: Prims.nat ->
hi: Prims.nat{lo <= hi /\ hi <= 8} ->
v: FStar.UInt8.t{FStar.UInt8.v v < Prims.pow2 (hi - lo)}
-> y:
FStar.UInt8.t
{ LowParse.BitFields.bitfield_eq8_lhs x lo hi == y <==>
LowParse.BitFields.get_bitfield8 x lo hi == v } | {
"end_col": 36,
"end_line": 1200,
"start_col": 2,
"start_line": 1197
} |
Prims.Tot | val set_bitfield_gen32
(x lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo) | val set_bitfield_gen32
(x lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)})
let set_bitfield_gen32
(x lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)}) = | false | null | false | bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x
`U32.logand`
(U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo)))
`U32.shift_left`
lo)))
`U32.logor`
(v `U32.shift_left` lo) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.UInt32.logor",
"FStar.UInt32.logand",
"FStar.UInt32.lognot",
"FStar.UInt32.shift_left",
"FStar.UInt32.shift_right",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.sub",
"Prims.unit",
"LowParse.BitFields.bitfield_mask_eq_2",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt32.n",
"LowParse.BitFields.set_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) }) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val set_bitfield_gen32
(x lo: U32.t)
(hi: U32.t{U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t{U32.v v < pow2 (U32.v hi - U32.v lo)})
: Tot (y: U32.t{U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v)}) | [] | LowParse.BitFields.set_bitfield_gen32 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
x: FStar.UInt32.t ->
lo: FStar.UInt32.t ->
hi: FStar.UInt32.t{FStar.UInt32.v lo < FStar.UInt32.v hi /\ FStar.UInt32.v hi <= 32} ->
v: FStar.UInt32.t{FStar.UInt32.v v < Prims.pow2 (FStar.UInt32.v hi - FStar.UInt32.v lo)}
-> y:
FStar.UInt32.t
{ FStar.UInt32.v y ==
LowParse.BitFields.set_bitfield (FStar.UInt32.v x)
(FStar.UInt32.v lo)
(FStar.UInt32.v hi)
(FStar.UInt32.v v) } | {
"end_col": 159,
"end_line": 1031,
"start_col": 2,
"start_line": 1030
} |
FStar.Pervasives.Lemma | val logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n})
: Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end | val logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n})
: Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m)
let logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n})
: Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) = | false | null | true | M.pow2_le_compat n m;
if m = 0
then U.logand_lemma_1 a
else
if m = n
then
(U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m))
else U.logand_mask a m | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"FStar.UInt.logand_lemma_1",
"Prims.bool",
"Prims.l_or",
"Prims.op_GreaterThan",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.pow2",
"Prims.unit",
"FStar.UInt.logand_lemma_2",
"FStar.UInt.logand_mask",
"FStar.Math.Lemmas.pow2_le_compat",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.UInt.logand",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\ | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val logand_mask (#n: pos) (a: U.uint_t n) (m: nat{m <= n})
: Lemma (pow2 m <= pow2 n /\ U.logand a (pow2 m - 1) == a % pow2 m) | [] | LowParse.BitFields.logand_mask | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | a: FStar.UInt.uint_t n -> m: Prims.nat{m <= n}
-> FStar.Pervasives.Lemma
(ensures
Prims.pow2 m <= Prims.pow2 n /\ FStar.UInt.logand a (Prims.pow2 m - 1) == a % Prims.pow2 m) | {
"end_col": 5,
"end_line": 177,
"start_col": 2,
"start_line": 167
} |
Prims.Tot | val get_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) lo hi}) | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) lo hi })
= if lo = hi then 0uy else
get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) | val get_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) lo hi})
let get_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) lo hi}) = | false | null | false | if lo = hi then 0uy else get_bitfield_gen8 x (U32.uint_to_t lo) (U32.uint_to_t hi) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"FStar.UInt8.__uint_to_t",
"Prims.bool",
"LowParse.BitFields.get_bitfield_gen8",
"FStar.UInt32.uint_to_t",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"FStar.UInt8.v",
"LowParse.BitFields.get_bitfield"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
)
#pop-options
let get_bitfield_partition_2
(#tot: pos)
(mid: nat { mid <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x 0 mid == get_bitfield y 0 mid /\
get_bitfield x mid tot == get_bitfield y mid tot
))
(ensures (
x == y
))
= get_bitfield_partition_2_gen 0 mid tot x y;
get_bitfield_full x;
get_bitfield_full y
let rec get_bitfield_partition'
(#tot: pos)
(x y: U.uint_t tot)
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot })
(l: list nat)
: Lemma
(requires (get_bitfield_partition_prop x y lo hi l))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi))
(decreases l)
= match l with
| [] -> ()
| mi :: q ->
get_bitfield_partition' x y mi hi q;
get_bitfield_partition_2_gen lo mi hi x y
let get_bitfield_partition = get_bitfield_partition'
let rec nth_size (n1: nat) (n2: nat { n1 <= n2 }) (x: U.uint_t n1) (i: nat { i < n2 }) : Lemma
(x < pow2 n2 /\ nth #n2 x i == (i < n1 && nth #n1 x i))
= M.pow2_le_compat n2 n1;
if i < n1
then begin
if i = 0
then ()
else nth_size (n1 - 1) (n2 - 1) (x / 2) (i - 1)
end else nth_le_pow2_m #n2 x n1 i
let get_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
: Lemma
(x < pow2 tot2 /\ (get_bitfield #tot1 x lo hi <: nat) == (get_bitfield #tot2 x lo hi <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (get_bitfield #tot1 x lo hi) (get_bitfield #tot2 x lo hi) (fun i ->
let y1 = nth #tot2 (get_bitfield #tot1 x lo hi) i in
let y2 = nth #tot2 (get_bitfield #tot2 x lo hi) i in
nth_get_bitfield #tot2 x lo hi i;
assert (y2 == (i < hi - lo && nth #tot2 x (i + lo)));
nth_size tot1 tot2 (get_bitfield #tot1 x lo hi) i;
assert (y1 == (i < tot1 && nth #tot1 (get_bitfield #tot1 x lo hi) i));
if i < tot1
then begin
nth_get_bitfield #tot1 x lo hi i;
assert (y1 == (i < hi - lo && nth #tot1 x (i + lo)));
if i < hi - lo
then nth_size tot1 tot2 x (i + lo)
end
)
let set_bitfield_size
(tot1 tot2: pos)
(x: nat { x < pow2 tot1 /\ tot1 <= tot2 })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= tot1 })
(v: ubitfield tot1 (hi - lo))
: Lemma
(x < pow2 tot2 /\ v < pow2 tot2 /\ (set_bitfield #tot1 x lo hi v <: nat) == (set_bitfield #tot2 x lo hi v <: nat))
= M.pow2_le_compat tot2 tot1;
eq_nth #tot2 (set_bitfield #tot1 x lo hi v) (set_bitfield #tot2 x lo hi v) (fun i ->
let y1 = nth #tot2 (set_bitfield #tot1 x lo hi v) i in
let y2 = nth #tot2 (set_bitfield #tot2 x lo hi v) i in
nth_set_bitfield #tot2 x lo hi v i;
nth_size tot1 tot2 (set_bitfield #tot1 x lo hi v) i;
nth_size tot1 tot2 x i;
if i < tot1
then begin
nth_set_bitfield #tot1 x lo hi v i;
if lo <= i && i < hi
then nth_size tot1 tot2 v (i - lo)
end
)
let set_bitfield_bound
(#tot: pos)
(x: U.uint_t tot)
(bound: nat { bound <= tot /\ x < pow2 bound })
(lo: nat)
(hi: nat { lo <= hi /\ hi <= bound })
(v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v < pow2 bound)
= if bound = 0
then set_bitfield_empty x lo v
else begin
M.pow2_le_compat tot bound;
M.pow2_le_compat bound (hi - lo);
set_bitfield_size bound tot x lo hi v
end
#push-options "--z3rlimit 64 --z3cliopt smt.arith.nl=false --fuel 0 --ifuel 0"
let set_bitfield_set_bitfield_get_bitfield
#tot x lo hi lo' hi' v'
= set_bitfield_bound (get_bitfield x lo hi) (hi - lo) lo' hi' v' ;
let x1 = set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') in
let x2 = set_bitfield x (lo + lo') (lo + hi') v' in
eq_nth x1 x2 (fun i ->
nth_set_bitfield x lo hi (set_bitfield (get_bitfield x lo hi) lo' hi' v') i;
nth_set_bitfield x (lo + lo') (lo + hi') v' i ;
if lo <= i && i < hi
then begin
assert (nth x1 i == nth (set_bitfield (get_bitfield x lo hi) lo' hi' v') (i - lo));
nth_set_bitfield (get_bitfield x lo hi) lo' hi' v' (i - lo);
if lo' <= i - lo && i - lo < hi'
then begin
()
end
else begin
assert (nth x2 i == nth x i);
assert (nth x1 i == nth (get_bitfield x lo hi) (i - lo));
nth_get_bitfield x lo hi (i - lo);
assert (i - lo + lo == i)
end
end
)
#pop-options
let mod_1 (x: int) : Lemma
(x % 1 == 0)
= ()
let div_1 (x: int) : Lemma
(x / 1 == x)
= ()
let get_bitfield_eq (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(get_bitfield x lo hi == (x / pow2 lo) % pow2 (hi - lo))
= if hi - lo = 0
then begin
assert (hi == lo);
assert_norm (pow2 0 == 1);
mod_1 (x / pow2 lo);
get_bitfield_empty #tot x lo
end else if hi - lo = tot
then begin
assert (hi == tot);
assert (lo == 0);
assert_norm (pow2 0 == 1);
div_1 x;
M.small_mod x (pow2 tot);
get_bitfield_full #tot x
end else begin
assert (hi - lo < tot);
U.shift_right_logand_lemma #tot x (bitfield_mask tot lo hi) lo;
U.shift_right_value_lemma #tot (bitfield_mask tot lo hi) lo;
M.multiple_division_lemma (pow2 (hi - lo) - 1) (pow2 lo);
U.logand_mask #tot (U.shift_right x lo) (hi - lo);
U.shift_right_value_lemma #tot x lo
end
let pow2_m_minus_one_eq
(n: nat)
(m: nat)
: Lemma
(requires (m <= n))
(ensures (
(pow2 n - 1) / pow2 m == pow2 (n - m) - 1
))
= M.pow2_le_compat n m;
M.pow2_plus (n - m) m;
M.division_definition (pow2 n - 1) (pow2 m) (pow2 (n - m) - 1)
let get_bitfield_eq_2
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == (x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo))
= eq_nth (get_bitfield x lo hi) ((x `U.shift_left` (tot - hi)) `U.shift_right` (tot - hi + lo)) (fun i ->
nth_get_bitfield x lo hi i;
nth_shift_right (x `U.shift_left` (tot - hi)) (tot - hi + lo) i;
let j = i + (tot - hi + lo) in
if j < tot
then nth_shift_left x (tot - hi) j
)
#restart-solver
let bitfield_mask_eq_2 (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
bitfield_mask tot lo hi == U.shift_left #tot (U.lognot 0 `U.shift_right` (tot - (hi - lo))) lo
)
= bitfield_mask_eq tot lo hi;
pow2_m_minus_one_eq tot (tot - (hi - lo));
U.lemma_lognot_value_mod #tot 0;
U.shift_right_value_lemma #tot (pow2 tot - 1) (tot - (hi - lo))
let set_bitfield_eq
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(set_bitfield x lo hi v == (x `U.logand` U.lognot ((U.lognot 0 `U.shift_right` (tot - (hi - lo))) `U.shift_left` lo)) `U.logor` (v `U.shift_left` lo))
= bitfield_mask_eq_2 tot lo hi
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U16 = FStar.UInt16
module U8 = FStar.UInt8
(* Instantiate to UInt64 *)
#push-options "--z3rlimit 32"
inline_for_extraction
let bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == bitfield_mask 64 lo hi }) =
if lo = hi
then 0uL
else begin
bitfield_mask_eq_2 64 lo hi;
(U64.lognot 0uL `U64.shift_right` (64ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U64.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u64_shift_right
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_right` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_right` amount
inline_for_extraction
let get_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) lo hi })
= (x `U64.logand` bitfield_mask64 lo hi) `u64_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask64 (lo: nat) (hi: nat { lo <= hi /\ hi <= 64 }) : Tot (x: U64.t { U64.v x == not_bitfield_mask 64 lo hi }) =
U64.lognot (bitfield_mask64 lo hi)
inline_for_extraction
let u64_shift_left
(x: U64.t)
(amount: U32.t { U32.v amount <= 64 })
: Tot (y: U64.t { U64.v y == U64.v x `U.shift_left` U32.v amount })
= if amount = 64ul then 0uL else x `U64.shift_left` amount
inline_for_extraction
let set_bitfield64
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) lo hi (U64.v v) })
= (x `U64.logand` not_bitfield_mask64 lo hi) `U64.logor` (v `u64_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq64_lhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
: Tot U64.t
= x `U64.logand` bitfield_mask64 lo hi
#push-options "--z3rlimit 16"
inline_for_extraction
let bitfield_eq64_rhs
(x: U64.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 64})
(v: U64.t { U64.v v < pow2 (hi - lo) })
: Tot (y: U64.t { bitfield_eq64_lhs x lo hi == y <==> (get_bitfield64 x lo hi <: U64.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U64.v x) lo hi (U64.v v)
in
v `u64_shift_left` U32.uint_to_t lo
#pop-options
inline_for_extraction
let get_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
: Tot (y: U64.t { U64.v y == get_bitfield (U64.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #64 (U64.v x) (U32.v lo) (U32.v hi);
(x `U64.shift_left` (64ul `U32.sub` hi)) `U64.shift_right` ((64ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen64
(x: U64.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 64})
(v: U64.t { U64.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U64.t { U64.v y == set_bitfield (U64.v x) (U32.v lo) (U32.v hi) (U64.v v) })
= bitfield_mask_eq_2 64 (U32.v lo) (U32.v hi);
(x `U64.logand` U64.lognot (((U64.lognot 0uL) `U64.shift_right` (64ul `U32.sub` (hi `U32.sub` lo))) `U64.shift_left` lo)) `U64.logor` (v `U64.shift_left` lo)
(* Instantiate to UInt32 *)
inline_for_extraction
let bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == bitfield_mask 32 lo hi }) =
if lo = hi
then 0ul
else begin
bitfield_mask_eq_2 32 lo hi;
(U32.lognot 0ul `U32.shift_right` (32ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U32.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u32_shift_right
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_right` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_right` amount
inline_for_extraction
let get_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) lo hi })
= (x `U32.logand` bitfield_mask32 lo hi) `u32_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask32 (lo: nat) (hi: nat { lo <= hi /\ hi <= 32 }) : Tot (x: U32.t { U32.v x == not_bitfield_mask 32 lo hi }) =
U32.lognot (bitfield_mask32 lo hi)
inline_for_extraction
let u32_shift_left
(x: U32.t)
(amount: U32.t { U32.v amount <= 32 })
: Tot (y: U32.t { U32.v y == U32.v x `U.shift_left` U32.v amount })
= if amount = 32ul then 0ul else x `U32.shift_left` amount
inline_for_extraction
let set_bitfield32
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) lo hi (U32.v v) })
= (x `U32.logand` not_bitfield_mask32 lo hi) `U32.logor` (v `u32_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq32_lhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
: Tot U32.t
= x `U32.logand` bitfield_mask32 lo hi
inline_for_extraction
let bitfield_eq32_rhs
(x: U32.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 32})
(v: U32.t { U32.v v < pow2 (hi - lo) })
: Tot (y: U32.t { bitfield_eq32_lhs x lo hi == y <==> (get_bitfield32 x lo hi <: U32.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U32.v x) lo hi (U32.v v)
in
v `u32_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
: Tot (y: U32.t { U32.v y == get_bitfield (U32.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #32 (U32.v x) (U32.v lo) (U32.v hi);
(x `U32.shift_left` (32ul `U32.sub` hi)) `U32.shift_right` ((32ul `U32.sub` hi) `U32.add` lo)
#push-options "--z3rlimit 16"
inline_for_extraction
let set_bitfield_gen32
(x: U32.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 32})
(v: U32.t { U32.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U32.t { U32.v y == set_bitfield (U32.v x) (U32.v lo) (U32.v hi) (U32.v v) })
= bitfield_mask_eq_2 32 (U32.v lo) (U32.v hi);
(x `U32.logand` U32.lognot (((U32.lognot 0ul) `U32.shift_right` (32ul `U32.sub` (hi `U32.sub` lo))) `U32.shift_left` lo)) `U32.logor` (v `U32.shift_left` lo)
#pop-options
(* Instantiate to UInt16 *)
inline_for_extraction
let bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == bitfield_mask 16 lo hi }) =
if lo = hi
then 0us
else begin
bitfield_mask_eq_2 16 lo hi;
(U16.lognot 0us `U16.shift_right` (16ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U16.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u16_shift_right
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_right` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_right` amount
inline_for_extraction
let get_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) lo hi })
= (x `U16.logand` bitfield_mask16 lo hi) `u16_shift_right` (U32.uint_to_t lo)
inline_for_extraction
let not_bitfield_mask16 (lo: nat) (hi: nat { lo <= hi /\ hi <= 16 }) : Tot (x: U16.t { U16.v x == not_bitfield_mask 16 lo hi }) =
U16.lognot (bitfield_mask16 lo hi)
inline_for_extraction
let u16_shift_left
(x: U16.t)
(amount: U32.t { U32.v amount <= 16 })
: Tot (y: U16.t { U16.v y == U16.v x `U.shift_left` U32.v amount })
= if amount = 16ul then 0us else x `U16.shift_left` amount
inline_for_extraction
let set_bitfield16
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) lo hi (U16.v v) })
= (x `U16.logand` not_bitfield_mask16 lo hi) `U16.logor` (v `u16_shift_left` U32.uint_to_t lo)
inline_for_extraction
let bitfield_eq16_lhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
: Tot U16.t
= x `U16.logand` bitfield_mask16 lo hi
inline_for_extraction
let bitfield_eq16_rhs
(x: U16.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 16})
(v: U16.t { U16.v v < pow2 (hi - lo) })
: Tot (y: U16.t { bitfield_eq16_lhs x lo hi == y <==> (get_bitfield16 x lo hi <: U16.t) == v })
= [@inline_let] let _ =
bitfield_eq_shift (U16.v x) lo hi (U16.v v)
in
v `u16_shift_left` U32.uint_to_t lo
inline_for_extraction
let get_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
: Tot (y: U16.t { U16.v y == get_bitfield (U16.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #16 (U16.v x) (U32.v lo) (U32.v hi);
(* avoid integer promotion again *)
let bf : U16.t = x `U16.shift_left` (16ul `U32.sub` hi) in
bf `U16.shift_right` ((16ul `U32.sub` hi) `U32.add` lo)
inline_for_extraction
let set_bitfield_gen16
(x: U16.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 16})
(v: U16.t { U16.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U16.t { U16.v y == set_bitfield (U16.v x) (U32.v lo) (U32.v hi) (U16.v v) })
= bitfield_mask_eq_2 16 (U32.v lo) (U32.v hi);
(x `U16.logand` U16.lognot (((U16.lognot 0us) `U16.shift_right` (16ul `U32.sub` (hi `U32.sub` lo))) `U16.shift_left` lo)) `U16.logor` (v `U16.shift_left` lo)
inline_for_extraction
let bitfield_mask8 (lo: nat) (hi: nat { lo <= hi /\ hi <= 8 }) : Tot (x: U8.t { U8.v x == bitfield_mask 8 lo hi }) =
if lo = hi
then 0uy
else begin
bitfield_mask_eq_2 8 lo hi;
(U8.lognot 0uy `U8.shift_right` (8ul `U32.sub` (U32.uint_to_t (hi - lo)))) `U8.shift_left` U32.uint_to_t lo
end
inline_for_extraction
let u8_shift_right
(x: U8.t)
(amount: U32.t { U32.v amount <= 8 })
: Tot (y: U8.t { U8.v y == U8.v x `U.shift_right` U32.v amount })
= let y =
if amount = 8ul then 0uy else x `U8.shift_right` amount
in
y
// inline_for_extraction // no, because of https://github.com/FStarLang/karamel/issues/102
let get_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
: Tot (y: U8.t { U8.v y == get_bitfield (U8.v x) (U32.v lo) (U32.v hi) })
= get_bitfield_eq_2 #8 (U8.v x) (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = x `U8.shift_left` (8ul `U32.sub` hi) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` hi) `U32.add` lo) in
op2
// inline_for_extraction // no, same
let set_bitfield_gen8
(x: U8.t) (lo: U32.t) (hi: U32.t {U32.v lo < U32.v hi /\ U32.v hi <= 8})
(v: U8.t { U8.v v < pow2 (U32.v hi - U32.v lo) })
: Tot (y: U8.t { U8.v y == set_bitfield (U8.v x) (U32.v lo) (U32.v hi) (U8.v v) })
= bitfield_mask_eq_2 8 (U32.v lo) (U32.v hi);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op0 = (U8.lognot 0uy) in
let op1 = op0 `U8.shift_right` (8ul `U32.sub` (hi `U32.sub` lo)) in
let op2 = op1 `U8.shift_left` lo in
let op3 = U8.lognot op2 in
let op4 = x `U8.logand` op3 in
let op5 = v `U8.shift_left` lo in
let op6 = op4 `U8.logor` op5 in
op6
inline_for_extraction
let get_bitfield8
(x: U8.t) (lo: nat) (hi: nat {lo <= hi /\ hi <= 8}) | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield8 (x: U8.t) (lo: nat) (hi: nat{lo <= hi /\ hi <= 8})
: Tot (y: U8.t{U8.v y == get_bitfield (U8.v x) lo hi}) | [] | LowParse.BitFields.get_bitfield8 | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x: FStar.UInt8.t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= 8}
-> y: FStar.UInt8.t{FStar.UInt8.v y == LowParse.BitFields.get_bitfield (FStar.UInt8.v x) lo hi} | {
"end_col": 59,
"end_line": 1160,
"start_col": 2,
"start_line": 1159
} |
FStar.Pervasives.Lemma | val get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowParse.Math",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
= eq_nth (get_bitfield x lo hi) (get_bitfield y lo hi) (fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then begin
if i < mi - lo
then begin
nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i
end else begin
nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi)
end
end
) | val get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
))
let get_bitfield_partition_2_gen
(#tot: pos)
(lo mi: nat)
(hi: nat{lo <= mi /\ mi <= hi /\ hi <= tot})
(x y: U.uint_t tot)
: Lemma
(requires
(get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi))
(ensures (get_bitfield x lo hi == get_bitfield y lo hi)) = | false | null | true | eq_nth (get_bitfield x lo hi)
(get_bitfield y lo hi)
(fun i ->
let a = nth (get_bitfield x lo hi) i in
let b = nth (get_bitfield y lo hi) i in
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i;
if i < hi - lo
then
if i < mi - lo
then
(nth_get_bitfield x lo mi i;
nth_get_bitfield y lo mi i)
else
(nth_get_bitfield x mi hi (i + lo - mi);
nth_get_bitfield y mi hi (i + lo - mi))) | {
"checked_file": "LowParse.BitFields.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Math.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.BitFields.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt.uint_t",
"LowParse.BitFields.eq_nth",
"LowParse.BitFields.get_bitfield",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"LowParse.BitFields.nth_get_bitfield",
"Prims.unit",
"Prims.bool",
"Prims.op_Addition",
"LowParse.BitFields.nth",
"Prims.eq2",
"LowParse.BitFields.ubitfield",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.BitFields
module U = FStar.UInt
module M = LowParse.Math
open FStar.Mul
inline_for_extraction
let bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Tot (U.uint_t tot) =
[@inline_let] let _ =
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
in
normalize_term ((pow2 (hi - lo) - 1) * pow2 lo)
let bitfield_mask_eq (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) : Lemma
(
0 <= pow2 (hi - lo) - 1 /\
pow2 (hi - lo) - 1 < pow2 tot /\
bitfield_mask tot lo hi == U.shift_left #tot (pow2 (hi - lo) - 1) lo
)
=
M.pow2_le_compat tot (hi - lo);
U.shift_left_value_lemma #tot (pow2 (hi - lo) - 1) lo;
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo;
M.lemma_mult_nat (pow2 (hi - lo) - 1) (pow2 lo);
M.lemma_mult_lt' (pow2 lo) (pow2 (hi - lo) - 1) (pow2 (hi - lo));
M.swap_mul (pow2 (hi - lo)) (pow2 lo);
M.swap_mul (pow2 (hi - lo) - 1) (pow2 lo);
M.modulo_lemma ((pow2 (hi - lo) - 1) * pow2 lo) (pow2 tot)
(* Cf. U.index_to_vec_ones; WHY WHY WHY is it private? *)
val nth_pow2_minus_one' : #n:pos -> m:nat{m <= n} -> i:nat{i < n} ->
Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(i < n - m ==> U.nth #n (pow2 m - 1) i == false) /\
(n - m <= i ==> U.nth #n (pow2 m - 1) i == true)))
let rec nth_pow2_minus_one' #n m i =
let a = pow2 m - 1 in
M.pow2_le_compat n m;
if m = 0 then U.one_to_vec_lemma #n i
else if m = n then U.ones_to_vec_lemma #n i
else if i = n - 1 then ()
else nth_pow2_minus_one' #(n - 1) (m - 1) i
(* Rephrasing with a more natural nth *)
let nth (#n: pos) (a: U.uint_t n) (i: nat {i < n}) : Tot bool =
U.nth a (n - 1 - i)
let eq_nth
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(f: (
(i: nat { i < n }) ->
Lemma
(nth a i == nth b i)
))
: Lemma
(a == b)
= let g
(i: nat { i < n })
: Lemma
(U.nth a i == U.nth b i)
= f (n - 1 - i)
in
Classical.forall_intro g;
U.nth_lemma a b
let nth_pow2_minus_one
(#n:pos)
(m:nat{m <= n})
(i:nat{i < n})
: Lemma (requires True)
(ensures (pow2 m <= pow2 n /\
(nth #n (pow2 m - 1) i == (i < m))))
= nth_pow2_minus_one' #n m (n - 1 - i)
let nth_shift_left
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_left a s) i == (s <= i && nth a (i - s)))
= ()
let nth_shift_right
(#n: pos)
(a: U.uint_t n)
(s: nat)
(i: nat {i < n})
: Lemma
(nth (U.shift_right a s) i == (i + s < n && nth a (i + s)))
= ()
let nth_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (bitfield_mask tot lo hi) i == (lo <= i && i < hi))
= bitfield_mask_eq tot lo hi;
nth_shift_left #tot (pow2 (hi - lo) - 1) lo i;
if i < lo
then ()
else begin
nth_pow2_minus_one #tot (hi - lo) (i - lo)
end
let get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Tot (U.uint_t tot) =
(x `U.logand` bitfield_mask tot lo hi) `U.shift_right` lo
let nth_logand
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logand` b) i == (nth a i && nth b i))
= ()
let nth_logor
(#n: pos)
(a b: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (a `U.logor` b) i == (nth a i || nth b i))
= ()
let nth_lognot
(#n: pos)
(a: U.uint_t n)
(i: nat {i < n})
: Lemma
(nth (U.lognot a) i == not (nth a i))
= ()
let nth_get_bitfield_raw (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield_raw x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_shift_right (x `U.logand` bitfield_mask tot lo hi) lo i;
if i + lo < tot
then begin
nth_logand x (bitfield_mask tot lo hi) (i + lo);
nth_bitfield_mask tot lo hi (i + lo)
end else
()
let get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) : Lemma
(let y = get_bitfield_raw x lo hi in
pow2 (hi - lo) - 1 < pow2 tot /\
y == y `U.logand` (pow2 (hi - lo) - 1)
)
= nth_pow2_minus_one #tot (hi - lo) 0;
let y = get_bitfield_raw x lo hi in
eq_nth y (y `U.logand` (pow2 (hi - lo) - 1)) (fun i ->
nth_get_bitfield_raw x lo hi i;
nth_pow2_minus_one #tot (hi - lo) i;
nth_logand y (pow2 (hi - lo) - 1) i
)
#push-options "--z3rlimit 16"
let logand_mask
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
: Lemma
(pow2 m <= pow2 n /\
U.logand a (pow2 m - 1) == a % pow2 m)
= M.pow2_le_compat n m;
if m = 0
then begin
U.logand_lemma_1 a
end else if m = n
then begin
U.logand_lemma_2 a;
M.modulo_lemma a (pow2 m)
end else begin
U.logand_mask a m
end
#pop-options
let nth_le_pow2_m
(#n: pos)
(a: U.uint_t n)
(m: nat {m <= n})
(i: nat {i < n})
: Lemma
(requires (a < pow2 m /\ m <= i))
(ensures (nth a i == false))
= logand_mask a m;
M.modulo_lemma a (pow2 m);
nth_pow2_minus_one #n m i;
nth_logand a (pow2 m - 1) i
let get_bitfield_raw_bounded
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield_raw x lo hi < pow2 (hi - lo))
= get_bitfield_raw_eq_logand_pow2_hi_lo_minus_one x lo hi;
logand_mask (get_bitfield_raw x lo hi) (hi - lo);
M.lemma_mod_lt x (pow2 (hi - lo))
let get_bitfield
(#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Tot (ubitfield tot (hi - lo))
= get_bitfield_raw_bounded x lo hi;
get_bitfield_raw x lo hi
let nth_get_bitfield (#tot: pos) (x: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot}) (i: nat {i < tot}) : Lemma
(nth (get_bitfield x lo hi) i == (i < hi - lo && nth x (i + lo)))
= nth_get_bitfield_raw x lo hi i
let get_bitfield_logor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logor` y) lo hi == get_bitfield x lo hi `U.logor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logor` y) lo hi) (get_bitfield x lo hi `U.logor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
let get_bitfield_logxor
(#tot: pos) (x y: U.uint_t tot) (lo: nat) (hi: nat {lo <= hi /\ hi <= tot})
: Lemma
(get_bitfield (x `U.logxor` y) lo hi == get_bitfield x lo hi `U.logxor` get_bitfield y lo hi)
= eq_nth (get_bitfield (x `U.logxor` y) lo hi) (get_bitfield x lo hi `U.logxor` get_bitfield y lo hi) (fun i ->
nth_get_bitfield (x `U.logxor` y) lo hi i;
nth_get_bitfield x lo hi i;
nth_get_bitfield y lo hi i
)
#push-options "--z3rlimit 16"
let logor_disjoint
(#n: pos)
(a: U.uint_t n)
(b: U.uint_t n)
(m: nat {m <= n})
: Lemma
(requires (
a % pow2 m == 0 /\
b < pow2 m
))
(ensures (U.logor #n a b == a + b))
= if m = 0
then
U.logor_lemma_1 a
else if m = n
then begin
M.modulo_lemma a (pow2 n);
U.logor_commutative a b;
U.logor_lemma_1 b
end else
U.logor_disjoint a b m
#pop-options
let bitfield_mask_mod_pow2_lo
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (m: nat {m <= lo})
: Lemma
(bitfield_mask tot lo hi % pow2 m == 0)
= M.pow2_multiplication_modulo_lemma_1 (pow2 (hi - lo) - 1) m lo
let bitfield_mask_lt_pow2_hi
(tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(bitfield_mask tot lo hi < pow2 hi)
=
M.pow2_le_compat tot hi;
M.pow2_plus (hi - lo) lo
inline_for_extraction
let not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Tot (x: U.uint_t tot {x == U.lognot (bitfield_mask tot lo hi)})
= [@inline_let]
let a = bitfield_mask tot hi tot in
[@inline_let]
let b = bitfield_mask tot 0 lo in
[@inline_let]
let _ =
bitfield_mask_mod_pow2_lo tot hi tot lo;
bitfield_mask_lt_pow2_hi tot 0 lo;
logor_disjoint a b lo;
eq_nth (a `U.logor` b) (U.lognot (bitfield_mask tot lo hi)) (fun i ->
nth_bitfield_mask tot hi tot i;
nth_bitfield_mask tot 0 lo i;
nth_bitfield_mask tot lo hi i
)
in
normalize_term (a + b)
let nth_not_bitfield_mask (tot: pos) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (i: nat {i < tot}) : Lemma
(nth (not_bitfield_mask tot lo hi) i == (i < lo || hi <= i))
= nth_lognot (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i
let set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Tot (U.uint_t tot)
= (x `U.logand` not_bitfield_mask tot lo hi) `U.logor` (v `U.shift_left` lo)
let nth_set_bitfield
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(i: nat {i < tot})
: Lemma
(nth (set_bitfield x lo hi v) i == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
=
let y = nth (set_bitfield x lo hi v) i in
nth_logor (x `U.logand` not_bitfield_mask tot lo hi) (v `U.shift_left` lo) i;
assert (y == (nth (x `U.logand` not_bitfield_mask tot lo hi) i || nth (v `U.shift_left` lo) i));
nth_logand x (not_bitfield_mask tot lo hi) i;
assert (y == ((nth x i && nth (not_bitfield_mask tot lo hi) i) || nth (v `U.shift_left` lo) i));
nth_not_bitfield_mask tot lo hi i;
assert (y == ((nth x i && (i < lo || hi <= i)) || nth (v `U.shift_left` lo) i));
nth_shift_left v lo i;
assert (y == ((nth x i && (i < lo || hi <= i)) || (lo <= i && nth v (i - lo))));
if (lo <= i && i < hi) then
assert (y == nth v (i - lo))
else if (i < hi)
then
assert (y == nth x i)
else begin
nth_le_pow2_m v (hi - lo) (i - lo);
assert (y == nth x i)
end;
assert (y == (if lo <= i && i < hi then nth v (i - lo) else nth x i))
#push-options "--z3rlimit 32"
let get_bitfield_set_bitfield_same
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield (set_bitfield x lo hi v) lo hi == v)
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo hi) v (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo hi i;
if i < hi - lo
then begin
nth_set_bitfield x lo hi v (i + lo)
end else
nth_le_pow2_m v (hi - lo) i
)
#pop-options
let get_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot })
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (get_bitfield (set_bitfield x lo hi v) lo' hi' == get_bitfield x lo' hi'))
= eq_nth (get_bitfield (set_bitfield x lo hi v) lo' hi') (get_bitfield x lo' hi') (fun i ->
nth_get_bitfield (set_bitfield x lo hi v) lo' hi' i;
nth_get_bitfield x lo' hi' i;
if i < hi' - lo'
then begin
nth_set_bitfield x lo hi v (i + lo')
end
)
let set_bitfield_set_bitfield_same_gen
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= lo /\ hi <= hi' /\ hi' <= tot })
(v' : ubitfield tot (hi' - lo'))
: Lemma
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield x lo' hi' v'))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield x lo' hi' v') (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_set_bitfield_other
(#tot: pos) (x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (v: ubitfield tot (hi - lo))
(lo' : nat) (hi' : nat { lo' <= hi' /\ hi' <= tot }) (v' : ubitfield tot (hi' - lo'))
: Lemma
(requires (hi' <= lo \/ hi <= lo'))
(ensures (set_bitfield (set_bitfield x lo hi v) lo' hi' v' == set_bitfield (set_bitfield x lo' hi' v') lo hi v))
= eq_nth (set_bitfield (set_bitfield x lo hi v) lo' hi' v') (set_bitfield (set_bitfield x lo' hi' v') lo hi v) (fun i ->
nth_set_bitfield (set_bitfield x lo hi v) lo' hi' v' i;
nth_set_bitfield x lo hi v i;
nth_set_bitfield (set_bitfield x lo' hi' v') lo hi v i;
nth_set_bitfield x lo' hi' v' i
)
let set_bitfield_full
(#tot: pos) (x: U.uint_t tot) (y: ubitfield tot tot)
: Lemma
(set_bitfield x 0 tot y == y)
= eq_nth (set_bitfield x 0 tot y) y (fun i ->
nth_set_bitfield x 0 tot y i
)
let set_bitfield_empty
(#tot: pos) (x: U.uint_t tot) (i: nat { i <= tot }) (y: ubitfield tot 0)
: Lemma
(set_bitfield x i i y == x)
= eq_nth (set_bitfield x i i y) x (fun j ->
nth_set_bitfield x i i y j
)
let nth_zero
(tot: pos)
(i: nat {i < tot})
: Lemma
(nth #tot 0 i == false)
= U.zero_nth_lemma #tot i
let get_bitfield_zero
(tot: pos)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield #tot 0 lo hi == 0)
= eq_nth (get_bitfield #tot 0 lo hi) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield #tot 0 lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
let get_bitfield_full
(#tot: pos)
(x: U.uint_t tot)
: Lemma
(get_bitfield x 0 tot == x)
= eq_nth (get_bitfield x 0 tot) x (fun i ->
nth_get_bitfield x 0 tot i
)
let get_bitfield_empty
(#tot: pos)
(x: U.uint_t tot)
(i: nat { i <= tot })
: Lemma
(get_bitfield x i i == 0)
= eq_nth (get_bitfield x i i) 0 (fun j ->
nth_get_bitfield x i i j;
nth_zero tot j
)
let lt_pow2_get_bitfield_hi
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (x < pow2 mi))
(ensures (get_bitfield x mi tot == 0))
= if mi = 0
then get_bitfield_zero tot mi tot
else if mi < tot
then begin
M.modulo_lemma x (pow2 mi);
U.logand_mask x mi;
eq_nth (get_bitfield x mi tot) 0 (fun i ->
nth_zero tot i;
nth_get_bitfield x mi tot i;
nth_get_bitfield (x `U.logand` (pow2 mi - 1)) mi tot i;
nth_pow2_minus_one #tot mi i
)
end
let get_bitfield_hi_lt_pow2
(#tot: pos)
(x: U.uint_t tot)
(mi: nat {mi <= tot})
: Lemma
(requires (get_bitfield x mi tot == 0))
(ensures (x < pow2 mi))
= if mi = 0
then get_bitfield_full x
else if mi < tot
then begin
M.pow2_le_compat tot mi;
eq_nth x (x `U.logand` (pow2 mi - 1)) (fun i ->
nth_pow2_minus_one #tot mi i;
if mi <= i
then begin
nth_get_bitfield x mi tot (i - mi);
nth_zero tot (i - mi)
end
);
U.logand_mask x mi;
M.lemma_mod_lt x (pow2 mi)
end
let get_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat) (hi': nat { lo' <= hi' /\ hi' <= hi - lo })
: Lemma
(get_bitfield (get_bitfield x lo hi) lo' hi' == get_bitfield x (lo + lo') (lo + hi'))
= eq_nth (get_bitfield (get_bitfield x lo hi) lo' hi') (get_bitfield x (lo + lo') (lo + hi')) (fun i ->
nth_get_bitfield (get_bitfield x lo hi) lo' hi' i;
nth_get_bitfield x (lo + lo') (lo + hi') i ;
if i < hi' - lo'
then nth_get_bitfield x lo hi (i + lo')
)
#push-options "--z3rlimit_factor 2"
let get_bitfield_zero_inner
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(lo': nat { lo <= lo' }) (hi': nat { lo' <= hi' /\ hi' <= hi })
: Lemma
(ensures (get_bitfield x lo hi == 0 ==> get_bitfield x lo' hi' == 0))
= let f () : Lemma
(requires (get_bitfield x lo hi == 0))
(ensures (get_bitfield x lo' hi' == 0))
=
eq_nth (get_bitfield x lo' hi') 0 (fun i ->
nth_get_bitfield x lo' hi' i;
nth_zero tot i;
if (i < hi' - lo') then begin
nth_get_bitfield x lo hi (i + lo' - lo);
nth_zero tot (i + lo');
nth_zero tot (i + lo' - lo)
end
)
in
Classical.move_requires f ()
#pop-options
#push-options "--z3rlimit 32"
let bitfield_is_zero
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(get_bitfield x lo hi == 0 <==> x `U.logand` bitfield_mask tot lo hi == 0)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let f () : Lemma
(requires (y == 0))
(ensures (z == 0))
= eq_nth z 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if i < hi - lo
then nth_zero tot (i + lo)
)
in
let g () : Lemma
(requires (z == 0))
(ensures (y == 0))
= eq_nth y 0 (fun i ->
nth_zero tot i;
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
if lo <= i && i < hi
then begin
nth_get_bitfield x lo hi (i - lo);
nth_zero tot (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let bitfield_eq_shift
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
(v: ubitfield tot (hi - lo))
: Lemma
(get_bitfield x lo hi == v <==> x `U.logand` bitfield_mask tot lo hi == v `U.shift_left` lo)
=
let y = x `U.logand` bitfield_mask tot lo hi in
let z = get_bitfield x lo hi in
let w = v `U.shift_left` lo in
let f () : Lemma
(requires (y == w))
(ensures (z == v))
= eq_nth z v (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_get_bitfield x lo hi i;
if hi - lo <= i
then nth_le_pow2_m v (hi - lo) i
else nth_shift_left v lo (i + lo)
)
in
let g () : Lemma
(requires (z == v))
(ensures (y == w))
= eq_nth y w (fun i ->
nth_logand x (bitfield_mask tot lo hi) i;
nth_bitfield_mask tot lo hi i;
nth_shift_left v lo i;
if hi <= i
then
nth_le_pow2_m v (hi - lo) (i - lo)
else if lo <= i
then begin
nth_get_bitfield x lo hi (i - lo)
end
)
in
Classical.move_requires f ();
Classical.move_requires g ()
#pop-options
#push-options "--z3rlimit 16"
let set_bitfield_get_bitfield
(#tot: pos)
(x: U.uint_t tot)
(lo: nat) (hi: nat { lo <= hi /\ hi <= tot })
: Lemma
(set_bitfield x lo hi (get_bitfield x lo hi) == x)
= eq_nth (set_bitfield x lo hi (get_bitfield x lo hi)) x (fun i ->
nth_set_bitfield x lo hi (get_bitfield x lo hi) i;
if lo <= i && i < hi
then nth_get_bitfield x lo hi (i - lo)
)
#pop-options
#push-options "--z3rlimit 16"
let get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi | false | false | LowParse.BitFields.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield_partition_2_gen
(#tot: pos)
(lo: nat)
(mi: nat)
(hi: nat { lo <= mi /\ mi <= hi /\ hi <= tot })
(x y: U.uint_t tot)
: Lemma
(requires (
get_bitfield x lo mi == get_bitfield y lo mi /\
get_bitfield x mi hi == get_bitfield y mi hi
))
(ensures (
get_bitfield x lo hi == get_bitfield y lo hi
)) | [] | LowParse.BitFields.get_bitfield_partition_2_gen | {
"file_name": "src/lowparse/LowParse.BitFields.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
lo: Prims.nat ->
mi: Prims.nat ->
hi: Prims.nat{lo <= mi /\ mi <= hi /\ hi <= tot} ->
x: FStar.UInt.uint_t tot ->
y: FStar.UInt.uint_t tot
-> FStar.Pervasives.Lemma
(requires
LowParse.BitFields.get_bitfield x lo mi == LowParse.BitFields.get_bitfield y lo mi /\
LowParse.BitFields.get_bitfield x mi hi == LowParse.BitFields.get_bitfield y mi hi)
(ensures LowParse.BitFields.get_bitfield x lo hi == LowParse.BitFields.get_bitfield y lo hi) | {
"end_col": 3,
"end_line": 660,
"start_col": 2,
"start_line": 644
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o)) | let fill_elems_st = | false | null | false |
#t: Type0 ->
#a: Type0 ->
h0: mem ->
n: size_t ->
output: lbuffer t n ->
refl: (mem -> i: size_nat{i <= v n} -> GTot a) ->
footprint:
(i: size_nat{i <= v n}
-> GTot
(l:
B.loc
{ B.loc_disjoint l (loc output) /\
B.address_liveness_insensitive_locs `B.loc_includes` l })) ->
spec: (mem -> GTot (i: size_nat{i < v n} -> a -> a & t)) ->
impl:
(i: size_t{v i < v n}
-> Stack unit
(requires fun h -> modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures
fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
(footprint (v i + 1)) `B.loc_includes` (footprint (v i)) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2)))
-> Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures
fun _ _ h1 ->
modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o)) | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.gsub",
"FStar.UInt32.__uint_to_t",
"Prims.eq2",
"Prims.op_Addition",
"Lib.Sequence.index",
"Lib.Buffer.as_seq",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.live",
"Lib.Sequence.seq",
"Prims.nat",
"Lib.Sequence.length",
"Prims.l_or",
"FStar.Seq.Base.length",
"Prims.logical",
"Hacl.Spec.Lib.generate_elems"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract | false | true | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fill_elems_st : Type | [] | Hacl.Impl.Lib.fill_elems_st | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type | {
"end_col": 57,
"end_line": 44,
"start_col": 2,
"start_line": 21
} |
|
FStar.HyperStack.ST.Stack | val update_sub_f_carry:
#a:Type
-> #b:Type
-> #len:size_t
-> h0:mem
-> buf:lbuffer a len
-> start:size_t
-> n:size_t{v start + v n <= v len}
-> spec:(mem -> GTot (b & Seq.lseq a (v n)))
-> f:(unit -> Stack b
(requires fun h -> h0 == h)
(ensures fun _ r h1 ->
(let b = gsub buf start n in modifies (loc b) h0 h1 /\
(let (c, res) = spec h0 in r == c /\ as_seq h1 b == res)))) ->
Stack b
(requires fun h -> h0 == h /\ live h buf)
(ensures fun h0 r h1 -> modifies (loc buf) h0 h1 /\
(let (c, res) = spec h0 in r == c /\
as_seq h1 buf == LSeq.update_sub #a #(v len) (as_seq h0 buf) (v start) (v n) res)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_sub_f_carry #a #b #len h0 buf start n spec f =
let tmp = sub buf start n in
let h0 = ST.get () in
let r = f () in
let h1 = ST.get () in
assert (v (len -! (start +! n)) == v len - v (start +! n));
B.modifies_buffer_elim (B.gsub #a buf 0ul start) (loc tmp) h0 h1;
B.modifies_buffer_elim (B.gsub #a buf (start +! n) (len -! (start +! n))) (loc tmp) h0 h1;
LSeq.lemma_update_sub (as_seq h0 buf) (v start) (v n) (snd (spec h0)) (as_seq h1 buf);
r | val update_sub_f_carry:
#a:Type
-> #b:Type
-> #len:size_t
-> h0:mem
-> buf:lbuffer a len
-> start:size_t
-> n:size_t{v start + v n <= v len}
-> spec:(mem -> GTot (b & Seq.lseq a (v n)))
-> f:(unit -> Stack b
(requires fun h -> h0 == h)
(ensures fun _ r h1 ->
(let b = gsub buf start n in modifies (loc b) h0 h1 /\
(let (c, res) = spec h0 in r == c /\ as_seq h1 b == res)))) ->
Stack b
(requires fun h -> h0 == h /\ live h buf)
(ensures fun h0 r h1 -> modifies (loc buf) h0 h1 /\
(let (c, res) = spec h0 in r == c /\
as_seq h1 buf == LSeq.update_sub #a #(v len) (as_seq h0 buf) (v start) (v n) res))
let update_sub_f_carry #a #b #len h0 buf start n spec f = | true | null | false | let tmp = sub buf start n in
let h0 = ST.get () in
let r = f () in
let h1 = ST.get () in
assert (v (len -! (start +! n)) == v len - v (start +! n));
B.modifies_buffer_elim (B.gsub #a buf 0ul start) (loc tmp) h0 h1;
B.modifies_buffer_elim (B.gsub #a buf (start +! n) (len -! (start +! n))) (loc tmp) h0 h1;
LSeq.lemma_update_sub (as_seq h0 buf) (v start) (v n) (snd (spec h0)) (as_seq h1 buf);
r | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [] | [
"Lib.IntTypes.size_t",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.lbuffer",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.lseq",
"Prims.unit",
"Prims.eq2",
"Prims.l_and",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"FStar.Seq.Base.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.Buffer.as_seq",
"Prims.logical",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.gsub",
"Lib.Sequence.lemma_update_sub",
"FStar.Pervasives.Native.snd",
"LowStar.Monotonic.Buffer.modifies_buffer_elim",
"LowStar.Buffer.trivial_preorder",
"LowStar.Buffer.gsub",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Subtraction_Bang",
"FStar.UInt32.__uint_to_t",
"Prims._assert",
"Prims.int",
"Prims.op_Subtraction",
"FStar.HyperStack.ST.get",
"Lib.Buffer.sub"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
inline_for_extraction noextract
val fill_elems : fill_elems_st
let fill_elems #t #a h0 n output refl footprint spec impl =
[@inline_let]
let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i)) in
[@inline_let]
let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@inline_let]
let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get() in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i)
);
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0))
inline_for_extraction noextract
val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o))
let fill_blocks4 #t #a h0 n4 output refl footprint spec impl =
fill_blocks h0 4ul n4 output (Loops.fixed_a a)
(fun h i -> refl h (4 * i))
(fun i -> footprint (4 * i))
(fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0))
(fun i ->
let h1 = ST.get () in
impl (4ul *! i);
impl (4ul *! i +! 1ul);
impl (4ul *! i +! 2ul);
impl (4ul *! i +! 3ul);
let h2 = ST.get () in
assert (
let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in
let c1, e1 = spec h0 (4 * v i + 1) c0 in
let c2, e2 = spec h0 (4 * v i + 2) c1 in
let c3, e3 = spec h0 (4 * v i + 3) c2 in
let res = LSeq.create4 e0 e1 e2 e3 in
LSeq.create4_lemma e0 e1 e2 e3;
let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in
refl h2 (4 * v i + 4) == c3 /\
(LSeq.eq_intro res res1; res1 `LSeq.equal` res))
)
inline_for_extraction noextract
val fill_elems4: fill_elems_st
let fill_elems4 #t #a h0 n output refl footprint spec impl =
[@inline_let] let k = n /. 4ul in
let tmp = sub output 0ul (4ul *! k) in
fill_blocks4 #t #a h0 k tmp refl footprint spec (fun i -> impl i);
let h1 = ST.get () in
assert (4 * v k + v (n -! 4ul *! k) = v n);
B.modifies_buffer_elim (B.gsub #t output (4ul *! k) (n -! 4ul *! k)) (footprint (4 * v k) |+| loc tmp) h0 h1;
assert (modifies (footprint (4 * v k) |+| loc (gsub output 0ul (4ul *! k))) h0 h1);
let inv (h:mem) (i:nat{4 * v k <= i /\ i <= v n}) =
modifies (footprint i |+| loc (gsub output 0ul (size i))) h0 h /\
(let (c, res) = Loops.repeat_right (v n / 4 * 4) i (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) in
refl h i == c /\ as_seq h (gsub output 0ul (size i)) == res) in
Loops.eq_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)));
Lib.Loops.for (k *! 4ul) n inv
(fun i ->
impl i;
let h = ST.get () in
assert (v (i +! 1ul) = v i + 1);
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i);
Loops.unfold_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) (v i)
);
S.lemma_generate_elems4 (v n) (v n) (spec h0) (refl h0 0)
inline_for_extraction noextract
val lemma_eq_disjoint:
#a1:Type
-> #a2:Type
-> #a3:Type
-> clen1:size_t
-> clen2:size_t
-> clen3:size_t
-> b1:lbuffer a1 clen1
-> b2:lbuffer a2 clen2
-> b3:lbuffer a3 clen3
-> n:size_t{v n < v clen2 /\ v n < v clen1}
-> h0:mem
-> h1:mem -> Lemma
(requires
live h0 b1 /\ live h0 b2 /\ live h0 b3 /\
eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\
modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1)
(ensures
(let b2s = gsub b2 n (clen2 -! n) in
as_seq h0 b2s == as_seq h1 b2s /\
Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n)))
let lemma_eq_disjoint #a1 #a2 #a3 clen1 clen2 clen3 b1 b2 b3 n h0 h1 =
let b1s = gsub b1 0ul n in
let b2s = gsub b2 0ul n in
assert (modifies (loc b1s |+| loc b3) h0 h1);
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2) (as_seq h1 b2));
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2s) (as_seq h1 b2s));
assert (Seq.index (as_seq h1 b2) (v n) == Seq.index (as_seq h1 (gsub b2 n (clen2 -! n))) 0)
inline_for_extraction noextract
val update_sub_f_carry:
#a:Type
-> #b:Type
-> #len:size_t
-> h0:mem
-> buf:lbuffer a len
-> start:size_t
-> n:size_t{v start + v n <= v len}
-> spec:(mem -> GTot (b & Seq.lseq a (v n)))
-> f:(unit -> Stack b
(requires fun h -> h0 == h)
(ensures fun _ r h1 ->
(let b = gsub buf start n in modifies (loc b) h0 h1 /\
(let (c, res) = spec h0 in r == c /\ as_seq h1 b == res)))) ->
Stack b
(requires fun h -> h0 == h /\ live h buf)
(ensures fun h0 r h1 -> modifies (loc buf) h0 h1 /\
(let (c, res) = spec h0 in r == c /\
as_seq h1 buf == LSeq.update_sub #a #(v len) (as_seq h0 buf) (v start) (v n) res)) | false | false | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_sub_f_carry:
#a:Type
-> #b:Type
-> #len:size_t
-> h0:mem
-> buf:lbuffer a len
-> start:size_t
-> n:size_t{v start + v n <= v len}
-> spec:(mem -> GTot (b & Seq.lseq a (v n)))
-> f:(unit -> Stack b
(requires fun h -> h0 == h)
(ensures fun _ r h1 ->
(let b = gsub buf start n in modifies (loc b) h0 h1 /\
(let (c, res) = spec h0 in r == c /\ as_seq h1 b == res)))) ->
Stack b
(requires fun h -> h0 == h /\ live h buf)
(ensures fun h0 r h1 -> modifies (loc buf) h0 h1 /\
(let (c, res) = spec h0 in r == c /\
as_seq h1 buf == LSeq.update_sub #a #(v len) (as_seq h0 buf) (v start) (v n) res)) | [] | Hacl.Impl.Lib.update_sub_f_carry | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h0: FStar.Monotonic.HyperStack.mem ->
buf: Lib.Buffer.lbuffer a len ->
start: Lib.IntTypes.size_t ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v start + Lib.IntTypes.v n <= Lib.IntTypes.v len} ->
spec:
(_: FStar.Monotonic.HyperStack.mem
-> Prims.GTot (b * FStar.Seq.Properties.lseq a (Lib.IntTypes.v n))) ->
f: (_: Prims.unit -> FStar.HyperStack.ST.Stack b)
-> FStar.HyperStack.ST.Stack b | {
"end_col": 3,
"end_line": 218,
"start_col": 57,
"start_line": 209
} |
FStar.Pervasives.Lemma | val lemma_eq_disjoint:
#a1:Type
-> #a2:Type
-> #a3:Type
-> clen1:size_t
-> clen2:size_t
-> clen3:size_t
-> b1:lbuffer a1 clen1
-> b2:lbuffer a2 clen2
-> b3:lbuffer a3 clen3
-> n:size_t{v n < v clen2 /\ v n < v clen1}
-> h0:mem
-> h1:mem -> Lemma
(requires
live h0 b1 /\ live h0 b2 /\ live h0 b3 /\
eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\
modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1)
(ensures
(let b2s = gsub b2 n (clen2 -! n) in
as_seq h0 b2s == as_seq h1 b2s /\
Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n))) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_eq_disjoint #a1 #a2 #a3 clen1 clen2 clen3 b1 b2 b3 n h0 h1 =
let b1s = gsub b1 0ul n in
let b2s = gsub b2 0ul n in
assert (modifies (loc b1s |+| loc b3) h0 h1);
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2) (as_seq h1 b2));
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2s) (as_seq h1 b2s));
assert (Seq.index (as_seq h1 b2) (v n) == Seq.index (as_seq h1 (gsub b2 n (clen2 -! n))) 0) | val lemma_eq_disjoint:
#a1:Type
-> #a2:Type
-> #a3:Type
-> clen1:size_t
-> clen2:size_t
-> clen3:size_t
-> b1:lbuffer a1 clen1
-> b2:lbuffer a2 clen2
-> b3:lbuffer a3 clen3
-> n:size_t{v n < v clen2 /\ v n < v clen1}
-> h0:mem
-> h1:mem -> Lemma
(requires
live h0 b1 /\ live h0 b2 /\ live h0 b3 /\
eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\
modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1)
(ensures
(let b2s = gsub b2 n (clen2 -! n) in
as_seq h0 b2s == as_seq h1 b2s /\
Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n)))
let lemma_eq_disjoint #a1 #a2 #a3 clen1 clen2 clen3 b1 b2 b3 n h0 h1 = | false | null | true | let b1s = gsub b1 0ul n in
let b2s = gsub b2 0ul n in
assert (modifies (loc b1s |+| loc b3) h0 h1);
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2) (as_seq h1 b2));
assert (disjoint b1 b2 ==> Seq.equal (as_seq h0 b2s) (as_seq h1 b2s));
assert (Seq.index (as_seq h1 b2) (v n) == Seq.index (as_seq h1 (gsub b2 n (clen2 -! n))) 0) | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Monotonic.HyperStack.mem",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.op_Subtraction_Bang",
"Lib.Buffer.gsub",
"Prims.unit",
"Prims.l_imp",
"Lib.Buffer.disjoint",
"FStar.Seq.Base.equal",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.loc",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
inline_for_extraction noextract
val fill_elems : fill_elems_st
let fill_elems #t #a h0 n output refl footprint spec impl =
[@inline_let]
let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i)) in
[@inline_let]
let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@inline_let]
let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get() in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i)
);
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0))
inline_for_extraction noextract
val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o))
let fill_blocks4 #t #a h0 n4 output refl footprint spec impl =
fill_blocks h0 4ul n4 output (Loops.fixed_a a)
(fun h i -> refl h (4 * i))
(fun i -> footprint (4 * i))
(fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0))
(fun i ->
let h1 = ST.get () in
impl (4ul *! i);
impl (4ul *! i +! 1ul);
impl (4ul *! i +! 2ul);
impl (4ul *! i +! 3ul);
let h2 = ST.get () in
assert (
let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in
let c1, e1 = spec h0 (4 * v i + 1) c0 in
let c2, e2 = spec h0 (4 * v i + 2) c1 in
let c3, e3 = spec h0 (4 * v i + 3) c2 in
let res = LSeq.create4 e0 e1 e2 e3 in
LSeq.create4_lemma e0 e1 e2 e3;
let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in
refl h2 (4 * v i + 4) == c3 /\
(LSeq.eq_intro res res1; res1 `LSeq.equal` res))
)
inline_for_extraction noextract
val fill_elems4: fill_elems_st
let fill_elems4 #t #a h0 n output refl footprint spec impl =
[@inline_let] let k = n /. 4ul in
let tmp = sub output 0ul (4ul *! k) in
fill_blocks4 #t #a h0 k tmp refl footprint spec (fun i -> impl i);
let h1 = ST.get () in
assert (4 * v k + v (n -! 4ul *! k) = v n);
B.modifies_buffer_elim (B.gsub #t output (4ul *! k) (n -! 4ul *! k)) (footprint (4 * v k) |+| loc tmp) h0 h1;
assert (modifies (footprint (4 * v k) |+| loc (gsub output 0ul (4ul *! k))) h0 h1);
let inv (h:mem) (i:nat{4 * v k <= i /\ i <= v n}) =
modifies (footprint i |+| loc (gsub output 0ul (size i))) h0 h /\
(let (c, res) = Loops.repeat_right (v n / 4 * 4) i (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) in
refl h i == c /\ as_seq h (gsub output 0ul (size i)) == res) in
Loops.eq_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)));
Lib.Loops.for (k *! 4ul) n inv
(fun i ->
impl i;
let h = ST.get () in
assert (v (i +! 1ul) = v i + 1);
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i);
Loops.unfold_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) (v i)
);
S.lemma_generate_elems4 (v n) (v n) (spec h0) (refl h0 0)
inline_for_extraction noextract
val lemma_eq_disjoint:
#a1:Type
-> #a2:Type
-> #a3:Type
-> clen1:size_t
-> clen2:size_t
-> clen3:size_t
-> b1:lbuffer a1 clen1
-> b2:lbuffer a2 clen2
-> b3:lbuffer a3 clen3
-> n:size_t{v n < v clen2 /\ v n < v clen1}
-> h0:mem
-> h1:mem -> Lemma
(requires
live h0 b1 /\ live h0 b2 /\ live h0 b3 /\
eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\
modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1)
(ensures
(let b2s = gsub b2 n (clen2 -! n) in
as_seq h0 b2s == as_seq h1 b2s /\
Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n))) | false | false | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_eq_disjoint:
#a1:Type
-> #a2:Type
-> #a3:Type
-> clen1:size_t
-> clen2:size_t
-> clen3:size_t
-> b1:lbuffer a1 clen1
-> b2:lbuffer a2 clen2
-> b3:lbuffer a3 clen3
-> n:size_t{v n < v clen2 /\ v n < v clen1}
-> h0:mem
-> h1:mem -> Lemma
(requires
live h0 b1 /\ live h0 b2 /\ live h0 b3 /\
eq_or_disjoint b1 b2 /\ disjoint b1 b3 /\ disjoint b2 b3 /\
modifies (loc (gsub b1 0ul n) |+| loc b3) h0 h1)
(ensures
(let b2s = gsub b2 n (clen2 -! n) in
as_seq h0 b2s == as_seq h1 b2s /\
Seq.index (as_seq h0 b2) (v n) == Seq.index (as_seq h1 b2) (v n))) | [] | Hacl.Impl.Lib.lemma_eq_disjoint | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
clen1: Lib.IntTypes.size_t ->
clen2: Lib.IntTypes.size_t ->
clen3: Lib.IntTypes.size_t ->
b1: Lib.Buffer.lbuffer a1 clen1 ->
b2: Lib.Buffer.lbuffer a2 clen2 ->
b3: Lib.Buffer.lbuffer a3 clen3 ->
n:
Lib.IntTypes.size_t
{Lib.IntTypes.v n < Lib.IntTypes.v clen2 /\ Lib.IntTypes.v n < Lib.IntTypes.v clen1} ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> FStar.Pervasives.Lemma
(requires
Lib.Buffer.live h0 b1 /\ Lib.Buffer.live h0 b2 /\ Lib.Buffer.live h0 b3 /\
Lib.Buffer.eq_or_disjoint b1 b2 /\ Lib.Buffer.disjoint b1 b3 /\ Lib.Buffer.disjoint b2 b3 /\
Lib.Buffer.modifies (Lib.Buffer.loc (Lib.Buffer.gsub b1 0ul n) |+| Lib.Buffer.loc b3) h0 h1)
(ensures
(let b2s = Lib.Buffer.gsub b2 n (clen2 -! n) in
Lib.Buffer.as_seq h0 b2s == Lib.Buffer.as_seq h1 b2s /\
FStar.Seq.Base.index (Lib.Buffer.as_seq h0 b2) (Lib.IntTypes.v n) ==
FStar.Seq.Base.index (Lib.Buffer.as_seq h1 b2) (Lib.IntTypes.v n))) | {
"end_col": 93,
"end_line": 185,
"start_col": 70,
"start_line": 179
} |
Prims.Tot | val fill_elems : fill_elems_st | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fill_elems #t #a h0 n output refl footprint spec impl =
[@inline_let]
let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i)) in
[@inline_let]
let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@inline_let]
let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get() in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i)
);
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0)) | val fill_elems : fill_elems_st
let fill_elems #t #a h0 n output refl footprint spec impl = | false | null | false | [@@ inline_let ]let refl' h (i: nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i))
in
[@@ inline_let ]let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@@ inline_let ]let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0
n
(S.generate_elem_a t a (v n))
refl'
footprint'
spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get () in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i));
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n)
(S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0))
(refl' h0 0)) | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.gsub",
"FStar.UInt32.__uint_to_t",
"Prims.eq2",
"Prims.op_Addition",
"Lib.Sequence.index",
"Lib.Buffer.as_seq",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Prims._assert",
"Hacl.Spec.Lib.generate_elem_a",
"Lib.LoopCombinators.repeat_gen",
"Hacl.Spec.Lib.generate_elem_f",
"FStar.HyperStack.ST.get",
"Lib.Buffer.loop",
"FStar.Seq.Properties.lemma_split",
"Lib.IntTypes.op_Plus_Bang",
"Lib.LoopCombinators.unfold_repeat_gen",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Lib.IntTypes.size",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.seq",
"Lib.Sequence.length"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
inline_for_extraction noextract
val fill_elems : fill_elems_st | false | true | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fill_elems : fill_elems_st | [] | Hacl.Impl.Lib.fill_elems | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Lib.fill_elems_st | {
"end_col": 106,
"end_line": 68,
"start_col": 2,
"start_line": 50
} |
Prims.Tot | val fill_elems4: fill_elems_st | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fill_elems4 #t #a h0 n output refl footprint spec impl =
[@inline_let] let k = n /. 4ul in
let tmp = sub output 0ul (4ul *! k) in
fill_blocks4 #t #a h0 k tmp refl footprint spec (fun i -> impl i);
let h1 = ST.get () in
assert (4 * v k + v (n -! 4ul *! k) = v n);
B.modifies_buffer_elim (B.gsub #t output (4ul *! k) (n -! 4ul *! k)) (footprint (4 * v k) |+| loc tmp) h0 h1;
assert (modifies (footprint (4 * v k) |+| loc (gsub output 0ul (4ul *! k))) h0 h1);
let inv (h:mem) (i:nat{4 * v k <= i /\ i <= v n}) =
modifies (footprint i |+| loc (gsub output 0ul (size i))) h0 h /\
(let (c, res) = Loops.repeat_right (v n / 4 * 4) i (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) in
refl h i == c /\ as_seq h (gsub output 0ul (size i)) == res) in
Loops.eq_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)));
Lib.Loops.for (k *! 4ul) n inv
(fun i ->
impl i;
let h = ST.get () in
assert (v (i +! 1ul) = v i + 1);
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i);
Loops.unfold_repeat_right (v n / 4 * 4) (v n) (S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0)) (refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k))) (v i)
);
S.lemma_generate_elems4 (v n) (v n) (spec h0) (refl h0 0) | val fill_elems4: fill_elems_st
let fill_elems4 #t #a h0 n output refl footprint spec impl = | false | null | false | [@@ inline_let ]let k = n /. 4ul in
let tmp = sub output 0ul (4ul *! k) in
fill_blocks4 #t #a h0 k tmp refl footprint spec (fun i -> impl i);
let h1 = ST.get () in
assert (4 * v k + v (n -! 4ul *! k) = v n);
B.modifies_buffer_elim (B.gsub #t output (4ul *! k) (n -! 4ul *! k))
(footprint (4 * v k) |+| loc tmp)
h0
h1;
assert (modifies (footprint (4 * v k) |+| loc (gsub output 0ul (4ul *! k))) h0 h1);
let inv (h: mem) (i: nat{4 * v k <= i /\ i <= v n}) =
modifies (footprint i |+| loc (gsub output 0ul (size i))) h0 h /\
(let c, res =
Loops.repeat_right ((v n / 4) * 4)
i
(S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0))
(refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)))
in
refl h i == c /\ as_seq h (gsub output 0ul (size i)) == res)
in
Loops.eq_repeat_right ((v n / 4) * 4)
(v n)
(S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0))
(refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)));
Lib.Loops.for (k *! 4ul)
n
inv
(fun i ->
impl i;
let h = ST.get () in
assert (v (i +! 1ul) = v i + 1);
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i);
Loops.unfold_repeat_right ((v n / 4) * 4)
(v n)
(S.generate_elem_a t a (v n))
(S.generate_elem_f (v n) (spec h0))
(refl h1 (4 * v k), as_seq h1 (gsub output 0ul (4ul *! k)))
(v i));
S.lemma_generate_elems4 (v n) (v n) (spec h0) (refl h0 0) | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.gsub",
"FStar.UInt32.__uint_to_t",
"Prims.eq2",
"Prims.op_Addition",
"Lib.Sequence.index",
"Lib.Buffer.as_seq",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Hacl.Spec.Lib.lemma_generate_elems4",
"Lib.Loops.for",
"Lib.IntTypes.op_Star_Bang",
"Lib.LoopCombinators.unfold_repeat_right",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Hacl.Spec.Lib.generate_elem_a",
"Hacl.Spec.Lib.generate_elem_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.seq",
"Prims.nat",
"Lib.Sequence.length",
"FStar.Seq.Properties.lemma_split",
"Lib.IntTypes.op_Plus_Bang",
"Prims._assert",
"Prims.op_Equality",
"Prims.int",
"FStar.HyperStack.ST.get",
"Lib.LoopCombinators.eq_repeat_right",
"Prims.op_Multiply",
"Prims.logical",
"Lib.IntTypes.size",
"Prims.l_or",
"FStar.Seq.Base.length",
"Lib.LoopCombinators.repeat_right",
"LowStar.Monotonic.Buffer.modifies_buffer_elim",
"LowStar.Buffer.trivial_preorder",
"LowStar.Buffer.gsub",
"Lib.IntTypes.op_Subtraction_Bang",
"Hacl.Impl.Lib.fill_blocks4",
"Lib.IntTypes.mul",
"Lib.Buffer.sub",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Slash_Dot"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
inline_for_extraction noextract
val fill_elems : fill_elems_st
let fill_elems #t #a h0 n output refl footprint spec impl =
[@inline_let]
let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i)) in
[@inline_let]
let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@inline_let]
let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get() in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i)
);
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0))
inline_for_extraction noextract
val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o))
let fill_blocks4 #t #a h0 n4 output refl footprint spec impl =
fill_blocks h0 4ul n4 output (Loops.fixed_a a)
(fun h i -> refl h (4 * i))
(fun i -> footprint (4 * i))
(fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0))
(fun i ->
let h1 = ST.get () in
impl (4ul *! i);
impl (4ul *! i +! 1ul);
impl (4ul *! i +! 2ul);
impl (4ul *! i +! 3ul);
let h2 = ST.get () in
assert (
let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in
let c1, e1 = spec h0 (4 * v i + 1) c0 in
let c2, e2 = spec h0 (4 * v i + 2) c1 in
let c3, e3 = spec h0 (4 * v i + 3) c2 in
let res = LSeq.create4 e0 e1 e2 e3 in
LSeq.create4_lemma e0 e1 e2 e3;
let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in
refl h2 (4 * v i + 4) == c3 /\
(LSeq.eq_intro res res1; res1 `LSeq.equal` res))
)
inline_for_extraction noextract
val fill_elems4: fill_elems_st | false | true | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fill_elems4: fill_elems_st | [] | Hacl.Impl.Lib.fill_elems4 | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Lib.fill_elems_st | {
"end_col": 59,
"end_line": 153,
"start_col": 2,
"start_line": 126
} |
FStar.HyperStack.ST.Stack | val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Lib",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fill_blocks4 #t #a h0 n4 output refl footprint spec impl =
fill_blocks h0 4ul n4 output (Loops.fixed_a a)
(fun h i -> refl h (4 * i))
(fun i -> footprint (4 * i))
(fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0))
(fun i ->
let h1 = ST.get () in
impl (4ul *! i);
impl (4ul *! i +! 1ul);
impl (4ul *! i +! 2ul);
impl (4ul *! i +! 3ul);
let h2 = ST.get () in
assert (
let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in
let c1, e1 = spec h0 (4 * v i + 1) c0 in
let c2, e2 = spec h0 (4 * v i + 2) c1 in
let c3, e3 = spec h0 (4 * v i + 3) c2 in
let res = LSeq.create4 e0 e1 e2 e3 in
LSeq.create4_lemma e0 e1 e2 e3;
let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in
refl h2 (4 * v i + 4) == c3 /\
(LSeq.eq_intro res res1; res1 `LSeq.equal` res))
) | val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o))
let fill_blocks4 #t #a h0 n4 output refl footprint spec impl = | true | null | false | fill_blocks h0
4ul
n4
output
(Loops.fixed_a a)
(fun h i -> refl h (4 * i))
(fun i -> footprint (4 * i))
(fun h0 -> S.generate_blocks4_f #t #a (v n4) (spec h0))
(fun i ->
let h1 = ST.get () in
impl (4ul *! i);
impl (4ul *! i +! 1ul);
impl (4ul *! i +! 2ul);
impl (4ul *! i +! 3ul);
let h2 = ST.get () in
assert (let c0, e0 = spec h0 (4 * v i) (refl h1 (4 * v i)) in
let c1, e1 = spec h0 (4 * v i + 1) c0 in
let c2, e2 = spec h0 (4 * v i + 2) c1 in
let c3, e3 = spec h0 (4 * v i + 3) c2 in
let res = LSeq.create4 e0 e1 e2 e3 in
LSeq.create4_lemma e0 e1 e2 e3;
let res1 = LSeq.sub (as_seq h2 output) (4 * v i) 4 in
refl h2 (4 * v i + 4) == c3 /\
(LSeq.eq_intro res res1;
res1 `LSeq.equal` res))) | {
"checked_file": "Hacl.Impl.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Lib.fst"
} | [] | [
"FStar.Monotonic.HyperStack.mem",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.IntTypes.max_size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.op_Star_Bang",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_nat",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.gsub",
"Prims.eq2",
"Prims.op_Addition",
"Lib.Sequence.index",
"Lib.Buffer.as_seq",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.fill_blocks",
"Lib.LoopCombinators.fixed_a",
"Hacl.Spec.Lib.generate_blocks4_f",
"Lib.Sequence.lseq",
"Prims._assert",
"Lib.Sequence.equal",
"Lib.Sequence.eq_intro",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.mul",
"Prims.op_Multiply",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.sub",
"Lib.Sequence.create4_lemma",
"Lib.Sequence.create4",
"FStar.HyperStack.ST.get",
"Lib.IntTypes.op_Plus_Bang"
] | [] | module Hacl.Impl.Lib
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module S = Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let fill_elems_st =
#t:Type0
-> #a:Type0
-> h0:mem
-> n:size_t
-> output:lbuffer t n
-> refl:(mem -> i:size_nat{i <= v n} -> GTot a)
-> footprint:(i:size_nat{i <= v n} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < v n} -> a -> a & t))
-> impl:(i:size_t{v i < v n} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\
LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (v n) |+| loc output) h0 h1 /\
(let s, o = S.generate_elems (v n) (v n) (spec h0) (refl h0 0) in
refl h1 (v n) == s /\ as_seq #_ #t h1 output == o))
inline_for_extraction noextract
val fill_elems : fill_elems_st
let fill_elems #t #a h0 n output refl footprint spec impl =
[@inline_let]
let refl' h (i:nat{i <= v n}) : GTot (S.generate_elem_a t a (v n) i) =
refl h i, as_seq h (gsub output 0ul (size i)) in
[@inline_let]
let footprint' i = footprint i |+| loc (gsub output 0ul (size i)) in
[@inline_let]
let spec' h0 = S.generate_elem_f (v n) (spec h0) in
let h0 = ST.get () in
loop h0 n (S.generate_elem_a t a (v n)) refl' footprint' spec'
(fun i ->
Loops.unfold_repeat_gen (v n) (S.generate_elem_a t a (v n)) (spec' h0) (refl' h0 0) (v i);
impl i;
let h = ST.get() in
FStar.Seq.lemma_split (as_seq h (gsub output 0ul (i +! 1ul))) (v i)
);
let h1 = ST.get () in
assert (refl' h1 (v n) ==
Loops.repeat_gen (v n) (S.generate_elem_a t a (v n)) (S.generate_elem_f (v n) (spec h0)) (refl' h0 0))
inline_for_extraction noextract
val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o)) | false | false | Hacl.Impl.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fill_blocks4:
#t:Type0
-> #a:Type0
-> h0:mem
-> n4:size_t{4 * v n4 <= max_size_t}
-> output:lbuffer t (4ul *! n4)
-> refl:(mem -> i:size_nat{i <= 4 * v n4} -> GTot a)
-> footprint:(i:size_nat{i <= 4 * v n4} -> GTot
(l:B.loc{B.loc_disjoint l (loc output) /\ B.address_liveness_insensitive_locs `B.loc_includes` l}))
-> spec:(mem -> GTot (i:size_nat{i < 4 * v n4} -> a -> a & t))
-> impl:(i:size_t{v i < 4 * v n4} -> Stack unit
(requires fun h ->
modifies (footprint (v i) |+| loc (gsub output 0ul i)) h0 h)
(ensures fun h1 _ h2 ->
(let block1 = gsub output i 1ul in
let c, e = spec h0 (v i) (refl h1 (v i)) in
refl h2 (v i + 1) == c /\ LSeq.index (as_seq h2 block1) 0 == e /\
footprint (v i + 1) `B.loc_includes` footprint (v i) /\
modifies (footprint (v i + 1) |+| (loc block1)) h1 h2))) ->
Stack unit
(requires fun h -> h0 == h /\ live h output)
(ensures fun _ _ h1 -> modifies (footprint (4 * v n4) |+| loc output) h0 h1 /\
(let s, o = LSeq.generate_blocks 4 (v n4) (v n4) (Loops.fixed_a a)
(S.generate_blocks4_f #t #a (v n4) (spec h0)) (refl h0 0) in
refl h1 (4 * v n4) == s /\ as_seq #_ #t h1 output == o)) | [] | Hacl.Impl.Lib.fill_blocks4 | {
"file_name": "code/bignum/Hacl.Impl.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h0: FStar.Monotonic.HyperStack.mem ->
n4: Lib.IntTypes.size_t{4 * Lib.IntTypes.v n4 <= Lib.IntTypes.max_size_t} ->
output: Lib.Buffer.lbuffer t (4ul *! n4) ->
refl:
(_: FStar.Monotonic.HyperStack.mem -> i: Lib.IntTypes.size_nat{i <= 4 * Lib.IntTypes.v n4}
-> Prims.GTot a) ->
footprint:
(i: Lib.IntTypes.size_nat{i <= 4 * Lib.IntTypes.v n4}
-> Prims.GTot
(l:
LowStar.Monotonic.Buffer.loc
{ LowStar.Monotonic.Buffer.loc_disjoint l (Lib.Buffer.loc output) /\
LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs
l })) ->
spec:
(_: FStar.Monotonic.HyperStack.mem
-> Prims.GTot (i: Lib.IntTypes.size_nat{i < 4 * Lib.IntTypes.v n4} -> _: a -> a * t)) ->
impl:
(i: Lib.IntTypes.size_t{Lib.IntTypes.v i < 4 * Lib.IntTypes.v n4}
-> FStar.HyperStack.ST.Stack Prims.unit)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 3,
"end_line": 120,
"start_col": 2,
"start_line": 99
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq | let t128_imm = | false | null | false | TD_ImmBuffer TUInt32 TUInt128 default_bq | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.TD_ImmBuffer",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.default_bq"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t128_imm : Vale.Interop.Base.td | [] | Vale.Stdcalls.X64.Sha.t128_imm | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.Base.td | {
"end_col": 55,
"end_line": 47,
"start_col": 15,
"start_line": 47
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tuint64 = TD_Base TUInt64 | let tuint64 = | false | null | false | TD_Base TUInt64 | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tuint64 : Vale.Interop.Base.td | [] | Vale.Stdcalls.X64.Sha.tuint64 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.Base.td | {
"end_col": 29,
"end_line": 49,
"start_col": 14,
"start_line": 49
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let b128 = buf_t TUInt32 TUInt128 | let b128 = | false | null | false | buf_t TUInt32 TUInt128 | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.buf_t",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val b128 : Type0 | [] | Vale.Stdcalls.X64.Sha.b128 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 33,
"end_line": 37,
"start_col": 11,
"start_line": 37
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let b8_128 = buf_t TUInt8 TUInt128 | let b8_128 = | false | null | false | buf_t TUInt8 TUInt128 | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.buf_t",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128 | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val b8_128 : Type0 | [] | Vale.Stdcalls.X64.Sha.b8_128 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 34,
"end_line": 39,
"start_col": 13,
"start_line": 39
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq | let t128_mod = | false | null | false | TD_Buffer TUInt32 TUInt128 default_bq | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.TD_Buffer",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.default_bq"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128 | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t128_mod : Vale.Interop.Base.td | [] | Vale.Stdcalls.X64.Sha.t128_mod | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.Base.td | {
"end_col": 52,
"end_line": 43,
"start_col": 15,
"start_line": 43
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ib128 = ibuf_t TUInt32 TUInt128 | let ib128 = | false | null | false | ibuf_t TUInt32 TUInt128 | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.ibuf_t",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128 | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ib128 : Type0 | [] | Vale.Stdcalls.X64.Sha.ib128 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 35,
"end_line": 41,
"start_col": 12,
"start_line": 41
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint64 = UInt64.t | let uint64 = | false | null | false | UInt64.t | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"FStar.UInt64.t"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64 | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint64 : Prims.eqtype | [] | Vale.Stdcalls.X64.Sha.uint64 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.eqtype | {
"end_col": 21,
"end_line": 28,
"start_col": 13,
"start_line": 28
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let code_sha = SH.va_code_Sha_update_bytes_stdcall IA.win | let code_sha = | false | null | false | SH.va_code_Sha_update_bytes_stdcall IA.win | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.SHA.X64.va_code_Sha_update_bytes_stdcall",
"Vale.Interop.Assumptions.win"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_post : VSig.vale_post dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
SH.va_ens_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
va_s1 f
module VS = Vale.X64.State
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@__reduce__] noextract
let sha_lemma'
(code:V.va_code)
(_win:bool)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires
sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\
ME.buffer_writeable (as_vale_buffer in_b)
)) =
let va_s1, f = SH.va_lemma_Sha_update_bytes_stdcall code va_s0 IA.win (as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt32 ME.TUInt128 ctx_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b;
(va_s1, f)
(* Prove that sha_lemma' has the required type *)
noextract
let sha_lemma = as_t #(VSig.vale_sig_stdcall sha_pre sha_post) sha_lemma' | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val code_sha : Vale.X64.Decls.va_code | [] | Vale.Stdcalls.X64.Sha.code_sha | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.X64.Decls.va_code | {
"end_col": 57,
"end_line": 117,
"start_col": 15,
"start_line": 117
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) | let t128_no_mod = | false | null | false | TD_Buffer TUInt8 TUInt128 ({ modified = false; strict_disjointness = false; taint = MS.Secret }) | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.TD_Buffer",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.Mkbuffer_qualifiers",
"Vale.Arch.HeapTypes_s.Secret"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t128_no_mod : Vale.Interop.Base.td | [] | Vale.Stdcalls.X64.Sha.t128_no_mod | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.Base.td | {
"end_col": 106,
"end_line": 45,
"start_col": 18,
"start_line": 45
} |
|
Prims.Tot | val as_normal_t (#a: Type) (x: a) : normal a | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_normal_t (#a:Type) (x:a) : normal a = x | val as_normal_t (#a: Type) (x: a) : normal a
let as_normal_t (#a: Type) (x: a) : normal a = | false | null | false | x | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.normal"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x | false | false | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_normal_t (#a: Type) (x: a) : normal a | [] | Vale.Stdcalls.X64.Sha.as_normal_t | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: a -> Vale.Interop.Base.normal a | {
"end_col": 46,
"end_line": 34,
"start_col": 45,
"start_line": 34
} |
Prims.Tot | val as_t (#a: Type) (x: normal a) : a | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_t (#a:Type) (x:normal a) : a = x | val as_t (#a: Type) (x: normal a) : a
let as_t (#a: Type) (x: normal a) : a = | false | null | false | x | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.Base.normal"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *) | false | false | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_t (#a: Type) (x: normal a) : a | [] | Vale.Stdcalls.X64.Sha.as_t | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.Interop.Base.normal a -> a | {
"end_col": 39,
"end_line": 32,
"start_col": 38,
"start_line": 32
} |
Prims.Tot | val dom:IX64.arity_ok_stdcall td | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y | val dom:IX64.arity_ok_stdcall td
let dom:IX64.arity_ok_stdcall td = | false | null | false | let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Vale.Interop.Base.td",
"Prims.list",
"Prims.Cons",
"Vale.Stdcalls.X64.Sha.t128_mod",
"Vale.Stdcalls.X64.Sha.t128_no_mod",
"Vale.Stdcalls.X64.Sha.tuint64",
"Vale.Stdcalls.X64.Sha.t128_imm",
"Prims.Nil"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__] | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val dom:IX64.arity_ok_stdcall td | [] | Vale.Stdcalls.X64.Sha.dom | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.X64.arity_ok_stdcall Vale.Interop.Base.td | {
"end_col": 3,
"end_line": 56,
"start_col": 35,
"start_line": 53
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lowstar_sha_t =
IX64.as_lowstar_sig_t_weak_stdcall
code_sha
dom
[]
_
_
(W.mk_prediction code_sha dom [] (sha_lemma code_sha IA.win)) | let lowstar_sha_t = | false | null | false | IX64.as_lowstar_sig_t_weak_stdcall code_sha
dom
[]
_
_
(W.mk_prediction code_sha dom [] (sha_lemma code_sha IA.win)) | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Interop.X64.as_lowstar_sig_t_weak_stdcall",
"Vale.Stdcalls.X64.Sha.code_sha",
"Vale.Stdcalls.X64.Sha.dom",
"Prims.Nil",
"Vale.Interop.Base.arg",
"Vale.AsLowStar.Wrapper.pre_rel_generic",
"Vale.Interop.X64.max_stdcall",
"Vale.Interop.X64.arg_reg_stdcall",
"Vale.Stdcalls.X64.Sha.sha_pre",
"Vale.AsLowStar.Wrapper.post_rel_generic",
"Vale.Stdcalls.X64.Sha.sha_post",
"Vale.AsLowStar.Wrapper.mk_prediction",
"Vale.Interop.X64.regs_modified_stdcall",
"Vale.Interop.X64.xmms_modified_stdcall",
"Vale.Stdcalls.X64.Sha.sha_lemma",
"Vale.Interop.Assumptions.win"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_post : VSig.vale_post dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
SH.va_ens_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
va_s1 f
module VS = Vale.X64.State
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@__reduce__] noextract
let sha_lemma'
(code:V.va_code)
(_win:bool)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires
sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\
ME.buffer_writeable (as_vale_buffer in_b)
)) =
let va_s1, f = SH.va_lemma_Sha_update_bytes_stdcall code va_s0 IA.win (as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt32 ME.TUInt128 ctx_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b;
(va_s1, f)
(* Prove that sha_lemma' has the required type *)
noextract
let sha_lemma = as_t #(VSig.vale_sig_stdcall sha_pre sha_post) sha_lemma'
noextract
let code_sha = SH.va_code_Sha_update_bytes_stdcall IA.win
#reset-options "--z3rlimit 20"
(* Here's the type expected for the sha wrapper *)
[@__reduce__] noextract | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lowstar_sha_t : Type0 | [] | Vale.Stdcalls.X64.Sha.lowstar_sha_t | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 65,
"end_line": 130,
"start_col": 2,
"start_line": 124
} |
|
Prims.Tot | val sha_pre:VSig.vale_pre dom | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b) | val sha_pre:VSig.vale_pre dom
let sha_pre:VSig.vale_pre dom = | false | null | false | fun
(c: V.va_code)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
->
SH.va_req_Sha_update_bytes_stdcall c
va_s0
IA.win
(as_vale_buffer ctx_b)
(as_vale_buffer in_b)
(UInt64.v num_val)
(as_vale_immbuffer k_b) | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_code",
"Vale.Stdcalls.X64.Sha.b128",
"Vale.Stdcalls.X64.Sha.b8_128",
"Vale.Stdcalls.X64.Sha.uint64",
"Vale.Stdcalls.X64.Sha.ib128",
"Vale.X64.Decls.va_state",
"Vale.SHA.X64.va_req_Sha_update_bytes_stdcall",
"Vale.Interop.Assumptions.win",
"Vale.X64.MemoryAdapters.as_vale_buffer",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Arch.HeapTypes_s.TUInt8",
"FStar.UInt64.v",
"Vale.X64.MemoryAdapters.as_vale_immbuffer",
"Prims.prop"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha_pre:VSig.vale_pre dom | [] | Vale.Stdcalls.X64.Sha.sha_pre | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.AsLowStar.ValeSig.vale_pre Vale.Stdcalls.X64.Sha.dom | {
"end_col": 95,
"end_line": 68,
"start_col": 2,
"start_line": 61
} |
Prims.Tot | val sha_post:VSig.vale_post dom | [
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha_post : VSig.vale_post dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
SH.va_ens_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
va_s1 f | val sha_post:VSig.vale_post dom
let sha_post:VSig.vale_post dom = | false | null | false | fun
(c: V.va_code)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
(va_s1: V.va_state)
(f: V.va_fuel)
->
SH.va_ens_Sha_update_bytes_stdcall c
va_s0
IA.win
(as_vale_buffer ctx_b)
(as_vale_buffer in_b)
(UInt64.v num_val)
(as_vale_immbuffer k_b)
va_s1
f | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_code",
"Vale.Stdcalls.X64.Sha.b128",
"Vale.Stdcalls.X64.Sha.b8_128",
"Vale.Stdcalls.X64.Sha.uint64",
"Vale.Stdcalls.X64.Sha.ib128",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_fuel",
"Vale.SHA.X64.va_ens_Sha_update_bytes_stdcall",
"Vale.Interop.Assumptions.win",
"Vale.X64.MemoryAdapters.as_vale_buffer",
"Vale.Arch.HeapTypes_s.TUInt32",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Arch.HeapTypes_s.TUInt8",
"FStar.UInt64.v",
"Vale.X64.MemoryAdapters.as_vale_immbuffer",
"Prims.prop"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha_post:VSig.vale_post dom | [] | Vale.Stdcalls.X64.Sha.sha_post | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.AsLowStar.ValeSig.vale_post Vale.Stdcalls.X64.Sha.dom | {
"end_col": 15,
"end_line": 83,
"start_col": 2,
"start_line": 73
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha_lemma = as_t #(VSig.vale_sig_stdcall sha_pre sha_post) sha_lemma' | let sha_lemma = | false | null | false | as_t #(VSig.vale_sig_stdcall sha_pre sha_post) sha_lemma' | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [
"total"
] | [
"Vale.Stdcalls.X64.Sha.as_t",
"Vale.AsLowStar.ValeSig.vale_sig_stdcall",
"Vale.Stdcalls.X64.Sha.dom",
"Vale.Stdcalls.X64.Sha.sha_pre",
"Vale.Stdcalls.X64.Sha.sha_post",
"Vale.Stdcalls.X64.Sha.sha_lemma'"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_post : VSig.vale_post dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
SH.va_ens_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
va_s1 f
module VS = Vale.X64.State
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@__reduce__] noextract
let sha_lemma'
(code:V.va_code)
(_win:bool)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires
sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\
ME.buffer_writeable (as_vale_buffer in_b)
)) =
let va_s1, f = SH.va_lemma_Sha_update_bytes_stdcall code va_s0 IA.win (as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt32 ME.TUInt128 ctx_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b;
(va_s1, f)
(* Prove that sha_lemma' has the required type *) | false | true | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha_lemma : Vale.AsLowStar.ValeSig.vale_sig_stdcall Vale.Stdcalls.X64.Sha.sha_pre Vale.Stdcalls.X64.Sha.sha_post | [] | Vale.Stdcalls.X64.Sha.sha_lemma | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.AsLowStar.ValeSig.vale_sig_stdcall Vale.Stdcalls.X64.Sha.sha_pre Vale.Stdcalls.X64.Sha.sha_post | {
"end_col": 73,
"end_line": 115,
"start_col": 16,
"start_line": 115
} |
|
Prims.Ghost | val sha_lemma'
(code: V.va_code)
(_win: bool)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures
(fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\ ME.buffer_writeable (as_vale_buffer in_b))
) | [
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": true,
"full_module": "Vale.SHA.X64",
"short_module": "SH"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "LowStar.ImmutableBuffer",
"short_module": "IB"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha_lemma'
(code:V.va_code)
(_win:bool)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires
sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\
ME.buffer_writeable (as_vale_buffer in_b)
)) =
let va_s1, f = SH.va_lemma_Sha_update_bytes_stdcall code va_s0 IA.win (as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt32 ME.TUInt128 ctx_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b;
(va_s1, f) | val sha_lemma'
(code: V.va_code)
(_win: bool)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures
(fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\ ME.buffer_writeable (as_vale_buffer in_b))
)
let sha_lemma'
(code: V.va_code)
(_win: bool)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures
(fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\ ME.buffer_writeable (as_vale_buffer in_b))
) = | false | null | false | let va_s1, f =
SH.va_lemma_Sha_update_bytes_stdcall code
va_s0
IA.win
(as_vale_buffer ctx_b)
(as_vale_buffer in_b)
(UInt64.v num_val)
(as_vale_immbuffer k_b)
in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt32 ME.TUInt128 ctx_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b;
(va_s1, f) | {
"checked_file": "Vale.Stdcalls.X64.Sha.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.SHA.X64.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"prims.fst.checked",
"LowStar.ImmutableBuffer.fst.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.Sha.fsti"
} | [] | [
"Vale.X64.Decls.va_code",
"Prims.bool",
"Vale.Stdcalls.X64.Sha.b128",
"Vale.Stdcalls.X64.Sha.b8_128",
"Vale.Stdcalls.X64.Sha.uint64",
"Vale.Stdcalls.X64.Sha.ib128",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_fuel",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Arch.HeapTypes_s.TUInt32",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.State.vale_state",
"Vale.SHA.X64.va_lemma_Sha_update_bytes_stdcall",
"Vale.Interop.Assumptions.win",
"Vale.X64.MemoryAdapters.as_vale_buffer",
"FStar.UInt64.v",
"Vale.X64.MemoryAdapters.as_vale_immbuffer",
"Vale.Stdcalls.X64.Sha.sha_pre",
"Prims.l_and",
"Vale.X64.Decls.eval_code",
"Vale.AsLowStar.ValeSig.vale_calling_conventions_stdcall",
"Vale.Stdcalls.X64.Sha.sha_post",
"Vale.X64.Memory.buffer_writeable"
] | [] | module Vale.Stdcalls.X64.Sha
open FStar.Mul
val z3rlimit_hack (x:nat) : squash (x < x + x + 1)
#reset-options "--z3rlimit 50"
open FStar.HyperStack.ST
module HS = FStar.HyperStack
module B = LowStar.Buffer
module IB = LowStar.ImmutableBuffer
module DV = LowStar.BufferView.Down
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module SH = Vale.SHA.X64
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt32 TUInt128
[@__reduce__] noextract
let b8_128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let ib128 = ibuf_t TUInt32 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let t128_imm = TD_ImmBuffer TUInt32 TUInt128 default_bq
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__]
noextract
let dom: IX64.arity_ok_stdcall td =
let y = [t128_mod; t128_no_mod; tuint64; t128_imm] in
assert_norm (List.length y = 4);
y
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_pre : VSig.vale_pre dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state) ->
SH.va_req_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
(* Need to rearrange the order of arguments *)
[@__reduce__] noextract
let sha_post : VSig.vale_post dom =
fun (c:V.va_code)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
SH.va_ens_Sha_update_bytes_stdcall c va_s0 IA.win
(as_vale_buffer ctx_b) (as_vale_buffer in_b) (UInt64.v num_val) (as_vale_immbuffer k_b)
va_s1 f
module VS = Vale.X64.State
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@__reduce__] noextract
let sha_lemma'
(code:V.va_code)
(_win:bool)
(ctx_b:b128)
(in_b:b8_128)
(num_val:uint64)
(k_b:ib128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires
sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\ | false | false | Vale.Stdcalls.X64.Sha.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha_lemma'
(code: V.va_code)
(_win: bool)
(ctx_b: b128)
(in_b: b8_128)
(num_val: uint64)
(k_b: ib128)
(va_s0: V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires sha_pre code ctx_b in_b num_val k_b va_s0)
(ensures
(fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
sha_post code ctx_b in_b num_val k_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer ctx_b) /\ ME.buffer_writeable (as_vale_buffer in_b))
) | [] | Vale.Stdcalls.X64.Sha.sha_lemma' | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.Sha.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
code: Vale.X64.Decls.va_code ->
_win: Prims.bool ->
ctx_b: Vale.Stdcalls.X64.Sha.b128 ->
in_b: Vale.Stdcalls.X64.Sha.b8_128 ->
num_val: Vale.Stdcalls.X64.Sha.uint64 ->
k_b: Vale.Stdcalls.X64.Sha.ib128 ->
va_s0: Vale.X64.Decls.va_state
-> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) | {
"end_col": 13,
"end_line": 111,
"start_col": 5,
"start_line": 107
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let state a = B.pointer (state_s a) | let state a = | false | null | false | B.pointer (state_s a) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"LowStar.Buffer.pointer",
"EverCrypt.DRBG.state_s"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0 | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val state : a: EverCrypt.DRBG.supported_alg -> Type0 | [] | EverCrypt.DRBG.state | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg -> Type0 | {
"end_col": 35,
"end_line": 97,
"start_col": 14,
"start_line": 97
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let preserves_freeable #a (st:state a) (h0 h1:HS.mem) =
freeable st h0 ==> freeable st h1 | let preserves_freeable #a (st: state a) (h0: HS.mem) (h1: HS.mem) = | false | null | false | freeable st h0 ==> freeable st h1 | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_imp",
"EverCrypt.DRBG.freeable",
"Prims.logical"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b)
val repr: #a:supported_alg -> st:state a -> h:HS.mem -> GTot (S.state a)
/// TR: the following pattern is necessary because, if we generically
/// add such a pattern directly on `loc_includes_union_l`, then
/// verification will blowup whenever both sides of `loc_includes` are
/// `loc_union`s. We would like to break all unions on the
/// right-hand-side of `loc_includes` first, using
/// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
/// because we already expose the fact that `footprint` is a
/// `loc_union`. (In other words, the pattern should be on every
/// smallest location that is not exposed to be a `loc_union`.)
///
val loc_includes_union_l_footprint_s: #a:supported_alg -> l1:B.loc -> l2:B.loc -> st:state_s a
-> Lemma
(requires B.loc_includes l1 (footprint_s st) \/ B.loc_includes l2 (footprint_s st))
(ensures B.loc_includes (B.loc_union l1 l2) (footprint_s st))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s st))]
/// Needed to prove that the footprint is disjoint from any fresh location
val invariant_loc_in_footprint: #a:supported_alg -> st:state a -> h:HS.mem
-> Lemma
(requires invariant st h)
(ensures B.loc_in (footprint st h) h)
[SMTPat (invariant st h)]
val frame_invariant: #a:supported_alg -> l:B.loc -> st:state a -> h0:HS.mem -> h1:HS.mem
-> Lemma
(requires
invariant st h0 /\
B.loc_disjoint l (footprint st h0) /\
B.modifies l h0 h1)
(ensures
invariant st h1 /\
repr st h0 == repr st h1)
inline_for_extraction noextract | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val preserves_freeable : st: EverCrypt.DRBG.state a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.logical | [] | EverCrypt.DRBG.preserves_freeable | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
st: EverCrypt.DRBG.state a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Prims.logical | {
"end_col": 35,
"end_line": 163,
"start_col": 2,
"start_line": 163
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st) | let freeable (#a: supported_alg) (st: state a) (h: HS.mem) = | false | null | false | B.freeable st /\ freeable_s (B.deref h st) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"EverCrypt.DRBG.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.freeable_s",
"LowStar.Monotonic.Buffer.deref",
"Prims.logical"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val freeable : st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical | [] | EverCrypt.DRBG.freeable | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical | {
"end_col": 44,
"end_line": 104,
"start_col": 2,
"start_line": 104
} |
|
Prims.GTot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) | let footprint (#a: supported_alg) (st: state a) (h: HS.mem) = | false | null | false | B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"sometrivial"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.DRBG.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.loc"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val footprint : st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem
-> Prims.GTot LowStar.Monotonic.Buffer.loc | [] | EverCrypt.DRBG.footprint | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem
-> Prims.GTot LowStar.Monotonic.Buffer.loc | {
"end_col": 68,
"end_line": 109,
"start_col": 2,
"start_line": 109
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b) | let disjoint_st (#t: Type) (#a: supported_alg) (st: state a) (b: B.buffer t) (h: HS.mem) = | false | null | false | B.loc_disjoint (footprint st h) (B.loc_buffer b) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"LowStar.Buffer.buffer",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverCrypt.DRBG.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.trivial_preorder"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem) | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val disjoint_st : st: EverCrypt.DRBG.state a -> b: LowStar.Buffer.buffer t -> h: FStar.Monotonic.HyperStack.mem
-> Type0 | [] | EverCrypt.DRBG.disjoint_st | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: EverCrypt.DRBG.state a -> b: LowStar.Buffer.buffer t -> h: FStar.Monotonic.HyperStack.mem
-> Type0 | {
"end_col": 50,
"end_line": 124,
"start_col": 2,
"start_line": 124
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let supported_alg = S.supported_alg | let supported_alg = | false | null | false | S.supported_alg | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"Spec.HMAC_DRBG.supported_alg"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val supported_alg : Type0 | [] | EverCrypt.DRBG.supported_alg | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 35,
"end_line": 54,
"start_col": 20,
"start_line": 54
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h | let invariant (#a: supported_alg) (st: state a) (h: HS.mem) = | false | null | false | B.live h st /\ B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"EverCrypt.DRBG.state_s",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.DRBG.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"EverCrypt.DRBG.invariant_s",
"Prims.logical"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val invariant : st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical | [] | EverCrypt.DRBG.invariant | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | st: EverCrypt.DRBG.state a -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical | {
"end_col": 30,
"end_line": 118,
"start_col": 2,
"start_line": 116
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uninstantiate_st (a:supported_alg) =
st:state a
-> ST unit
(requires fun h0 -> freeable st h0 /\ invariant st h0)
(ensures fun h0 _ h1 -> B.modifies (footprint st h0) h0 h1) | let uninstantiate_st (a: supported_alg) = | false | null | false | st: state a
-> ST unit
(requires fun h0 -> freeable st h0 /\ invariant st h0)
(ensures fun h0 _ h1 -> B.modifies (footprint st h0) h0 h1) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.DRBG.freeable",
"EverCrypt.DRBG.invariant",
"LowStar.Monotonic.Buffer.modifies",
"EverCrypt.DRBG.footprint"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b)
val repr: #a:supported_alg -> st:state a -> h:HS.mem -> GTot (S.state a)
/// TR: the following pattern is necessary because, if we generically
/// add such a pattern directly on `loc_includes_union_l`, then
/// verification will blowup whenever both sides of `loc_includes` are
/// `loc_union`s. We would like to break all unions on the
/// right-hand-side of `loc_includes` first, using
/// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
/// because we already expose the fact that `footprint` is a
/// `loc_union`. (In other words, the pattern should be on every
/// smallest location that is not exposed to be a `loc_union`.)
///
val loc_includes_union_l_footprint_s: #a:supported_alg -> l1:B.loc -> l2:B.loc -> st:state_s a
-> Lemma
(requires B.loc_includes l1 (footprint_s st) \/ B.loc_includes l2 (footprint_s st))
(ensures B.loc_includes (B.loc_union l1 l2) (footprint_s st))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s st))]
/// Needed to prove that the footprint is disjoint from any fresh location
val invariant_loc_in_footprint: #a:supported_alg -> st:state a -> h:HS.mem
-> Lemma
(requires invariant st h)
(ensures B.loc_in (footprint st h) h)
[SMTPat (invariant st h)]
val frame_invariant: #a:supported_alg -> l:B.loc -> st:state a -> h0:HS.mem -> h1:HS.mem
-> Lemma
(requires
invariant st h0 /\
B.loc_disjoint l (footprint st h0) /\
B.modifies l h0 h1)
(ensures
invariant st h1 /\
repr st h0 == repr st h1)
inline_for_extraction noextract
let preserves_freeable #a (st:state a) (h0 h1:HS.mem) =
freeable st h0 ==> freeable st h1
inline_for_extraction
val alloca: a:supported_alg -> StackInline (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\
invariant st h1)
val create_in: a:supported_alg -> r:HS.rid -> ST (state a)
(requires fun _ -> is_eternal_region r)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint st h1)) /\
invariant st h1 /\
freeable st h1)
(** @type: true
*)
[@@ Comment "Create a DRBG state.
@param a Hash algorithm to use. The possible instantiations are ...
* `Spec_Hash_Definitions_SHA2_256`,
* `Spec_Hash_Definitions_SHA2_384`,
* `Spec_Hash_Definitions_SHA2_512`, and
* `Spec_Hash_Definitions_SHA1`.
@return DRBG state. Needs to be freed via `EverCrypt_DRBG_uninstantiate`."]
val create: a:supported_alg -> ST (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
invariant st h1 /\
freeable st h1)
inline_for_extraction noextract
let instantiate_st (a:supported_alg) =
st:state a
-> personalization_string:B.buffer uint8
-> personalization_string_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 personalization_string /\
disjoint_st st personalization_string h0 /\
B.length personalization_string = v personalization_string_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v personalization_string_len <= S.max_personalization_string_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input nonce.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
S.min_length a / 2 <= Seq.length nonce /\
Seq.length nonce <= S.max_length /\
repr st h1 ==
S.instantiate entropy_input nonce (B.as_seq h0 personalization_string)))
inline_for_extraction noextract
let reseed_st (a:supported_alg) =
st:state a
-> additional_input:B.buffer uint8
-> additional_input_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 additional_input /\
disjoint_st st additional_input h0 /\
B.length additional_input = v additional_input_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v additional_input_len <= S.max_additional_input_length /\
footprint st h0 == footprint st h1 /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
repr st h1 ==
S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input)))
inline_for_extraction noextract
let generate_st (a:supported_alg) =
output:B.buffer uint8
-> st:state a
-> n:size_t
-> additional_input:B.buffer uint8
-> additional_input_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 output /\ B.live h0 additional_input /\
disjoint_st st output h0 /\ disjoint_st st additional_input h0 /\
B.disjoint output additional_input /\
B.length additional_input = v additional_input_len /\
v n = B.length output)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v n <= S.max_output_length /\
v additional_input_len <= S.max_additional_input_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (B.loc_union (B.loc_buffer output) (footprint st h0)) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
(let st1 = S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input) in
match S.generate st1 (v n) (B.as_seq h0 additional_input) with
| None -> False // Always reseeds, so generation cannot fail
| Some (out, st_) ->
repr st h1 == st_ /\
B.as_seq h1 output == out)))
inline_for_extraction noextract | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uninstantiate_st : a: EverCrypt.DRBG.supported_alg -> Type0 | [] | EverCrypt.DRBG.uninstantiate_st | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg -> Type0 | {
"end_col": 62,
"end_line": 303,
"start_col": 4,
"start_line": 300
} |
|
Prims.Tot | val max_personalization_string_length:n: size_t{v n == S.max_personalization_string_length} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length) | val max_personalization_string_length:n: size_t{v n == S.max_personalization_string_length}
let max_personalization_string_length:n: size_t{v n == S.max_personalization_string_length} = | false | null | false | assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.max_personalization_string_length",
"Lib.IntTypes.mk_int",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ] | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_personalization_string_length:n: size_t{v n == S.max_personalization_string_length} | [] | EverCrypt.DRBG.max_personalization_string_length | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n:
Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB
{Lib.IntTypes.v n == Spec.HMAC_DRBG.max_personalization_string_length} | {
"end_col": 61,
"end_line": 74,
"start_col": 2,
"start_line": 73
} |
Prims.Tot | val max_length:n: size_t{v n == S.max_length} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length) | val max_length:n: size_t{v n == S.max_length}
let max_length:n: size_t{v n == S.max_length} = | false | null | false | assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.max_length",
"Lib.IntTypes.mk_int",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ] | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_length:n: size_t{v n == S.max_length} | [] | EverCrypt.DRBG.max_length | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n:
Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB {Lib.IntTypes.v n == Spec.HMAC_DRBG.max_length} | {
"end_col": 38,
"end_line": 69,
"start_col": 2,
"start_line": 68
} |
Prims.Tot | val max_additional_input_length:n: size_t{v n == S.max_additional_input_length} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length) | val max_additional_input_length:n: size_t{v n == S.max_additional_input_length}
let max_additional_input_length:n: size_t{v n == S.max_additional_input_length} = | false | null | false | assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.max_additional_input_length",
"Lib.IntTypes.mk_int",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ] | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_additional_input_length:n: size_t{v n == S.max_additional_input_length} | [] | EverCrypt.DRBG.max_additional_input_length | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n:
Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB
{Lib.IntTypes.v n == Spec.HMAC_DRBG.max_additional_input_length} | {
"end_col": 55,
"end_line": 79,
"start_col": 2,
"start_line": 78
} |
Prims.Tot | val max_output_length:n: size_t{v n == S.max_output_length} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length) | val max_output_length:n: size_t{v n == S.max_output_length}
let max_output_length:n: size_t{v n == S.max_output_length} = | false | null | false | assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.max_output_length",
"Lib.IntTypes.mk_int",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ] | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_output_length:n: size_t{v n == S.max_output_length} | [] | EverCrypt.DRBG.max_output_length | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n:
Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB
{Lib.IntTypes.v n == Spec.HMAC_DRBG.max_output_length} | {
"end_col": 45,
"end_line": 64,
"start_col": 2,
"start_line": 63
} |
Prims.Tot | val min_length (a: supported_alg) : n: size_t{v n == S.min_length a} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256)) | val min_length (a: supported_alg) : n: size_t{v n == S.min_length a}
let min_length (a: supported_alg) : n: size_t{v n == S.min_length a} = | false | null | false | assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256)) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_t",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Spec.HMAC_DRBG.min_length",
"Lib.IntTypes.mk_int",
"Spec.Hash.Definitions.SHA1",
"Spec.Hash.Definitions.SHA2_256",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length) | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val min_length (a: supported_alg) : n: size_t{v n == S.min_length a} | [] | EverCrypt.DRBG.min_length | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg
-> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == Spec.HMAC_DRBG.min_length a} | {
"end_col": 85,
"end_line": 85,
"start_col": 2,
"start_line": 82
} |
Prims.Tot | val reseed_interval:n: size_t{v n == S.reseed_interval} | [
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval) | val reseed_interval:n: size_t{v n == S.reseed_interval}
let reseed_interval:n: size_t{v n == S.reseed_interval} = | false | null | false | assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Spec.HMAC_DRBG.reseed_interval",
"Lib.IntTypes.mk_int",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.pow2"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ] | false | false | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val reseed_interval:n: size_t{v n == S.reseed_interval} | [] | EverCrypt.DRBG.reseed_interval | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n:
Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB
{Lib.IntTypes.v n == Spec.HMAC_DRBG.reseed_interval} | {
"end_col": 43,
"end_line": 59,
"start_col": 2,
"start_line": 58
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let reseed_st (a:supported_alg) =
st:state a
-> additional_input:B.buffer uint8
-> additional_input_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 additional_input /\
disjoint_st st additional_input h0 /\
B.length additional_input = v additional_input_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v additional_input_len <= S.max_additional_input_length /\
footprint st h0 == footprint st h1 /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
repr st h1 ==
S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input))) | let reseed_st (a: supported_alg) = | false | null | false | st: state a -> additional_input: B.buffer uint8 -> additional_input_len: size_t
-> Stack bool
(requires
fun h0 ->
invariant st h0 /\ B.live h0 additional_input /\ disjoint_st st additional_input h0 /\
B.length additional_input = v additional_input_len)
(ensures
fun h0 b h1 ->
S.hmac_input_bound a;
if not b
then B.modifies B.loc_none h0 h1
else
v additional_input_len <= S.max_additional_input_length /\
footprint st h0 == footprint st h1 /\ invariant st h1 /\ preserves_freeable st h0 h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
repr st h1 == S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input))) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.DRBG.invariant",
"LowStar.Monotonic.Buffer.live",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.disjoint_st",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"LowStar.Monotonic.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.op_LessThanOrEqual",
"Spec.HMAC_DRBG.max_additional_input_length",
"Prims.eq2",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.DRBG.footprint",
"EverCrypt.DRBG.preserves_freeable",
"Prims.l_Exists",
"FStar.Seq.Base.seq",
"Spec.HMAC_DRBG.min_length",
"FStar.Seq.Base.length",
"Spec.HMAC_DRBG.max_length",
"Spec.HMAC_DRBG.state",
"EverCrypt.DRBG.repr",
"Spec.HMAC_DRBG.reseed",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b)
val repr: #a:supported_alg -> st:state a -> h:HS.mem -> GTot (S.state a)
/// TR: the following pattern is necessary because, if we generically
/// add such a pattern directly on `loc_includes_union_l`, then
/// verification will blowup whenever both sides of `loc_includes` are
/// `loc_union`s. We would like to break all unions on the
/// right-hand-side of `loc_includes` first, using
/// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
/// because we already expose the fact that `footprint` is a
/// `loc_union`. (In other words, the pattern should be on every
/// smallest location that is not exposed to be a `loc_union`.)
///
val loc_includes_union_l_footprint_s: #a:supported_alg -> l1:B.loc -> l2:B.loc -> st:state_s a
-> Lemma
(requires B.loc_includes l1 (footprint_s st) \/ B.loc_includes l2 (footprint_s st))
(ensures B.loc_includes (B.loc_union l1 l2) (footprint_s st))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s st))]
/// Needed to prove that the footprint is disjoint from any fresh location
val invariant_loc_in_footprint: #a:supported_alg -> st:state a -> h:HS.mem
-> Lemma
(requires invariant st h)
(ensures B.loc_in (footprint st h) h)
[SMTPat (invariant st h)]
val frame_invariant: #a:supported_alg -> l:B.loc -> st:state a -> h0:HS.mem -> h1:HS.mem
-> Lemma
(requires
invariant st h0 /\
B.loc_disjoint l (footprint st h0) /\
B.modifies l h0 h1)
(ensures
invariant st h1 /\
repr st h0 == repr st h1)
inline_for_extraction noextract
let preserves_freeable #a (st:state a) (h0 h1:HS.mem) =
freeable st h0 ==> freeable st h1
inline_for_extraction
val alloca: a:supported_alg -> StackInline (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\
invariant st h1)
val create_in: a:supported_alg -> r:HS.rid -> ST (state a)
(requires fun _ -> is_eternal_region r)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint st h1)) /\
invariant st h1 /\
freeable st h1)
(** @type: true
*)
[@@ Comment "Create a DRBG state.
@param a Hash algorithm to use. The possible instantiations are ...
* `Spec_Hash_Definitions_SHA2_256`,
* `Spec_Hash_Definitions_SHA2_384`,
* `Spec_Hash_Definitions_SHA2_512`, and
* `Spec_Hash_Definitions_SHA1`.
@return DRBG state. Needs to be freed via `EverCrypt_DRBG_uninstantiate`."]
val create: a:supported_alg -> ST (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
invariant st h1 /\
freeable st h1)
inline_for_extraction noextract
let instantiate_st (a:supported_alg) =
st:state a
-> personalization_string:B.buffer uint8
-> personalization_string_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 personalization_string /\
disjoint_st st personalization_string h0 /\
B.length personalization_string = v personalization_string_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v personalization_string_len <= S.max_personalization_string_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input nonce.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
S.min_length a / 2 <= Seq.length nonce /\
Seq.length nonce <= S.max_length /\
repr st h1 ==
S.instantiate entropy_input nonce (B.as_seq h0 personalization_string)))
inline_for_extraction noextract | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val reseed_st : a: EverCrypt.DRBG.supported_alg -> Type0 | [] | EverCrypt.DRBG.reseed_st | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg -> Type0 | {
"end_col": 76,
"end_line": 258,
"start_col": 4,
"start_line": 235
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let instantiate_st (a:supported_alg) =
st:state a
-> personalization_string:B.buffer uint8
-> personalization_string_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 personalization_string /\
disjoint_st st personalization_string h0 /\
B.length personalization_string = v personalization_string_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v personalization_string_len <= S.max_personalization_string_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input nonce.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
S.min_length a / 2 <= Seq.length nonce /\
Seq.length nonce <= S.max_length /\
repr st h1 ==
S.instantiate entropy_input nonce (B.as_seq h0 personalization_string))) | let instantiate_st (a: supported_alg) = | false | null | false | st: state a -> personalization_string: B.buffer uint8 -> personalization_string_len: size_t
-> Stack bool
(requires
fun h0 ->
invariant st h0 /\ B.live h0 personalization_string /\
disjoint_st st personalization_string h0 /\
B.length personalization_string = v personalization_string_len)
(ensures
fun h0 b h1 ->
S.hmac_input_bound a;
if not b
then B.modifies B.loc_none h0 h1
else
v personalization_string_len <= S.max_personalization_string_length /\ invariant st h1 /\
preserves_freeable st h0 h1 /\ footprint st h0 == footprint st h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input nonce.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\ S.min_length a / 2 <= Seq.length nonce /\
Seq.length nonce <= S.max_length /\
repr st h1 == S.instantiate entropy_input nonce (B.as_seq h0 personalization_string)
)) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"EverCrypt.DRBG.state",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.size_t",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.DRBG.invariant",
"LowStar.Monotonic.Buffer.live",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.disjoint_st",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"LowStar.Monotonic.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.op_LessThanOrEqual",
"Spec.HMAC_DRBG.max_personalization_string_length",
"EverCrypt.DRBG.preserves_freeable",
"Prims.eq2",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.DRBG.footprint",
"Prims.l_Exists",
"FStar.Seq.Base.seq",
"Spec.HMAC_DRBG.min_length",
"FStar.Seq.Base.length",
"Spec.HMAC_DRBG.max_length",
"Prims.op_Division",
"Spec.HMAC_DRBG.state",
"EverCrypt.DRBG.repr",
"Spec.HMAC_DRBG.instantiate",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b)
val repr: #a:supported_alg -> st:state a -> h:HS.mem -> GTot (S.state a)
/// TR: the following pattern is necessary because, if we generically
/// add such a pattern directly on `loc_includes_union_l`, then
/// verification will blowup whenever both sides of `loc_includes` are
/// `loc_union`s. We would like to break all unions on the
/// right-hand-side of `loc_includes` first, using
/// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
/// because we already expose the fact that `footprint` is a
/// `loc_union`. (In other words, the pattern should be on every
/// smallest location that is not exposed to be a `loc_union`.)
///
val loc_includes_union_l_footprint_s: #a:supported_alg -> l1:B.loc -> l2:B.loc -> st:state_s a
-> Lemma
(requires B.loc_includes l1 (footprint_s st) \/ B.loc_includes l2 (footprint_s st))
(ensures B.loc_includes (B.loc_union l1 l2) (footprint_s st))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s st))]
/// Needed to prove that the footprint is disjoint from any fresh location
val invariant_loc_in_footprint: #a:supported_alg -> st:state a -> h:HS.mem
-> Lemma
(requires invariant st h)
(ensures B.loc_in (footprint st h) h)
[SMTPat (invariant st h)]
val frame_invariant: #a:supported_alg -> l:B.loc -> st:state a -> h0:HS.mem -> h1:HS.mem
-> Lemma
(requires
invariant st h0 /\
B.loc_disjoint l (footprint st h0) /\
B.modifies l h0 h1)
(ensures
invariant st h1 /\
repr st h0 == repr st h1)
inline_for_extraction noextract
let preserves_freeable #a (st:state a) (h0 h1:HS.mem) =
freeable st h0 ==> freeable st h1
inline_for_extraction
val alloca: a:supported_alg -> StackInline (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\
invariant st h1)
val create_in: a:supported_alg -> r:HS.rid -> ST (state a)
(requires fun _ -> is_eternal_region r)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint st h1)) /\
invariant st h1 /\
freeable st h1)
(** @type: true
*)
[@@ Comment "Create a DRBG state.
@param a Hash algorithm to use. The possible instantiations are ...
* `Spec_Hash_Definitions_SHA2_256`,
* `Spec_Hash_Definitions_SHA2_384`,
* `Spec_Hash_Definitions_SHA2_512`, and
* `Spec_Hash_Definitions_SHA1`.
@return DRBG state. Needs to be freed via `EverCrypt_DRBG_uninstantiate`."]
val create: a:supported_alg -> ST (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
invariant st h1 /\
freeable st h1)
inline_for_extraction noextract | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val instantiate_st : a: EverCrypt.DRBG.supported_alg -> Type0 | [] | EverCrypt.DRBG.instantiate_st | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg -> Type0 | {
"end_col": 80,
"end_line": 230,
"start_col": 4,
"start_line": 205
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RandomBuffer.System",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HMAC_DRBG",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.HMAC_DRBG",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_st (a:supported_alg) =
output:B.buffer uint8
-> st:state a
-> n:size_t
-> additional_input:B.buffer uint8
-> additional_input_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 output /\ B.live h0 additional_input /\
disjoint_st st output h0 /\ disjoint_st st additional_input h0 /\
B.disjoint output additional_input /\
B.length additional_input = v additional_input_len /\
v n = B.length output)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v n <= S.max_output_length /\
v additional_input_len <= S.max_additional_input_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (B.loc_union (B.loc_buffer output) (footprint st h0)) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
(let st1 = S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input) in
match S.generate st1 (v n) (B.as_seq h0 additional_input) with
| None -> False // Always reseeds, so generation cannot fail
| Some (out, st_) ->
repr st h1 == st_ /\
B.as_seq h1 output == out))) | let generate_st (a: supported_alg) = | false | null | false |
output: B.buffer uint8 ->
st: state a ->
n: size_t ->
additional_input: B.buffer uint8 ->
additional_input_len: size_t
-> Stack bool
(requires
fun h0 ->
invariant st h0 /\ B.live h0 output /\ B.live h0 additional_input /\
disjoint_st st output h0 /\ disjoint_st st additional_input h0 /\
B.disjoint output additional_input /\ B.length additional_input = v additional_input_len /\
v n = B.length output)
(ensures
fun h0 b h1 ->
S.hmac_input_bound a;
if not b
then B.modifies B.loc_none h0 h1
else
v n <= S.max_output_length /\ v additional_input_len <= S.max_additional_input_length /\
invariant st h1 /\ preserves_freeable st h0 h1 /\ footprint st h0 == footprint st h1 /\
B.modifies (B.loc_union (B.loc_buffer output) (footprint st h0)) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
(let st1 = S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input) in
match S.generate st1 (v n) (B.as_seq h0 additional_input) with
| None -> False
| Some (out, st_) -> repr st h1 == st_ /\ B.as_seq h1 output == out))) | {
"checked_file": "EverCrypt.DRBG.fsti.checked",
"dependencies": [
"Spec.HMAC_DRBG.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.DRBG.fsti"
} | [
"total"
] | [
"EverCrypt.DRBG.supported_alg",
"LowStar.Buffer.buffer",
"Lib.IntTypes.uint8",
"EverCrypt.DRBG.state",
"Lib.IntTypes.size_t",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.DRBG.invariant",
"LowStar.Monotonic.Buffer.live",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.DRBG.disjoint_st",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"LowStar.Monotonic.Buffer.length",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.op_LessThanOrEqual",
"Spec.HMAC_DRBG.max_output_length",
"Spec.HMAC_DRBG.max_additional_input_length",
"EverCrypt.DRBG.preserves_freeable",
"Prims.eq2",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.DRBG.footprint",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.l_Exists",
"FStar.Seq.Base.seq",
"Spec.HMAC_DRBG.min_length",
"FStar.Seq.Base.length",
"Spec.HMAC_DRBG.max_length",
"Spec.HMAC_DRBG.generate",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.l_False",
"Spec.Agile.HMAC.lbytes",
"Spec.HMAC_DRBG.state",
"EverCrypt.DRBG.repr",
"Prims.logical",
"Spec.HMAC_DRBG.reseed",
"Prims.unit",
"Spec.HMAC_DRBG.hmac_input_bound"
] | [] | module EverCrypt.DRBG
open FStar.HyperStack.ST
open Lib.IntTypes
open Spec.Hash.Definitions
module HS = FStar.HyperStack
module B = LowStar.Buffer
module S = Spec.HMAC_DRBG
#set-options "--max_ifuel 0 --max_fuel 0"
/// HMAC-DRBG
///
/// See 10.1.2 and B.2 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
///
/// This module implements
/// - HMAC_DRBG_Instantiate_function
/// - HMAC_DRBG_Reseed_function
/// - HMAC_DRBG_Generate_function
/// - HMAC_DRBG_Uninstantiate_function
///
/// Internally, it uses Lib.RandomBuffer.System as the Get_entropy_input function,
/// for instantiation, reseeding, and prediction resistance.
///
/// - Supports SHA-1, SHA2-256, SHA2-384 and SHA2-512
///
/// - Supports reseeding
///
/// - Supports optional personalization_string for instantiation
///
/// - Supports optional additional_input for reseeding and generation
///
/// - Always provides prediction resistance (i.e. reseeds before generation)
///
/// - The internal state is (Key,V,reseed_counter)
///
/// - The security_strength is the HMAC-strength of the hash algorithm as per p.54 of
/// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
///
/// - The minimum entropy for instantiation is 3/2 * security_strength.
/// - entropy_input must have at least security_strength bits.
/// - nonce must have at least 1/2 security_strength bits.
/// - entropy_input and nonce can have at most max_length = 2^16 bits.
///
/// - At most max_number_of_bits_per_request = 2^16 bits can be generated per request.
/// Some duplication from Hacl.HMAC_DRBG because we don't want clients to depend on it
unfold
let supported_alg = S.supported_alg
//[@ CMacro ]
let reseed_interval: n:size_t{v n == S.reseed_interval} =
assert_norm (S.reseed_interval < pow2 32);
normalize_term (mk_int S.reseed_interval)
//[@ CMacro ]
let max_output_length: n:size_t{v n == S.max_output_length} =
assert_norm (S.max_output_length < pow2 32);
normalize_term (mk_int S.max_output_length)
//[@ CMacro ]
let max_length: n:size_t{v n == S.max_length} =
assert_norm (S.max_length < pow2 32);
normalize_term (mk_int S.max_length)
//[@ CMacro ]
let max_personalization_string_length: n:size_t{v n == S.max_personalization_string_length} =
assert_norm (S.max_personalization_string_length < pow2 32);
normalize_term (mk_int S.max_personalization_string_length)
//[@ CMacro ]
let max_additional_input_length: n:size_t{v n == S.max_additional_input_length} =
assert_norm (S.max_additional_input_length < pow2 32);
normalize_term (mk_int S.max_additional_input_length)
let min_length (a:supported_alg) : n:size_t{v n == S.min_length a} =
assert_norm (S.min_length a < pow2 32);
match a with
| SHA1 -> normalize_term (mk_int (S.min_length SHA1))
| SHA2_256 | SHA2_384 | SHA2_512 -> normalize_term (mk_int (S.min_length SHA2_256))
/// This has a @CAbstractStruct attribute in the implementation.
/// See https://github.com/FStarLang/karamel/issues/153
///
/// It instructs KaRaMeL to include only a forward-declarartion
/// in the header file, forcing code to always use `state_s` abstractly
/// through a pointer.
inline_for_extraction noextract
val state_s: supported_alg -> Type0
inline_for_extraction noextract
let state a = B.pointer (state_s a)
inline_for_extraction noextract
val freeable_s: #a:supported_alg -> st:state_s a -> Type0
inline_for_extraction noextract
let freeable (#a:supported_alg) (st:state a) (h:HS.mem) =
B.freeable st /\ freeable_s (B.deref h st)
val footprint_s: #a:supported_alg -> state_s a -> GTot B.loc
let footprint (#a:supported_alg) (st:state a) (h:HS.mem) =
B.loc_union (B.loc_addr_of_buffer st) (footprint_s (B.deref h st))
inline_for_extraction noextract
val invariant_s: #a:supported_alg -> state_s a -> HS.mem -> Type0
inline_for_extraction noextract
let invariant (#a:supported_alg) (st:state a) (h:HS.mem) =
B.live h st /\
B.loc_disjoint (B.loc_addr_of_buffer st) (footprint_s (B.deref h st)) /\
invariant_s (B.deref h st) h
inline_for_extraction noextract
let disjoint_st (#t:Type) (#a:supported_alg)
(st:state a) (b:B.buffer t) (h:HS.mem)
=
B.loc_disjoint (footprint st h) (B.loc_buffer b)
val repr: #a:supported_alg -> st:state a -> h:HS.mem -> GTot (S.state a)
/// TR: the following pattern is necessary because, if we generically
/// add such a pattern directly on `loc_includes_union_l`, then
/// verification will blowup whenever both sides of `loc_includes` are
/// `loc_union`s. We would like to break all unions on the
/// right-hand-side of `loc_includes` first, using
/// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
/// because we already expose the fact that `footprint` is a
/// `loc_union`. (In other words, the pattern should be on every
/// smallest location that is not exposed to be a `loc_union`.)
///
val loc_includes_union_l_footprint_s: #a:supported_alg -> l1:B.loc -> l2:B.loc -> st:state_s a
-> Lemma
(requires B.loc_includes l1 (footprint_s st) \/ B.loc_includes l2 (footprint_s st))
(ensures B.loc_includes (B.loc_union l1 l2) (footprint_s st))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s st))]
/// Needed to prove that the footprint is disjoint from any fresh location
val invariant_loc_in_footprint: #a:supported_alg -> st:state a -> h:HS.mem
-> Lemma
(requires invariant st h)
(ensures B.loc_in (footprint st h) h)
[SMTPat (invariant st h)]
val frame_invariant: #a:supported_alg -> l:B.loc -> st:state a -> h0:HS.mem -> h1:HS.mem
-> Lemma
(requires
invariant st h0 /\
B.loc_disjoint l (footprint st h0) /\
B.modifies l h0 h1)
(ensures
invariant st h1 /\
repr st h0 == repr st h1)
inline_for_extraction noextract
let preserves_freeable #a (st:state a) (h0 h1:HS.mem) =
freeable st h0 ==> freeable st h1
inline_for_extraction
val alloca: a:supported_alg -> StackInline (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint st h1)) /\
invariant st h1)
val create_in: a:supported_alg -> r:HS.rid -> ST (state a)
(requires fun _ -> is_eternal_region r)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint st h1)) /\
invariant st h1 /\
freeable st h1)
(** @type: true
*)
[@@ Comment "Create a DRBG state.
@param a Hash algorithm to use. The possible instantiations are ...
* `Spec_Hash_Definitions_SHA2_256`,
* `Spec_Hash_Definitions_SHA2_384`,
* `Spec_Hash_Definitions_SHA2_512`, and
* `Spec_Hash_Definitions_SHA1`.
@return DRBG state. Needs to be freed via `EverCrypt_DRBG_uninstantiate`."]
val create: a:supported_alg -> ST (state a)
(requires fun _ -> True)
(ensures fun h0 st h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (footprint st h1) h0 h1 /\
invariant st h1 /\
freeable st h1)
inline_for_extraction noextract
let instantiate_st (a:supported_alg) =
st:state a
-> personalization_string:B.buffer uint8
-> personalization_string_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 personalization_string /\
disjoint_st st personalization_string h0 /\
B.length personalization_string = v personalization_string_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v personalization_string_len <= S.max_personalization_string_length /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
footprint st h0 == footprint st h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input nonce.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
S.min_length a / 2 <= Seq.length nonce /\
Seq.length nonce <= S.max_length /\
repr st h1 ==
S.instantiate entropy_input nonce (B.as_seq h0 personalization_string)))
inline_for_extraction noextract
let reseed_st (a:supported_alg) =
st:state a
-> additional_input:B.buffer uint8
-> additional_input_len:size_t
-> Stack bool
(requires fun h0 ->
invariant st h0 /\
B.live h0 additional_input /\
disjoint_st st additional_input h0 /\
B.length additional_input = v additional_input_len)
(ensures fun h0 b h1 ->
S.hmac_input_bound a;
if not b then
B.modifies B.loc_none h0 h1
else
v additional_input_len <= S.max_additional_input_length /\
footprint st h0 == footprint st h1 /\
invariant st h1 /\
preserves_freeable st h0 h1 /\
B.modifies (footprint st h0) h0 h1 /\
(exists entropy_input.
S.min_length a <= Seq.length entropy_input /\
Seq.length entropy_input <= S.max_length /\
repr st h1 ==
S.reseed (repr st h0) entropy_input (B.as_seq h0 additional_input)))
inline_for_extraction noextract | false | true | EverCrypt.DRBG.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_st : a: EverCrypt.DRBG.supported_alg -> Type0 | [] | EverCrypt.DRBG.generate_st | {
"file_name": "providers/evercrypt/EverCrypt.DRBG.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: EverCrypt.DRBG.supported_alg -> Type0 | {
"end_col": 38,
"end_line": 295,
"start_col": 4,
"start_line": 263
} |
|
Prims.Tot | val sha256_msg1_spec (src1 src2:quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg1_spec = opaque_make sha256_msg1_spec_def | val sha256_msg1_spec (src1 src2:quad32) : quad32
let sha256_msg1_spec = | false | null | false | opaque_make sha256_msg1_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_msg1_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def
let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3))) | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg1_spec (src1 src2:quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_msg1_spec | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | {
"end_col": 74,
"end_line": 65,
"start_col": 42,
"start_line": 65
} |
Prims.Tot | val sha256_rnds2_spec (src1 src2 wk:quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def | val sha256_rnds2_spec (src1 src2 wk:quad32) : quad32
let sha256_rnds2_spec = | false | null | false | opaque_make sha256_rnds2_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_rnds2_spec (src1 src2 wk:quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_rnds2_spec | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> wk: Vale.Def.Types_s.quad32
-> Vale.Def.Types_s.quad32 | {
"end_col": 76,
"end_line": 51,
"start_col": 43,
"start_line": 51
} |
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg2_spec_reveal = opaque_revealer (`%sha256_msg2_spec) sha256_msg2_spec sha256_msg2_spec_def | let sha256_msg2_spec_reveal = | false | null | true | opaque_revealer (`%sha256_msg2_spec) sha256_msg2_spec sha256_msg2_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_msg2_spec",
"Vale.X64.CryptoInstructions_s.sha256_msg2_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def
let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4)))
[@"opaque_to_smt"] let sha256_msg1_spec = opaque_make sha256_msg1_spec_def
irreducible let sha256_msg1_spec_reveal = opaque_revealer (`%sha256_msg1_spec) sha256_msg1_spec sha256_msg1_spec_def
let sha256_msg2_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w14 = uint_to_t src2.hi2 in
let w15 = uint_to_t src2.hi3 in
let w16 = add_mod (uint_to_t src1.lo0) (_sigma1 SHA2_256 w14) in
let w17 = add_mod (uint_to_t src1.lo1) (_sigma1 SHA2_256 w15) in
let w18 = add_mod (uint_to_t src1.hi2) (_sigma1 SHA2_256 w16) in
let w19 = add_mod (uint_to_t src1.hi3) (_sigma1 SHA2_256 w17) in
Mkfour (v w16) (v w17) (v w18) (v w19) | false | false | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg2_spec_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_msg2_spec ==
Vale.X64.CryptoInstructions_s.sha256_msg2_spec_def) | [] | Vale.X64.CryptoInstructions_s.sha256_msg2_spec_reveal | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_msg2_spec ==
Vale.X64.CryptoInstructions_s.sha256_msg2_spec_def) | {
"end_col": 116,
"end_line": 78,
"start_col": 42,
"start_line": 78
} |
|
Prims.Tot | val sha256_msg2_spec (src1 src2:quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg2_spec = opaque_make sha256_msg2_spec_def | val sha256_msg2_spec (src1 src2:quad32) : quad32
let sha256_msg2_spec = | false | null | false | opaque_make sha256_msg2_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Opaque_s.opaque_make",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_msg2_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def
let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4)))
[@"opaque_to_smt"] let sha256_msg1_spec = opaque_make sha256_msg1_spec_def
irreducible let sha256_msg1_spec_reveal = opaque_revealer (`%sha256_msg1_spec) sha256_msg1_spec sha256_msg1_spec_def
let sha256_msg2_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w14 = uint_to_t src2.hi2 in
let w15 = uint_to_t src2.hi3 in
let w16 = add_mod (uint_to_t src1.lo0) (_sigma1 SHA2_256 w14) in
let w17 = add_mod (uint_to_t src1.lo1) (_sigma1 SHA2_256 w15) in
let w18 = add_mod (uint_to_t src1.hi2) (_sigma1 SHA2_256 w16) in
let w19 = add_mod (uint_to_t src1.hi3) (_sigma1 SHA2_256 w17) in | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg2_spec (src1 src2:quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_msg2_spec | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | {
"end_col": 74,
"end_line": 77,
"start_col": 42,
"start_line": 77
} |
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg1_spec_reveal = opaque_revealer (`%sha256_msg1_spec) sha256_msg1_spec sha256_msg1_spec_def | let sha256_msg1_spec_reveal = | false | null | true | opaque_revealer (`%sha256_msg1_spec) sha256_msg1_spec sha256_msg1_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_msg1_spec",
"Vale.X64.CryptoInstructions_s.sha256_msg1_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def
let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4))) | false | false | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg1_spec_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_msg1_spec ==
Vale.X64.CryptoInstructions_s.sha256_msg1_spec_def) | [] | Vale.X64.CryptoInstructions_s.sha256_msg1_spec_reveal | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_msg1_spec ==
Vale.X64.CryptoInstructions_s.sha256_msg1_spec_def) | {
"end_col": 116,
"end_line": 66,
"start_col": 42,
"start_line": 66
} |
|
FStar.Pervasives.Lemma | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def | let sha256_rnds2_spec_reveal = | false | null | true | opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"lemma"
] | [
"Vale.Def.Opaque_s.opaque_revealer",
"Vale.Def.Types_s.quad32",
"Vale.X64.CryptoInstructions_s.sha256_rnds2_spec",
"Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_def"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst | false | false | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_rnds2_spec_reveal : _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_rnds2_spec ==
Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_def) | [] | Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_reveal | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.X64.CryptoInstructions_s.sha256_rnds2_spec ==
Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_def) | {
"end_col": 120,
"end_line": 52,
"start_col": 43,
"start_line": 52
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h') | let sha256_rnds2_spec_update (a b c d e f g h wk: word SHA2_256) = | false | null | false | let open FStar.UInt32 in
let a' =
add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a)))))
in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g) (add_mod (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h') | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Spec.Hash.Definitions.word",
"Spec.Hash.Definitions.SHA2_256",
"FStar.Pervasives.Native.Mktuple8",
"FStar.UInt32.t",
"FStar.UInt32.add_mod",
"Spec.SHA2._Ch",
"Spec.SHA2._Sigma1",
"Spec.SHA2._Maj",
"Spec.SHA2._Sigma0",
"FStar.Pervasives.Native.tuple8"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2 | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_rnds2_spec_update : a: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
b: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
c: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
d: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
e: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
f: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
g: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
h: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
wk: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256
-> ((((((FStar.UInt32.t * Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
FStar.UInt32.t) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 | [] | Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_update | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
b: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
c: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
d: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
e: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
f: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
g: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
h: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 ->
wk: Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256
-> ((((((FStar.UInt32.t * Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
FStar.UInt32.t) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256) *
Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_256 | {
"end_col": 34,
"end_line": 33,
"start_col": 2,
"start_line": 15
} |
|
Prims.Tot | val sha256_msg1_spec_def (src1 src2: quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4))) | val sha256_msg1_spec_def (src1 src2: quad32) : quad32
let sha256_msg1_spec_def (src1 src2: quad32) : quad32 = | false | null | false | let open FStar.UInt32 in
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4))) | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.UInt32.v",
"FStar.UInt32.add_mod",
"Spec.SHA2._sigma0",
"Spec.Hash.Definitions.SHA2_256",
"FStar.UInt32.t",
"FStar.UInt32.uint_to_t",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg1_spec_def (src1 src2: quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_msg1_spec_def | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | {
"end_col": 49,
"end_line": 64,
"start_col": 4,
"start_line": 55
} |
Prims.Tot | val sha256_msg2_spec_def (src1 src2: quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_msg2_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w14 = uint_to_t src2.hi2 in
let w15 = uint_to_t src2.hi3 in
let w16 = add_mod (uint_to_t src1.lo0) (_sigma1 SHA2_256 w14) in
let w17 = add_mod (uint_to_t src1.lo1) (_sigma1 SHA2_256 w15) in
let w18 = add_mod (uint_to_t src1.hi2) (_sigma1 SHA2_256 w16) in
let w19 = add_mod (uint_to_t src1.hi3) (_sigma1 SHA2_256 w17) in
Mkfour (v w16) (v w17) (v w18) (v w19) | val sha256_msg2_spec_def (src1 src2: quad32) : quad32
let sha256_msg2_spec_def (src1 src2: quad32) : quad32 = | false | null | false | let open FStar.UInt32 in
let w14 = uint_to_t src2.hi2 in
let w15 = uint_to_t src2.hi3 in
let w16 = add_mod (uint_to_t src1.lo0) (_sigma1 SHA2_256 w14) in
let w17 = add_mod (uint_to_t src1.lo1) (_sigma1 SHA2_256 w15) in
let w18 = add_mod (uint_to_t src1.hi2) (_sigma1 SHA2_256 w16) in
let w19 = add_mod (uint_to_t src1.hi3) (_sigma1 SHA2_256 w17) in
Mkfour (v w16) (v w17) (v w18) (v w19) | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.UInt32.v",
"FStar.UInt32.t",
"FStar.UInt32.add_mod",
"FStar.UInt32.uint_to_t",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Spec.SHA2._sigma1",
"Spec.Hash.Definitions.SHA2_256",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h')
let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst
[@"opaque_to_smt"] let sha256_rnds2_spec = opaque_make sha256_rnds2_spec_def
irreducible let sha256_rnds2_spec_reveal = opaque_revealer (`%sha256_rnds2_spec) sha256_rnds2_spec sha256_rnds2_spec_def
let sha256_msg1_spec_def (src1 src2:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let w4 = uint_to_t src2.lo0 in
let w3 = uint_to_t src1.hi3 in
let w2 = uint_to_t src1.hi2 in
let w1 = uint_to_t src1.lo1 in
let w0 = uint_to_t src1.lo0 in
Mkfour (v (add_mod w0 (_sigma0 SHA2_256 w1)))
(v (add_mod w1 (_sigma0 SHA2_256 w2)))
(v (add_mod w2 (_sigma0 SHA2_256 w3)))
(v (add_mod w3 (_sigma0 SHA2_256 w4)))
[@"opaque_to_smt"] let sha256_msg1_spec = opaque_make sha256_msg1_spec_def
irreducible let sha256_msg1_spec_reveal = opaque_revealer (`%sha256_msg1_spec) sha256_msg1_spec sha256_msg1_spec_def | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_msg2_spec_def (src1 src2: quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_msg2_spec_def | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | {
"end_col": 42,
"end_line": 76,
"start_col": 4,
"start_line": 69
} |
Prims.Tot | val sha256_rnds2_spec_def (src1 src2 wk: quad32) : quad32 | [
{
"abbrev": false,
"full_module": "Spec.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sha256_rnds2_spec_def (src1 src2 wk:quad32) : quad32 =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1,b1,c1,d1,e1,f1,g1,h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2,b2,c2,d2,e2,f2,g2,h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst | val sha256_rnds2_spec_def (src1 src2 wk: quad32) : quad32
let sha256_rnds2_spec_def (src1 src2 wk: quad32) : quad32 = | false | null | false | let open FStar.UInt32 in
let a0 = uint_to_t src2.hi3 in
let b0 = uint_to_t src2.hi2 in
let c0 = uint_to_t src1.hi3 in
let d0 = uint_to_t src1.hi2 in
let e0 = uint_to_t src2.lo1 in
let f0 = uint_to_t src2.lo0 in
let g0 = uint_to_t src1.lo1 in
let h0 = uint_to_t src1.lo0 in
let wk0 = uint_to_t wk.lo0 in
let wk1 = uint_to_t wk.lo1 in
let a1, b1, c1, d1, e1, f1, g1, h1 = sha256_rnds2_spec_update a0 b0 c0 d0 e0 f0 g0 h0 wk0 in
let a2, b2, c2, d2, e2, f2, g2, h2 = sha256_rnds2_spec_update a1 b1 c1 d1 e1 f1 g1 h1 wk1 in
let dst = Mkfour (v f2) (v e2) (v b2) (v a2) in
dst | {
"checked_file": "Vale.X64.CryptoInstructions_s.fst.checked",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Spec.SHA2.fst.checked",
"Spec.SHA2.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.X64.CryptoInstructions_s.fst"
} | [
"total"
] | [
"Vale.Def.Types_s.quad32",
"FStar.UInt32.t",
"Spec.Hash.Definitions.word",
"Spec.Hash.Definitions.SHA2_256",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.UInt32.v",
"FStar.Pervasives.Native.tuple8",
"Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_update",
"FStar.UInt32.uint_to_t",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3"
] | [] | module Vale.X64.CryptoInstructions_s
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Spec.Hash.Definitions
open Spec.SHA2
friend Lib.IntTypes
friend Spec.SHA2
let sha256_rnds2_spec_update (a b c d e f g h wk : word SHA2_256) =
let open FStar.UInt32 in // Interop with UInt-based SHA spec
let a' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
(add_mod (_Maj SHA2_256 a b c)
(_Sigma0 SHA2_256 a))))) in
let b' = a in
let c' = b in
let d' = c in
let e' = add_mod (_Ch SHA2_256 e f g)
(add_mod (_Sigma1 SHA2_256 e)
(add_mod wk
(add_mod h
d))) in
let f' = e in
let g' = f in
let h' = g in
(a', b', c', d', e', f', g', h') | false | true | Vale.X64.CryptoInstructions_s.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sha256_rnds2_spec_def (src1 src2 wk: quad32) : quad32 | [] | Vale.X64.CryptoInstructions_s.sha256_rnds2_spec_def | {
"file_name": "vale/specs/hardware/Vale.X64.CryptoInstructions_s.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | src1: Vale.Def.Types_s.quad32 -> src2: Vale.Def.Types_s.quad32 -> wk: Vale.Def.Types_s.quad32
-> Vale.Def.Types_s.quad32 | {
"end_col": 7,
"end_line": 50,
"start_col": 4,
"start_line": 36
} |
Prims.Tot | val parse_option_kind (k: parser_kind) : Tot parser_kind | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
} | val parse_option_kind (k: parser_kind) : Tot parser_kind
let parse_option_kind (k: parser_kind) : Tot parser_kind = | false | null | false | {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None
} | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.Mkparser_kind'",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"FStar.Pervasives.Native.None",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.parser_kind_metadata_some"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32 | false | true | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_option_kind (k: parser_kind) : Tot parser_kind | [] | LowParse.Spec.Option.parse_option_kind | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | k: LowParse.Spec.Base.parser_kind -> LowParse.Spec.Base.parser_kind | {
"end_col": 29,
"end_line": 12,
"start_col": 2,
"start_line": 9
} |
Prims.Tot | val serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Tot (bare_serializer (option t)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot (bare_serializer (option t)) =
fun x -> match x with
| None -> Seq.empty
| Some y -> serialize s y | val serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Tot (bare_serializer (option t))
let serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Tot (bare_serializer (option t)) = | false | null | false | function
| None -> Seq.empty
| Some y -> serialize s y | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"FStar.Pervasives.Native.option",
"FStar.Seq.Base.empty",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.bare_serializer"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
}
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
= parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> ()
let parse_option (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (parser (parse_option_kind k) (option t)) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (parse_option_bare_injective p x));
parser_kind_prop_equiv k p;
parser_kind_prop_equiv (parse_option_kind k) (parse_option_bare p);
parse_option_bare p | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Tot (bare_serializer (option t)) | [] | LowParse.Spec.Option.serialize_option_bare | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p
-> LowParse.Spec.Base.bare_serializer (FStar.Pervasives.Native.option t) | {
"end_col": 27,
"end_line": 38,
"start_col": 2,
"start_line": 36
} |
Prims.Tot | val parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input)) | val parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t))
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) = | false | null | false | fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input)) | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parse",
"LowParse.Spec.Base.consumed_length",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.None",
"LowParse.Spec.Base.bare_parser"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
} | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) | [] | LowParse.Spec.Option.parse_option_bare | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t
-> LowParse.Spec.Base.bare_parser (FStar.Pervasives.Native.option t) | {
"end_col": 50,
"end_line": 19,
"start_col": 2,
"start_line": 16
} |
Prims.Tot | val serialize_option
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(u: squash (k.parser_kind_low > 0))
: Tot (serializer (parse_option p)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_option (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (u: squash (k.parser_kind_low > 0)) : Tot (serializer (parse_option p)) =
serialize_option_bare_correct s;
serialize_option_bare s | val serialize_option
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(u: squash (k.parser_kind_low > 0))
: Tot (serializer (parse_option p))
let serialize_option
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(u: squash (k.parser_kind_low > 0))
: Tot (serializer (parse_option p)) = | false | null | false | serialize_option_bare_correct s;
serialize_option_bare s | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.squash",
"Prims.b2t",
"Prims.op_GreaterThan",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"LowParse.Spec.Option.serialize_option_bare",
"Prims.unit",
"LowParse.Spec.Option.serialize_option_bare_correct",
"LowParse.Spec.Option.parse_option_kind",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Option.parse_option"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
}
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
= parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> ()
let parse_option (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (parser (parse_option_kind k) (option t)) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (parse_option_bare_injective p x));
parser_kind_prop_equiv k p;
parser_kind_prop_equiv (parse_option_kind k) (parse_option_bare p);
parse_option_bare p
let serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot (bare_serializer (option t)) =
fun x -> match x with
| None -> Seq.empty
| Some y -> serialize s y
let serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Lemma
(requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s)))
= parser_kind_prop_equiv k p | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_option
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(u: squash (k.parser_kind_low > 0))
: Tot (serializer (parse_option p)) | [] | LowParse.Spec.Option.serialize_option | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p -> u29: Prims.squash (Mkparser_kind'?.parser_kind_low k > 0)
-> LowParse.Spec.Base.serializer (LowParse.Spec.Option.parse_option p) | {
"end_col": 25,
"end_line": 47,
"start_col": 2,
"start_line": 46
} |
FStar.Pervasives.Lemma | val parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes)
: Lemma (requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
= parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> () | val parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes)
: Lemma (requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes)
: Lemma (requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2)) = | false | null | true | parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> () | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Bytes.bytes",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"Prims._assert",
"LowParse.Spec.Base.injective_precond",
"Prims.unit",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"LowParse.Spec.Option.parse_option_bare",
"Prims.squash",
"LowParse.Spec.Base.injective_postcond",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
}
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2)) | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes)
: Lemma (requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2)) | [] | LowParse.Spec.Option.parse_option_bare_injective | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t -> b1: LowParse.Bytes.bytes -> b2: LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
LowParse.Spec.Base.injective_precond (LowParse.Spec.Option.parse_option_bare p) b1 b2)
(ensures
LowParse.Spec.Base.injective_postcond (LowParse.Spec.Option.parse_option_bare p) b1 b2) | {
"end_col": 11,
"end_line": 27,
"start_col": 2,
"start_line": 24
} |
FStar.Pervasives.Lemma | val serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Lemma (requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Lemma
(requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s)))
= parser_kind_prop_equiv k p | val serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Lemma (requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s)))
let serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Lemma (requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s))) = | false | null | true | parser_kind_prop_equiv k p | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"Prims.unit",
"Prims.b2t",
"Prims.op_GreaterThan",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low",
"Prims.squash",
"LowParse.Spec.Base.serializer_correct",
"LowParse.Spec.Option.parse_option_kind",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Option.parse_option",
"LowParse.Spec.Option.serialize_option_bare",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
}
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
= parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> ()
let parse_option (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (parser (parse_option_kind k) (option t)) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (parse_option_bare_injective p x));
parser_kind_prop_equiv k p;
parser_kind_prop_equiv (parse_option_kind k) (parse_option_bare p);
parse_option_bare p
let serialize_option_bare (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Tot (bare_serializer (option t)) =
fun x -> match x with
| None -> Seq.empty
| Some y -> serialize s y
let serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) : Lemma
(requires (k.parser_kind_low > 0)) | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize_option_bare_correct (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p)
: Lemma (requires (k.parser_kind_low > 0))
(ensures (serializer_correct (parse_option p) (serialize_option_bare s))) | [] | LowParse.Spec.Option.serialize_option_bare_correct | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.Base.serializer p
-> FStar.Pervasives.Lemma (requires Mkparser_kind'?.parser_kind_low k > 0)
(ensures
LowParse.Spec.Base.serializer_correct (LowParse.Spec.Option.parse_option p)
(LowParse.Spec.Option.serialize_option_bare s)) | {
"end_col": 28,
"end_line": 43,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val parse_option (#k: parser_kind) (#t: Type) (p: parser k t)
: Tot (parser (parse_option_kind k) (option t)) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse_option (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (parser (parse_option_kind k) (option t)) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (parse_option_bare_injective p x));
parser_kind_prop_equiv k p;
parser_kind_prop_equiv (parse_option_kind k) (parse_option_bare p);
parse_option_bare p | val parse_option (#k: parser_kind) (#t: Type) (p: parser k t)
: Tot (parser (parse_option_kind k) (option t))
let parse_option (#k: parser_kind) (#t: Type) (p: parser k t)
: Tot (parser (parse_option_kind k) (option t)) = | false | null | false | Classical.forall_intro_2 (fun x -> Classical.move_requires (parse_option_bare_injective p x));
parser_kind_prop_equiv k p;
parser_kind_prop_equiv (parse_option_kind k) (parse_option_bare p);
parse_option_bare p | {
"checked_file": "LowParse.Spec.Option.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Base.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.Option.fst"
} | [
"total"
] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Option.parse_option_bare",
"Prims.unit",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Option.parse_option_kind",
"FStar.Classical.forall_intro_2",
"LowParse.Bytes.bytes",
"Prims.l_imp",
"LowParse.Spec.Base.injective_precond",
"LowParse.Spec.Base.injective_postcond",
"FStar.Classical.move_requires",
"LowParse.Spec.Option.parse_option_bare_injective",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Spec.Option
include LowParse.Spec.Base
module Seq = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
let parse_option_kind (k: parser_kind) : Tot parser_kind = {
parser_kind_metadata = None;
parser_kind_low = 0;
parser_kind_high = k.parser_kind_high;
parser_kind_subkind = None;
}
let parse_option_bare (#k: parser_kind) (#t: Type) (p: parser k t) : Tot (bare_parser (option t)) =
fun (input: bytes) ->
match parse p input with
| Some (data, consumed) -> Some (Some data, consumed)
| _ -> Some (None, (0 <: consumed_length input))
let parse_option_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) (b1 b2: bytes) : Lemma
(requires (injective_precond (parse_option_bare p) b1 b2))
(ensures (injective_postcond (parse_option_bare p) b1 b2))
= parser_kind_prop_equiv k p;
match parse p b1, parse p b2 with
| Some _, Some _ -> assert (injective_precond p b1 b2)
| _ -> () | false | false | LowParse.Spec.Option.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse_option (#k: parser_kind) (#t: Type) (p: parser k t)
: Tot (parser (parse_option_kind k) (option t)) | [] | LowParse.Spec.Option.parse_option | {
"file_name": "src/lowparse/LowParse.Spec.Option.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | p: LowParse.Spec.Base.parser k t
-> LowParse.Spec.Base.parser (LowParse.Spec.Option.parse_option_kind k)
(FStar.Pervasives.Native.option t) | {
"end_col": 21,
"end_line": 33,
"start_col": 2,
"start_line": 30
} |
Prims.Tot | val u2:universe | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u2 : universe = R.pack_universe (R.Uv_Succ u1) | val u2:universe
let u2:universe = | false | null | false | R.pack_universe (R.Uv_Succ u1) | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.Builtins.pack_universe",
"FStar.Reflection.V2.Data.Uv_Succ",
"Pulse.Syntax.Pure.u1"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let u0 : universe = R.pack_universe R.Uv_Zero | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u2:universe | [] | Pulse.Syntax.Pure.u2 | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Pulse.Syntax.Base.universe | {
"end_col": 50,
"end_line": 19,
"start_col": 20,
"start_line": 19
} |
Prims.Tot | val u0:universe | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u0 : universe = R.pack_universe R.Uv_Zero | val u0:universe
let u0:universe = | false | null | false | R.pack_universe R.Uv_Zero | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.Builtins.pack_universe",
"FStar.Reflection.V2.Data.Uv_Zero"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u0:universe | [] | Pulse.Syntax.Pure.u0 | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Pulse.Syntax.Base.universe | {
"end_col": 45,
"end_line": 17,
"start_col": 20,
"start_line": 17
} |
Prims.Tot | val u1:universe | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u1 : universe = R.pack_universe (R.Uv_Succ u0) | val u1:universe
let u1:universe = | false | null | false | R.pack_universe (R.Uv_Succ u0) | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"FStar.Reflection.V2.Builtins.pack_universe",
"FStar.Reflection.V2.Data.Uv_Succ",
"Pulse.Syntax.Pure.u0"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u1:universe | [] | Pulse.Syntax.Pure.u1 | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Pulse.Syntax.Base.universe | {
"end_col": 50,
"end_line": 18,
"start_col": 20,
"start_line": 18
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u_zero = u0 | let u_zero = | false | null | false | u0 | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"Pulse.Syntax.Pure.u0"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let u0 : universe = R.pack_universe R.Uv_Zero
let u1 : universe = R.pack_universe (R.Uv_Succ u0)
let u2 : universe = R.pack_universe (R.Uv_Succ u1) | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u_zero : Pulse.Syntax.Base.universe | [] | Pulse.Syntax.Pure.u_zero | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | Pulse.Syntax.Base.universe | {
"end_col": 15,
"end_line": 21,
"start_col": 13,
"start_line": 21
} |
|
Prims.Tot | val u_var (s: string) : universe | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let u_var (s:string) : universe =
R.pack_universe (R.Uv_Name (R.pack_ident (s, FStar.Range.range_0))) | val u_var (s: string) : universe
let u_var (s: string) : universe = | false | null | false | R.pack_universe (R.Uv_Name (R.pack_ident (s, FStar.Range.range_0))) | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"Prims.string",
"FStar.Reflection.V2.Builtins.pack_universe",
"FStar.Reflection.V2.Data.Uv_Name",
"FStar.Reflection.V2.Builtins.pack_ident",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Range.range",
"FStar.Range.range_0",
"Pulse.Syntax.Base.universe"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let u0 : universe = R.pack_universe R.Uv_Zero
let u1 : universe = R.pack_universe (R.Uv_Succ u0)
let u2 : universe = R.pack_universe (R.Uv_Succ u1)
let u_zero = u0
let u_succ (u:universe) : universe =
R.pack_universe (R.Uv_Succ u) | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val u_var (s: string) : universe | [] | Pulse.Syntax.Pure.u_var | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s: Prims.string -> Pulse.Syntax.Base.universe | {
"end_col": 69,
"end_line": 25,
"start_col": 2,
"start_line": 25
} |
Prims.Tot | val mk_bvar (s: string) (r: Range.range) (i: index) : term | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_bvar (s:string) (r:Range.range) (i:index) : term =
tm_bvar {bv_index=i;bv_ppname=mk_ppname (RT.seal_pp_name s) r} | val mk_bvar (s: string) (r: Range.range) (i: index) : term
let mk_bvar (s: string) (r: Range.range) (i: index) : term = | false | null | false | tm_bvar ({ bv_index = i; bv_ppname = mk_ppname (RT.seal_pp_name s) r }) | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"Prims.string",
"FStar.Range.range",
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Pure.tm_bvar",
"Pulse.Syntax.Base.Mkbv",
"Pulse.Syntax.Base.mk_ppname",
"FStar.Reflection.Typing.seal_pp_name",
"Pulse.Syntax.Base.term"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let u0 : universe = R.pack_universe R.Uv_Zero
let u1 : universe = R.pack_universe (R.Uv_Succ u0)
let u2 : universe = R.pack_universe (R.Uv_Succ u1)
let u_zero = u0
let u_succ (u:universe) : universe =
R.pack_universe (R.Uv_Succ u)
let u_var (s:string) : universe =
R.pack_universe (R.Uv_Name (R.pack_ident (s, FStar.Range.range_0)))
let u_max (u0 u1:universe) : universe =
R.pack_universe (R.Uv_Max [u0; u1])
let u_unknown : universe = R.pack_universe R.Uv_Unk
let tm_bvar (bv:bv) : term =
tm_fstar (R.pack_ln (R.Tv_BVar (R.pack_bv (RT.make_bv_with_name bv.bv_ppname.name bv.bv_index))))
bv.bv_ppname.range
let tm_var (nm:nm) : term =
tm_fstar (R.pack_ln (R.Tv_Var (R.pack_namedv (RT.make_namedv_with_name nm.nm_ppname.name nm.nm_index))))
nm.nm_ppname.range
let tm_fvar (l:fv) : term =
tm_fstar (R.pack_ln (R.Tv_FVar (R.pack_fv l.fv_name)))
l.fv_range
let tm_uinst (l:fv) (us:list universe) : term =
tm_fstar (R.pack_ln (R.Tv_UInst (R.pack_fv l.fv_name) us))
l.fv_range
let tm_constant (c:constant) : term =
tm_fstar (R.pack_ln (R.Tv_Const c)) FStar.Range.range_0
let tm_refine (b:binder) (t:term) : term =
let rb : R.simple_binder = RT.mk_simple_binder b.binder_ppname.name (elab_term b.binder_ty) in
tm_fstar (R.pack_ln (R.Tv_Refine rb (elab_term t)))
FStar.Range.range_0
let tm_let (t e1 e2:term) : term =
let rb : R.simple_binder = RT.mk_simple_binder RT.pp_name_default (elab_term t) in
tm_fstar (R.pack_ln (R.Tv_Let false
[]
rb
(elab_term e1)
(elab_term e2)))
FStar.Range.range_0
let tm_pureapp (head:term) (q:option qualifier) (arg:term) : term =
tm_fstar (R.mk_app (elab_term head) [(elab_term arg, elab_qual q)])
FStar.Range.range_0
let tm_arrow (b:binder) (q:option qualifier) (c:comp) : term =
tm_fstar (mk_arrow_with_name b.binder_ppname.name (elab_term b.binder_ty, elab_qual q)
(elab_comp c))
FStar.Range.range_0
let tm_type (u:universe) : term =
tm_fstar (R.pack_ln (R.Tv_Type u)) FStar.Range.range_0 | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_bvar (s: string) (r: Range.range) (i: index) : term | [] | Pulse.Syntax.Pure.mk_bvar | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s: Prims.string -> r: FStar.Range.range -> i: Pulse.Syntax.Base.index -> Pulse.Syntax.Base.term | {
"end_col": 64,
"end_line": 76,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | val null_bvar (i: index) : term | [
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Readback",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let null_bvar (i:index) : term =
tm_bvar {bv_index=i;bv_ppname=ppname_default} | val null_bvar (i: index) : term
let null_bvar (i: index) : term = | false | null | false | tm_bvar ({ bv_index = i; bv_ppname = ppname_default }) | {
"checked_file": "Pulse.Syntax.Pure.fst.checked",
"dependencies": [
"Pulse.Syntax.Base.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Readback.fsti.checked",
"Pulse.Elaborate.Pure.fst.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Syntax.Pure.fst"
} | [
"total"
] | [
"Pulse.Syntax.Base.index",
"Pulse.Syntax.Pure.tm_bvar",
"Pulse.Syntax.Base.Mkbv",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Base.term"
] | [] | module Pulse.Syntax.Pure
module R = FStar.Reflection.V2
module T = FStar.Tactics.V2
module RT = FStar.Reflection.Typing
open Pulse.Syntax.Base
open Pulse.Elaborate.Pure
open Pulse.Readback
open Pulse.Reflection.Util
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let u0 : universe = R.pack_universe R.Uv_Zero
let u1 : universe = R.pack_universe (R.Uv_Succ u0)
let u2 : universe = R.pack_universe (R.Uv_Succ u1)
let u_zero = u0
let u_succ (u:universe) : universe =
R.pack_universe (R.Uv_Succ u)
let u_var (s:string) : universe =
R.pack_universe (R.Uv_Name (R.pack_ident (s, FStar.Range.range_0)))
let u_max (u0 u1:universe) : universe =
R.pack_universe (R.Uv_Max [u0; u1])
let u_unknown : universe = R.pack_universe R.Uv_Unk
let tm_bvar (bv:bv) : term =
tm_fstar (R.pack_ln (R.Tv_BVar (R.pack_bv (RT.make_bv_with_name bv.bv_ppname.name bv.bv_index))))
bv.bv_ppname.range
let tm_var (nm:nm) : term =
tm_fstar (R.pack_ln (R.Tv_Var (R.pack_namedv (RT.make_namedv_with_name nm.nm_ppname.name nm.nm_index))))
nm.nm_ppname.range
let tm_fvar (l:fv) : term =
tm_fstar (R.pack_ln (R.Tv_FVar (R.pack_fv l.fv_name)))
l.fv_range
let tm_uinst (l:fv) (us:list universe) : term =
tm_fstar (R.pack_ln (R.Tv_UInst (R.pack_fv l.fv_name) us))
l.fv_range
let tm_constant (c:constant) : term =
tm_fstar (R.pack_ln (R.Tv_Const c)) FStar.Range.range_0
let tm_refine (b:binder) (t:term) : term =
let rb : R.simple_binder = RT.mk_simple_binder b.binder_ppname.name (elab_term b.binder_ty) in
tm_fstar (R.pack_ln (R.Tv_Refine rb (elab_term t)))
FStar.Range.range_0
let tm_let (t e1 e2:term) : term =
let rb : R.simple_binder = RT.mk_simple_binder RT.pp_name_default (elab_term t) in
tm_fstar (R.pack_ln (R.Tv_Let false
[]
rb
(elab_term e1)
(elab_term e2)))
FStar.Range.range_0
let tm_pureapp (head:term) (q:option qualifier) (arg:term) : term =
tm_fstar (R.mk_app (elab_term head) [(elab_term arg, elab_qual q)])
FStar.Range.range_0
let tm_arrow (b:binder) (q:option qualifier) (c:comp) : term =
tm_fstar (mk_arrow_with_name b.binder_ppname.name (elab_term b.binder_ty, elab_qual q)
(elab_comp c))
FStar.Range.range_0
let tm_type (u:universe) : term =
tm_fstar (R.pack_ln (R.Tv_Type u)) FStar.Range.range_0
let mk_bvar (s:string) (r:Range.range) (i:index) : term =
tm_bvar {bv_index=i;bv_ppname=mk_ppname (RT.seal_pp_name s) r}
let null_var (v:var) : term =
tm_var {nm_index=v;nm_ppname=ppname_default} | false | true | Pulse.Syntax.Pure.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val null_bvar (i: index) : term | [] | Pulse.Syntax.Pure.null_bvar | {
"file_name": "lib/steel/pulse/Pulse.Syntax.Pure.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | i: Pulse.Syntax.Base.index -> Pulse.Syntax.Base.term | {
"end_col": 47,
"end_line": 82,
"start_col": 2,
"start_line": 82
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.