effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_free = | false | null | false | F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.free",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_free : Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_free | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 86,
"end_line": 669,
"start_col": 2,
"start_line": 669
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_create_in = | false | null | false | F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.create_in",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_create_in : Hacl.Streaming.Functor.create_in_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_create_in | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.create_in_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 82,
"end_line": 653,
"start_col": 2,
"start_line": 653
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish | let blake2s_32 kk = | false | null | false | blake2 Spec.Blake2S
Core.M32
kk
Blake2s32.blake2s_init
Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last
Blake2s32.blake2s_finish | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.key_size",
"Spec.Blake2.Blake2S",
"Hacl.Streaming.Blake2.blake2",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Blake2s_32.blake2s_init",
"Hacl.Blake2s_32.blake2s_update_multi",
"Hacl.Blake2s_32.blake2s_update_last",
"Hacl.Blake2s_32.blake2s_finish",
"Hacl.Streaming.Interface.block",
"Prims.unit"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32 : kk: Hacl.Streaming.Blake2.key_size Spec.Blake2.Blake2S -> Hacl.Streaming.Interface.block Prims.unit | [] | Hacl.Streaming.Blake2.blake2s_32 | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | kk: Hacl.Streaming.Blake2.key_size Spec.Blake2.Blake2S -> Hacl.Streaming.Interface.block Prims.unit | {
"end_col": 63,
"end_line": 625,
"start_col": 2,
"start_line": 624
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_state = | false | null | false | F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.state_s",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32 | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_state : Type0 | [] | Hacl.Streaming.Blake2.blake2s_32_state | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 101,
"end_line": 639,
"start_col": 23,
"start_line": 639
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_finish = | false | null | false | F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.mk_finish",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_finish : Hacl.Streaming.Functor.finish_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_finish | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.finish_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 82,
"end_line": 665,
"start_col": 2,
"start_line": 665
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish | let blake2b_32 kk = | false | null | false | blake2 Spec.Blake2B
Core.M32
kk
Blake2b32.blake2b_init
Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last
Blake2b32.blake2b_finish | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.key_size",
"Spec.Blake2.Blake2B",
"Hacl.Streaming.Blake2.blake2",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Blake2b_32.blake2b_init",
"Hacl.Blake2b_32.blake2b_update_multi",
"Hacl.Blake2b_32.blake2b_update_last",
"Hacl.Blake2b_32.blake2b_finish",
"Hacl.Streaming.Interface.block",
"Prims.unit"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32 : kk: Hacl.Streaming.Blake2.key_size Spec.Blake2.Blake2B -> Hacl.Streaming.Interface.block Prims.unit | [] | Hacl.Streaming.Blake2.blake2b_32 | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | kk: Hacl.Streaming.Blake2.key_size Spec.Blake2.Blake2B -> Hacl.Streaming.Interface.block Prims.unit | {
"end_col": 63,
"end_line": 630,
"start_col": 2,
"start_line": 629
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_init = | false | null | false | F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.init",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_init : Hacl.Streaming.Functor.init_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_init | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.init_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 77,
"end_line": 657,
"start_col": 2,
"start_line": 657
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_update = | false | null | false | F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.update",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_update : Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_update | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2.blake2s_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 88,
"end_line": 661,
"start_col": 2,
"start_line": 661
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let empty_key a = I.optional_key () I.Erased (stateful_key a 0) | let empty_key a = | false | null | false | I.optional_key () I.Erased (stateful_key a 0) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Interface.optional_key",
"Prims.unit",
"Hacl.Streaming.Interface.Erased",
"Hacl.Streaming.Blake2.stateful_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val empty_key : a: Hacl.Streaming.Blake2.alg -> Type0 | [] | Hacl.Streaming.Blake2.empty_key | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg -> Type0 | {
"end_col": 63,
"end_line": 633,
"start_col": 18,
"start_line": 633
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_init =
F.init (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | let blake2b_32_no_key_init = | false | null | false | F.init (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.init",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key",
"Spec.Blake2.Blake2S"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_create_in =
F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re)-initialization function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_init : Hacl.Streaming.Functor.init_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_init | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.init_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 77,
"end_line": 682,
"start_col": 2,
"start_line": 682
} |
|
Prims.Tot | val init_s (a: alg) (kk: size_nat{kk <= max_key a}) : Tot (t a) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a) | val init_s (a: alg) (kk: size_nat{kk <= max_key a}) : Tot (t a)
let init_s (a: alg) (kk: size_nat{kk <= max_key a}) : Tot (t a) = | false | null | false | Spec.blake2_init_hash a kk (output_size a) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Streaming.Blake2.max_key",
"Spec.Blake2.blake2_init_hash",
"Hacl.Streaming.Blake2.output_size",
"Hacl.Streaming.Blake2.t"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val init_s (a: alg) (kk: size_nat{kk <= max_key a}) : Tot (t a) | [] | Hacl.Streaming.Blake2.init_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.size_nat{kk <= Hacl.Streaming.Blake2.max_key a}
-> Hacl.Streaming.Blake2.t a | {
"end_col": 44,
"end_line": 267,
"start_col": 2,
"start_line": 267
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B) | let blake2b_32_state = | false | null | false | F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.state_s",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32 | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_state : Type0 | [] | Hacl.Streaming.Blake2.blake2b_32_state | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 101,
"end_line": 640,
"start_col": 23,
"start_line": 640
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_update =
F.update (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | let blake2b_32_no_key_update = | false | null | false | F.update (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.update",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key",
"Spec.Blake2.Blake2S"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_create_in =
F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re)-initialization function when there is no key")]
let blake2b_32_no_key_init =
F.init (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_update : Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_update | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.update_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 88,
"end_line": 686,
"start_col": 2,
"start_line": 686
} |
|
Prims.Tot | val stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk)
: b: B.buffer uint8 {B.length b = kk} | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key | val stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk)
: b: B.buffer uint8 {B.length b = kk}
let stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk)
: b: B.buffer uint8 {B.length b = kk} = | false | null | false | if kk = 0 then B.null #uint8 else key | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.key_size",
"Hacl.Streaming.Blake2.stateful_key_t",
"Prims.op_Equality",
"Prims.int",
"LowStar.Buffer.null",
"Hacl.Streaming.Blake2.uint8",
"Prims.bool",
"LowStar.Buffer.buffer",
"Prims.b2t",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stateful_key_to_buffer (#a: alg) (#kk: key_size a) (key: stateful_key_t a kk)
: b: B.buffer uint8 {B.length b = kk} | [] | Hacl.Streaming.Blake2.stateful_key_to_buffer | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | key: Hacl.Streaming.Blake2.stateful_key_t a kk
-> b: LowStar.Buffer.buffer Hacl.Streaming.Blake2.uint8 {LowStar.Monotonic.Buffer.length b = kk} | {
"end_col": 39,
"end_line": 216,
"start_col": 2,
"start_line": 216
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B) | let blake2b_32_no_key_alloca = | false | null | false | F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.alloca",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_alloca : Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2B) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_alloca | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2B) | {
"end_col": 79,
"end_line": 674,
"start_col": 2,
"start_line": 674
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let output_len (a : alg) = U32.uint_to_t (output_size a) | let output_len (a: alg) = | false | null | false | U32.uint_to_t (output_size a) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"FStar.UInt32.uint_to_t",
"Hacl.Streaming.Blake2.output_size",
"FStar.UInt32.t"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val output_len : a: Hacl.Streaming.Blake2.alg -> FStar.UInt32.t | [] | Hacl.Streaming.Blake2.output_len | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg -> FStar.UInt32.t | {
"end_col": 56,
"end_line": 245,
"start_col": 27,
"start_line": 245
} |
|
Prims.Tot | val finish_s (#a: alg) (acc: t a) : output: S.seq uint8 {S.length output = U32.v (output_len a)} | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a)) | val finish_s (#a: alg) (acc: t a) : output: S.seq uint8 {S.length output = U32.v (output_len a)}
let finish_s (#a: alg) (acc: t a) : output: S.seq uint8 {S.length output = U32.v (output_len a)} = | false | null | false | Spec.blake2_finish a acc (U32.v (output_len a)) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.t",
"Spec.Blake2.blake2_finish",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.output_len",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Seq.Base.length"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finish_s (#a: alg) (acc: t a) : output: S.seq uint8 {S.length output = U32.v (output_len a)} | [] | Hacl.Streaming.Blake2.finish_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | acc: Hacl.Streaming.Blake2.t a
-> output:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{FStar.Seq.Base.length output = FStar.UInt32.v (Hacl.Streaming.Blake2.output_len a)} | {
"end_col": 49,
"end_line": 290,
"start_col": 2,
"start_line": 290
} |
Prims.Tot | val max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a} | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1 | val max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a}
let max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a} = | false | null | false | assert_norm (pow2 64 < pow2 128);
pow2 64 - 1 | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Spec.Blake2.max_limb",
"Prims.op_GreaterThan",
"Spec.Blake2.size_block"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_input_length (a: alg) : n: nat{n <= Spec.max_limb a /\ n > Spec.size_block a} | [] | Hacl.Streaming.Blake2.max_input_length | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg
-> n: Prims.nat{n <= Spec.Blake2.max_limb a /\ n > Spec.Blake2.size_block a} | {
"end_col": 13,
"end_line": 230,
"start_col": 2,
"start_line": 229
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a) | let spec_s
(a: alg)
(kk: size_nat{kk <= max_key a})
(key: lbytes kk)
(input:
S.seq uint8
{ if kk = 0
then S.length input <= max_input_length a
else S.length input + Spec.size_block a <= max_input_length a })
= | false | null | false | Spec.blake2 a input kk key (output_size a) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Streaming.Blake2.max_key",
"Hacl.Streaming.Blake2.lbytes",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.max_input_length",
"Prims.bool",
"Prims.op_Addition",
"Spec.Blake2.size_block",
"Spec.Blake2.blake2",
"Hacl.Streaming.Blake2.output_size",
"Lib.ByteSequence.lbytes"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk) | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val spec_s : a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.size_nat{kk <= Hacl.Streaming.Blake2.max_key a} ->
key: Hacl.Streaming.Blake2.lbytes kk ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ (match kk = 0 with
| true -> FStar.Seq.Base.length input <= Hacl.Streaming.Blake2.max_input_length a
| _ ->
FStar.Seq.Base.length input + Spec.Blake2.size_block a <=
Hacl.Streaming.Blake2.max_input_length a)
<:
Type0 }
-> Lib.ByteSequence.lbytes (Hacl.Streaming.Blake2.output_size a) | [] | Hacl.Streaming.Blake2.spec_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.size_nat{kk <= Hacl.Streaming.Blake2.max_key a} ->
key: Hacl.Streaming.Blake2.lbytes kk ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ (match kk = 0 with
| true -> FStar.Seq.Base.length input <= Hacl.Streaming.Blake2.max_input_length a
| _ ->
FStar.Seq.Base.length input + Spec.Blake2.size_block a <=
Hacl.Streaming.Blake2.max_input_length a)
<:
Type0 }
-> Lib.ByteSequence.lbytes (Hacl.Streaming.Blake2.output_size a) | {
"end_col": 44,
"end_line": 297,
"start_col": 2,
"start_line": 297
} |
|
Prims.Tot | val state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m)
: B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s | val state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m)
: B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m))
let state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m)
: B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) = | false | null | false | s | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.m_spec",
"Hacl.Impl.Blake2.Core.state_p",
"LowStar.Buffer.lbuffer",
"Hacl.Impl.Blake2.Core.element_t",
"FStar.Mul.op_Star",
"FStar.UInt32.v",
"Hacl.Impl.Blake2.Core.row_len"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val state_to_lbuffer (#a: alg) (#m: m_spec) (s: Core.state_p a m)
: B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) | [] | Hacl.Streaming.Blake2.state_to_lbuffer | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Hacl.Impl.Blake2.Core.state_p a m
-> LowStar.Buffer.lbuffer (Hacl.Impl.Blake2.Core.element_t a m)
(4 * FStar.UInt32.v (Hacl.Impl.Blake2.Core.row_len a m)) | {
"end_col": 3,
"end_line": 90,
"start_col": 2,
"start_line": 90
} |
Prims.Tot | val stateful_key (a: alg) (kk: key_size a) : I.stateful unit | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ()) | val stateful_key (a: alg) (kk: key_size a) : I.stateful unit
let stateful_key (a: alg) (kk: key_size a) : I.stateful unit = | false | null | false | I.Stateful (fun _ -> stateful_key_t a kk)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(fun #_ h s -> if kk = 0 then True else B.live h (s <: B.buffer uint8))
(fun _ -> s: S.seq uint8 {S.length s == kk})
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ())
(fun #_ l s h0 h1 -> ())
(fun #_ l s h0 h1 -> ())
(fun () ->
if kk > 0
then buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(fun () r ->
if kk > 0
then buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8))
(fun _ s_src s_dst ->
if kk > 0
then B.blit (s_src <: B.buffer uint8) 0ul (s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.key_size",
"Hacl.Streaming.Interface.Stateful",
"Prims.unit",
"Hacl.Streaming.Blake2.stateful_key_t",
"FStar.Monotonic.HyperStack.mem",
"Prims.op_Equality",
"Prims.int",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.bool",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Streaming.Blake2.uint8",
"LowStar.Buffer.trivial_preorder",
"LowStar.Buffer.buffer",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_True",
"LowStar.Monotonic.Buffer.freeable",
"LowStar.Monotonic.Buffer.live",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.op_GreaterThan",
"Hacl.Streaming.Blake2.buffer_to_stateful_key_t",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.alloca",
"Lib.IntTypes.u8",
"FStar.UInt32.uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.l_and",
"FStar.UInt32.v",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"Hacl.Streaming.Blake2.unit_to_stateful_key_t",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Buffer.malloc",
"LowStar.Monotonic.Buffer.frameOf",
"FStar.Ghost.erased",
"LowStar.Monotonic.Buffer.free",
"LowStar.Monotonic.Buffer.blit",
"FStar.UInt32.__uint_to_t",
"Hacl.Streaming.Interface.stateful"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stateful_key (a: alg) (kk: key_size a) : I.stateful unit | [] | Hacl.Streaming.Blake2.stateful_key | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg -> kk: Hacl.Streaming.Blake2.key_size a
-> Hacl.Streaming.Interface.stateful Prims.unit | {
"end_col": 14,
"end_line": 210,
"start_col": 2,
"start_line": 174
} |
Prims.Tot | val stateful_blake2 (a: alg) (m: m_spec) : I.stateful unit | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m)) | val stateful_blake2 (a: alg) (m: m_spec) : I.stateful unit
let stateful_blake2 (a: alg) (m: m_spec) : I.stateful unit = | false | null | false | I.Stateful (fun () -> s a m)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union (B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\ B.freeable (state_to_lbuffer b))
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\ B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a)
(fun () h acc -> s_v h acc)
(fun #_ h acc ->
let wv, b = acc in
())
(fun #_ l acc h0 h1 ->
let wv, b = acc in
())
(fun #_ _ _ _ _ -> ())
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(fun _ acc ->
match acc with
| wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(fun _ src dst ->
match src with
| src_wv, src_b ->
match dst with
| src_wv, dst_b ->
B.blit (state_to_lbuffer src_b)
0ul
(state_to_lbuffer dst_b)
0ul
U32.(4ul *^ Core.row_len a m)) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.m_spec",
"Hacl.Streaming.Interface.Stateful",
"Prims.unit",
"Hacl.Streaming.Blake2.s",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.Blake2.Core.state_p",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Impl.Blake2.Core.element_t",
"LowStar.Buffer.trivial_preorder",
"Hacl.Streaming.Blake2.state_to_lbuffer",
"LowStar.Monotonic.Buffer.loc",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.disjoint",
"Hacl.Streaming.Blake2.t",
"Hacl.Streaming.Blake2.s_v",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.mul_mod",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Hacl.Impl.Blake2.Core.row_len",
"Hacl.Impl.Blake2.Core.alloc_state",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.mbuffer",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"FStar.UInt32.mul",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Buffer.malloc",
"Hacl.Impl.Blake2.Core.zero_element",
"FStar.UInt32.op_Star_Hat",
"FStar.UInt32.__uint_to_t",
"FStar.Ghost.erased",
"LowStar.Monotonic.Buffer.free",
"LowStar.Monotonic.Buffer.blit",
"Hacl.Streaming.Interface.stateful"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val stateful_blake2 (a: alg) (m: m_spec) : I.stateful unit | [] | Hacl.Streaming.Blake2.stateful_blake2 | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg -> m: Hacl.Streaming.Blake2.m_spec
-> Hacl.Streaming.Interface.stateful Prims.unit | {
"end_col": 43,
"end_line": 138,
"start_col": 2,
"start_line": 94
} |
FStar.Pervasives.Lemma | val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc)) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc | val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen = | false | null | false | Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a))
(Spec.blake2_update1 a prevlen S.empty)
acc | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"lemma"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Spec.Blake2.size_block",
"Lib.LoopCombinators.eq_repeati0",
"Spec.Blake2.state",
"Prims.op_Division",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.block_len",
"Spec.Blake2.blake2_update1",
"FStar.Seq.Base.empty",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.unit"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc)) | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc)) | [] | Hacl.Streaming.Blake2.update_multi_zero | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | acc: Hacl.Streaming.Blake2.t a -> prevlen: Prims.nat{prevlen % Spec.Blake2.size_block a = 0}
-> FStar.Pervasives.Lemma (requires prevlen <= Hacl.Streaming.Blake2.max_input_length a)
(ensures Hacl.Streaming.Blake2.update_multi_s acc prevlen FStar.Seq.Base.empty == acc) | {
"end_col": 103,
"end_line": 311,
"start_col": 2,
"start_line": 311
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | let blake2s_32_no_key_alloca = | false | null | false | F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.alloca",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2s_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2S",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2s_32_no_key_alloca : Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2s_32_no_key_alloca | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Blake2.blake2s_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2S Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 79,
"end_line": 649,
"start_col": 2,
"start_line": 649
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_create_in =
F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | let blake2b_32_no_key_create_in = | false | null | false | F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.create_in",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key",
"Spec.Blake2.Blake2S"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
[@ (Comment " State allocation function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_create_in : Hacl.Streaming.Functor.create_in_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_create_in | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.create_in_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 82,
"end_line": 678,
"start_col": 2,
"start_line": 678
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_finish =
F.mk_finish (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | let blake2b_32_no_key_finish = | false | null | false | F.mk_finish (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.mk_finish",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key",
"Spec.Blake2.Blake2S"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_create_in =
F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re)-initialization function when there is no key")]
let blake2b_32_no_key_init =
F.init (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2b_32_no_key_update =
F.update (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_finish : Hacl.Streaming.Functor.finish_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_finish | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.finish_st (Hacl.Streaming.Blake2.blake2b_32 0)
()
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 82,
"end_line": 690,
"start_col": 2,
"start_line": 690
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2b_32_no_key_free =
F.free (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | let blake2b_32_no_key_free = | false | null | false | F.free (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Functor.free",
"Prims.unit",
"Hacl.Streaming.Blake2.blake2b_32",
"FStar.Ghost.hide",
"Hacl.Streaming.Blake2.s",
"Spec.Blake2.Blake2B",
"Hacl.Impl.Blake2.Core.M32",
"Hacl.Streaming.Blake2.empty_key",
"Spec.Blake2.Blake2S"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h)
#pop-options
/// Introducing intermediate definitions for the instantiation
inline_for_extraction noextract
let blake2s_32 kk =
blake2 Spec.Blake2S Core.M32 kk Blake2s32.blake2s_init Blake2s32.blake2s_update_multi
Blake2s32.blake2s_update_last Blake2s32.blake2s_finish
inline_for_extraction noextract
let blake2b_32 kk =
blake2 Spec.Blake2B Core.M32 kk Blake2b32.blake2b_init Blake2b32.blake2b_update_multi
Blake2b32.blake2b_update_last Blake2b32.blake2b_finish
inline_for_extraction noextract
let empty_key a = I.optional_key () I.Erased (stateful_key a 0)
/// Type abbreviations - makes KaRaMeL use pretty names in the generated code
let blake2s_32_block_state = s Spec.Blake2S Core.M32
let blake2b_32_block_state = s Spec.Blake2B Core.M32
let blake2s_32_state = F.state_s (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
let blake2b_32_state = F.state_s (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
/// The incremental hash functions instantiations. Note that we can't write a
/// generic one, because the normalization then performed by KaRaMeL explodes.
/// All those implementations are for non-keyed hash.
inline_for_extraction noextract
let blake2s_32_no_key_alloca =
F.alloca (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " State allocation function when there is no key")]
let blake2s_32_no_key_create_in =
F.create_in (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re-)initialization function when there is no key")]
let blake2s_32_no_key_init =
F.init (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2s_32_no_key_update =
F.update (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2s_32_no_key_finish =
F.mk_finish (blake2s_32 0) () (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")]
let blake2s_32_no_key_free =
F.free (blake2s_32 0) (G.hide ()) (s Spec.Blake2S Core.M32) (empty_key Spec.Blake2S)
inline_for_extraction noextract
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_alloca =
F.alloca (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2B)
[@ (Comment " State allocation function when there is no key")]
let blake2b_32_no_key_create_in =
F.create_in (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " (Re)-initialization function when there is no key")]
let blake2b_32_no_key_init =
F.init (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Update function when there is no key; 0 = success, 1 = max length exceeded")]
let blake2b_32_no_key_update =
F.update (blake2b_32 0) (G.hide ()) (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Finish function when there is no key")]
let blake2b_32_no_key_finish =
F.mk_finish (blake2b_32 0) () (s Spec.Blake2B Core.M32) (empty_key Spec.Blake2S)
[@ (Comment " Free state function when there is no key")] | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2b_32_no_key_free : Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | [] | Hacl.Streaming.Blake2.blake2b_32_no_key_free | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Streaming.Functor.free_st (Hacl.Streaming.Blake2.blake2b_32 0)
(FStar.Ghost.reveal (FStar.Ghost.hide ()))
(Hacl.Streaming.Blake2.s Spec.Blake2.Blake2B Hacl.Impl.Blake2.Core.M32)
(Hacl.Streaming.Blake2.empty_key Spec.Blake2.Blake2S) | {
"end_col": 86,
"end_line": 694,
"start_col": 2,
"start_line": 694
} |
|
Prims.Tot | val update_multi_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 })
: Tot (t a) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc | val update_multi_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 })
: Tot (t a)
let update_multi_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 })
: Tot (t a) = | false | null | false | let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Spec.Blake2.size_block",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.max_input_length",
"Lib.LoopCombinators.repeati",
"Spec.Blake2.state",
"Spec.Blake2.blake2_update1",
"Prims.op_Division",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.block_len"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_multi_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 })
: Tot (t a) | [] | Hacl.Streaming.Blake2.update_multi_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
acc: Hacl.Streaming.Blake2.t a ->
prevlen: Prims.nat{prevlen % Spec.Blake2.size_block a = 0} ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ prevlen + FStar.Seq.Base.length input <= Hacl.Streaming.Blake2.max_input_length a /\
FStar.Seq.Base.length input % Spec.Blake2.size_block a = 0 }
-> Hacl.Streaming.Blake2.t a | {
"end_col": 74,
"end_line": 277,
"start_col": 1,
"start_line": 275
} |
Prims.Tot | val max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a}) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL | val max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a})
let max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a}) = | false | null | false | 0xffffffffffffffffuL | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"FStar.UInt64.__uint_to_t",
"FStar.UInt64.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt64.n",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThanOrEqual",
"Spec.Blake2.max_limb",
"Prims.op_GreaterThan",
"Spec.Blake2.size_block",
"FStar.UInt64.v",
"Hacl.Streaming.Blake2.max_input_length"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1 | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max_input_len (a: alg) : (x: U64.t{U64.v x == max_input_length a}) | [] | Hacl.Streaming.Blake2.max_input_len | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Streaming.Blake2.alg
-> x: FStar.UInt64.t{FStar.UInt64.v x == Hacl.Streaming.Blake2.max_input_length a} | {
"end_col": 94,
"end_line": 233,
"start_col": 74,
"start_line": 233
} |
Prims.Tot | val blake2_prevlen (a: alg) (prevlen: U64.t{U64.v prevlen <= max_input_length a})
: x: Spec.limb_t a {Lib.IntTypes.uint_v x = U64.v prevlen} | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x | val blake2_prevlen (a: alg) (prevlen: U64.t{U64.v prevlen <= max_input_length a})
: x: Spec.limb_t a {Lib.IntTypes.uint_v x = U64.v prevlen}
let blake2_prevlen (a: alg) (prevlen: U64.t{U64.v prevlen <= max_input_length a})
: x: Spec.limb_t a {Lib.IntTypes.uint_v x = U64.v prevlen} = | false | null | false | let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@@ inline_let ]let x:uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"FStar.UInt64.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt64.v",
"Hacl.Streaming.Blake2.max_input_length",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U64",
"Lib.IntTypes.PUB",
"Lib.IntTypes.cast",
"Lib.IntTypes.SEC",
"Lib.IntTypes.U128",
"Lib.IntTypes.int_t",
"Spec.Blake2.limb_t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Spec.Blake2.limb_inttype",
"FStar.UInt.size",
"FStar.UInt64.n",
"Lib.IntTypes.uint_v"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a { | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2_prevlen (a: alg) (prevlen: U64.t{U64.v prevlen <= max_input_length a})
: x: Spec.limb_t a {Lib.IntTypes.uint_v x = U64.v prevlen} | [] | Hacl.Streaming.Blake2.blake2_prevlen | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
prevlen: FStar.UInt64.t{FStar.UInt64.v prevlen <= Hacl.Streaming.Blake2.max_input_length a}
-> x: Spec.Blake2.limb_t a {Lib.IntTypes.uint_v x = FStar.UInt64.v prevlen} | {
"end_col": 32,
"end_line": 259,
"start_col": 2,
"start_line": 254
} |
Prims.Tot | val update_last_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{S.length input + prevlen <= max_input_length a /\ S.length input <= Spec.size_block a})
: Tot (t a) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc | val update_last_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{S.length input + prevlen <= max_input_length a /\ S.length input <= Spec.size_block a})
: Tot (t a)
let update_last_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{S.length input + prevlen <= max_input_length a /\ S.length input <= Spec.size_block a})
: Tot (t a) = | false | null | false | Spec.blake2_update_last a prevlen (S.length input) input acc | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Spec.Blake2.size_block",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.max_input_length",
"Spec.Blake2.blake2_update_last"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_last_s
(#a: alg)
(acc: t a)
(prevlen: nat{prevlen % Spec.size_block a = 0})
(input:
Seq.seq uint8
{S.length input + prevlen <= max_input_length a /\ S.length input <= Spec.size_block a})
: Tot (t a) | [] | Hacl.Streaming.Blake2.update_last_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
acc: Hacl.Streaming.Blake2.t a ->
prevlen: Prims.nat{prevlen % Spec.Blake2.size_block a = 0} ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ FStar.Seq.Base.length input + prevlen <= Hacl.Streaming.Blake2.max_input_length a /\
FStar.Seq.Base.length input <= Spec.Blake2.size_block a }
-> Hacl.Streaming.Blake2.t a | {
"end_col": 62,
"end_line": 285,
"start_col": 2,
"start_line": 285
} |
FStar.HyperStack.ST.Stack | val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end | val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ = | false | null | false | if kk = 0
then ()
else
let h0 = ST.get () in
[@@ inline_let ]let sub_b_len = let open U32 in block_len a -^ U32.uint_to_t kk in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
let h1 = ST.get () in
assert ((S.slice (B.as_seq h1 buf_) kk (Spec.size_block a)) `S.equal` (B.as_seq h1 sub_b));
Lib.Buffer.update_sub #Lib.Buffer.MUT
#uint8
#(U32.uint_to_t (Spec.size_block a))
buf_
0ul
(U32.uint_to_t kk)
(stateful_key_to_buffer k);
let h2 = ST.get () in
let k:LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
let buf_v1:LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
let buf_v2:LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
assert (buf_v2 `S.equal` (LS.update_sub buf_v1 0 kk k));
let zeroed:LS.lseq uint8 (Spec.size_block a - kk) =
S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0)
in
assert ((B.as_seq h1 sub_b) `S.equal` zeroed);
let key_and_zeroed:LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
assert (S.equal (S.slice key_and_zeroed 0 kk) k);
assert (S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
assert (buf_v2 `S.equal` key_and_zeroed);
let input = Spec.blake2_key_block a kk k in
let key_block0:LS.lseq uint8 (Spec.size_block a) =
S.create (Spec.size_block a) (Lib.IntTypes.u8 0)
in
assert (input `S.equal` (LS.update_sub key_block0 0 kk k));
assert (Seq.equal (LS.sub key_and_zeroed 0 kk) k);
assert (Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
assert (input `S.equal` key_and_zeroed) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.key_size",
"Hacl.Streaming.Blake2.stateful_key_t",
"LowStar.Buffer.buffer",
"Hacl.Streaming.Blake2.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Blake2.size_block",
"Prims.int",
"Prims.unit",
"Prims.bool",
"Prims._assert",
"FStar.Seq.Base.equal",
"Lib.IntTypes.uint8",
"Lib.Sequence.lemma_update_sub",
"Lib.Sequence.sub",
"Prims.op_Subtraction",
"Lib.Sequence.update_sub",
"Lib.Sequence.lseq",
"FStar.Seq.Base.create",
"Lib.IntTypes.u8",
"Spec.Blake2.block_s",
"Spec.Blake2.blake2_key_block",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Hacl.Streaming.Interface.__proj__Stateful__item__v",
"Hacl.Streaming.Blake2.stateful_key",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.update_sub",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.__uint_to_t",
"Hacl.Streaming.Blake2.stateful_key_to_buffer",
"LowStar.Monotonic.Buffer.fill",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"FStar.Ghost.hide",
"FStar.UInt32.t",
"FStar.UInt32.op_Subtraction_Hat",
"Hacl.Streaming.Blake2.block_len"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end) | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end) | [] | Hacl.Streaming.Blake2.init_key_block | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.key_size a ->
k: Hacl.Streaming.Blake2.stateful_key_t a kk ->
buf_:
LowStar.Buffer.buffer Hacl.Streaming.Blake2.uint8
{LowStar.Monotonic.Buffer.length buf_ = Spec.Blake2.size_block a}
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 7,
"end_line": 548,
"start_col": 2,
"start_line": 507
} |
Prims.Tot | val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a } | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4 | val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
let blake2_hash_incremental_s a kk k input0 = | false | null | false | let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4 | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Streaming.Blake2.max_key",
"Hacl.Streaming.Blake2.lbytes",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.max_input_length",
"Prims.bool",
"Prims.op_Addition",
"Spec.Blake2.size_block",
"Lib.UpdateMulti.uint8",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.output_len",
"Hacl.Streaming.Blake2.finish_s",
"Hacl.Streaming.Blake2.t",
"Hacl.Streaming.Blake2.update_last_s",
"Hacl.Streaming.Blake2.update_multi_s",
"Hacl.Streaming.Blake2.init_s",
"Prims.nat",
"Hacl.Streaming.Blake2.output_size",
"FStar.Pervasives.Native.tuple2",
"Lib.UpdateMulti.split_at_last_lazy",
"Hacl.Streaming.Blake2.block_len",
"Prims.unit",
"FStar.Math.Lemmas.modulo_lemma",
"Prims._assert",
"FStar.Seq.Base.append",
"Prims.op_GreaterThan",
"Spec.Blake2.blake2_key_block",
"FStar.Seq.Base.empty"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a } | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a } | [] | Hacl.Streaming.Blake2.blake2_hash_incremental_s | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.size_nat{kk <= Hacl.Streaming.Blake2.max_key a} ->
k: Hacl.Streaming.Blake2.lbytes kk ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ (match kk = 0 with
| true -> FStar.Seq.Base.length input <= Hacl.Streaming.Blake2.max_input_length a
| _ ->
FStar.Seq.Base.length input + Spec.Blake2.size_block a <=
Hacl.Streaming.Blake2.max_input_length a)
<:
Type0 }
-> output:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{FStar.Seq.Base.length output = Hacl.Streaming.Blake2.output_size a} | {
"end_col": 6,
"end_line": 402,
"start_col": 45,
"start_line": 391
} |
FStar.Pervasives.Lemma | val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input)) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
} | val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 = | false | null | false | let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i: nat{i < nb1}) (acc: t a) : Lemma (f i acc == f1 i acc) =
assert ((Spec.get_blocki a input i) `Seq.equal` (Spec.get_blocki a input1 i))
in
let aux2 (i: nat{i < nb2}) (acc: t a) : Lemma (f2 i acc == f (i + nb1) acc) =
assert ((Spec.get_blocki a input2 i) `Seq.equal` (Spec.get_blocki a input (i + nb1)))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc ( == ) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
( == ) { () }
repeati nb2 f2 (repeati nb1 f1 acc);
( == ) { (Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc) }
repeati nb2 f2 (repeati nb1 f acc);
( == ) { (repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)) }
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
( == ) { (Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2
nb1
(fixed_a (t a))
(fixed_a (t a))
f2
f
(repeat_right 0 nb1 (fixed_a (t a)) f acc)) }
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
( == ) { (repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc;
repeati_def nb f acc) }
repeati nb f acc;
( == ) { () }
update_multi_s acc prevlen1 input;
} | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"lemma"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.t",
"Prims.nat",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Hacl.Streaming.Blake2.update_multi_s",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Lib.LoopCombinators.repeati",
"Spec.Blake2.state",
"Lib.LoopCombinators.repeat_right",
"Prims.op_Addition",
"Lib.LoopCombinators.fixed_a",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Lib.Sequence.Lemmas.repeati_extensionality",
"FStar.Classical.forall_intro_2",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.LoopCombinators.repeati_def",
"Lib.Sequence.Lemmas.repeat_gen_right_extensionality",
"Lib.LoopCombinators.repeat_right_plus",
"Prims.l_True",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Blake2.wt",
"Lib.IntTypes.SEC",
"FStar.Pervasives.pattern",
"Prims._assert",
"FStar.Seq.Base.equal",
"Lib.IntTypes.uint8",
"Spec.Blake2.get_blocki",
"Prims.l_and",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.IntTypes.U8",
"Spec.Blake2.size_block",
"Prims.op_LessThanOrEqual",
"Spec.Blake2.max_limb",
"Spec.Blake2.blake2_update1",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.block_len",
"FStar.Seq.Base.append"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 400,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input)) | [] | Hacl.Streaming.Blake2.update_multi_associative | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
acc: Hacl.Streaming.Blake2.t a ->
prevlen1: Prims.nat ->
prevlen2: Prims.nat ->
input1: FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8 ->
input2: FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
-> FStar.Pervasives.Lemma
(requires
(FStar.Math.Lemmas.pos_times_pos_is_pos Spec.Blake2.size_block_w (Spec.Blake2.size_word a);
prevlen1 % Spec.Blake2.size_block a = 0 /\
FStar.Seq.Base.length input1 % Spec.Blake2.size_block a = 0 /\
FStar.Seq.Base.length input2 % Spec.Blake2.size_block a = 0 /\
prevlen1 + FStar.Seq.Base.length input1 + FStar.Seq.Base.length input2 <=
Hacl.Streaming.Blake2.max_input_length a /\
prevlen2 = prevlen1 + FStar.Seq.Base.length input1))
(ensures
(let input = FStar.Seq.Base.append input1 input2 in
FStar.Seq.Base.length input % Spec.Blake2.size_block a = 0 /\
prevlen2 % Spec.Blake2.size_block a = 0 /\
Hacl.Streaming.Blake2.update_multi_s (Hacl.Streaming.Blake2.update_multi_s acc
prevlen1
input1)
prevlen2
input2 ==
Hacl.Streaming.Blake2.update_multi_s acc prevlen1 input)) | {
"end_col": 3,
"end_line": 377,
"start_col": 69,
"start_line": 338
} |
Prims.Tot | val blake2
(a: alg)
(m: valid_m_spec a)
(kk: key_size a)
(init: blake2_init_st a m)
(update_multi: blake2_update_multi_st a m)
(update_last: blake2_update_last_st a m)
(finish: blake2_finish_st a m)
: I.block unit | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) :
I.block unit =
I.Block
I.Erased (* key management *)
(stateful_blake2 a m) (* state *)
(stateful_key a kk) (* key *)
unit (* output_length_t *)
(fun () -> max_input_len a) (* max_input_length *)
(fun () () -> output_size a) (* output_len *)
(fun () -> block_len a) (* block_len *)
(fun () -> block_len a) (* blocks_state_len *)
(fun () -> if kk > 0 then block_len a else 0ul) (* init_input_len *)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk) (* init_s *)
(fun () acc prevlen input -> update_multi_s acc prevlen input) (* update_multi_s *)
(fun () acc prevlen input -> update_last_s acc prevlen input) (* update_last_s *)
(fun () _k acc _ -> finish_s #a acc) (* finish_s *)
(fun () k input l -> spec_s a kk k input) (* spec_s *)
(* update_multi_zero *)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(* update_multi_associative *)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ ->
spec_is_incremental a kk k input) (* spec_is_incremental *)
(fun _ acc -> ()) (* index_of_state *)
(* init *)
(fun _ key buf_ acc ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(* update_multi *)
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` Core.size_block a in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(* update_last *)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(* finish *)
(fun _ k acc dst _ ->
[@inline_let] let wv = get_wv acc in
[@inline_let] let h = get_state_p acc in
finish (output_len a) dst h) | val blake2
(a: alg)
(m: valid_m_spec a)
(kk: key_size a)
(init: blake2_init_st a m)
(update_multi: blake2_update_multi_st a m)
(update_last: blake2_update_last_st a m)
(finish: blake2_finish_st a m)
: I.block unit
let blake2
(a: alg)
(m: valid_m_spec a)
(kk: key_size a)
(init: blake2_init_st a m)
(update_multi: blake2_update_multi_st a m)
(update_last: blake2_update_last_st a m)
(finish: blake2_finish_st a m)
: I.block unit = | false | null | false | I.Block I.Erased
(stateful_blake2 a m)
(stateful_key a kk)
unit
(fun () -> max_input_len a)
(fun () () -> output_size a)
(fun () -> block_len a)
(fun () -> block_len a)
(fun () -> if kk > 0 then block_len a else 0ul)
(fun () k -> if kk > 0 then Spec.blake2_key_block a kk k else S.empty)
(fun () _k -> init_s a kk)
(fun () acc prevlen input -> update_multi_s acc prevlen input)
(fun () acc prevlen input -> update_last_s acc prevlen input)
(fun () _k acc _ -> finish_s #a acc)
(fun () k input l -> spec_s a kk k input)
(fun () acc prevlen -> update_multi_zero #a acc prevlen)
(fun () acc prevlen1 prevlen2 input1 input2 ->
update_multi_associative acc prevlen1 prevlen2 input1 input2)
(fun () k input _ -> spec_is_incremental a kk k input)
(fun _ acc -> ())
(fun _ key buf_ acc ->
[@@ inline_let ]let wv = get_wv acc in
[@@ inline_let ]let h = get_state_p acc in
init_key_block a kk key buf_;
init h (Lib.IntTypes.size kk) (output_len a))
(fun _ acc prevlen blocks len ->
let wv, hash = acc in
let nb = len `U32.div` (Core.size_block a) in
update_multi #len wv hash (blake2_prevlen a prevlen) blocks nb)
(fun _ acc prevlen last last_len ->
let wv, hash = acc in
update_last #last_len wv hash (blake2_prevlen a prevlen) last_len last)
(fun _ k acc dst _ ->
[@@ inline_let ]let wv = get_wv acc in
[@@ inline_let ]let h = get_state_p acc in
finish (output_len a) dst h) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"total"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Impl.Blake2.Generic.valid_m_spec",
"Hacl.Streaming.Blake2.key_size",
"Hacl.Impl.Blake2.Generic.blake2_init_st",
"Hacl.Impl.Blake2.Generic.blake2_update_multi_st",
"Hacl.Impl.Blake2.Generic.blake2_update_last_st",
"Hacl.Impl.Blake2.Generic.blake2_finish_st",
"Hacl.Streaming.Interface.Block",
"Prims.unit",
"Hacl.Streaming.Interface.Erased",
"Hacl.Streaming.Blake2.stateful_blake2",
"Hacl.Streaming.Blake2.stateful_key",
"Hacl.Streaming.Blake2.max_input_len",
"FStar.UInt64.t",
"Prims.b2t",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.UInt64.v",
"Hacl.Streaming.Blake2.output_size",
"Lib.IntTypes.size_nat",
"Hacl.Streaming.Blake2.block_len",
"FStar.UInt32.t",
"FStar.UInt32.v",
"Prims.l_and",
"FStar.Integers.op_Greater_Equals",
"Prims.op_Equality",
"Prims.int",
"FStar.Integers.op_Percent",
"Prims.op_GreaterThan",
"Prims.bool",
"FStar.UInt32.__uint_to_t",
"FStar.Integers.op_Less_Equals",
"Hacl.Streaming.Interface.__proj__Stateful__item__t",
"Spec.Blake2.blake2_key_block",
"FStar.Seq.Base.empty",
"Hacl.Streaming.Interface.uint8",
"FStar.Seq.Base.seq",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.init_s",
"FStar.Integers.nat",
"FStar.Integers.op_Plus",
"Hacl.Streaming.Blake2.update_multi_s",
"Hacl.Streaming.Blake2.update_last_s",
"Hacl.Streaming.Blake2.finish_s",
"Prims.nat",
"Hacl.Streaming.Blake2.spec_s",
"Prims.eq2",
"Hacl.Streaming.Blake2.update_multi_zero",
"Hacl.Streaming.Blake2.update_multi_associative",
"Hacl.Streaming.Blake2.spec_is_incremental",
"FStar.Ghost.erased",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"FStar.Ghost.reveal",
"LowStar.Buffer.buffer",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Lib.IntTypes.size",
"Hacl.Streaming.Blake2.output_len",
"Hacl.Streaming.Blake2.init_key_block",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Hacl.Impl.Blake2.Core.element_t",
"Lib.IntTypes.mul_mod",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.Blake2.Core.row_len",
"Hacl.Streaming.Blake2.get_state_p",
"Hacl.Streaming.Blake2.get_wv",
"Hacl.Impl.Blake2.Core.state_p",
"Hacl.Streaming.Blake2.blake2_prevlen",
"FStar.UInt32.div",
"Hacl.Impl.Blake2.Core.size_block",
"LowStar.Monotonic.Buffer.len",
"Hacl.Streaming.Interface.optional_key",
"Hacl.Streaming.Interface.block"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver
#push-options "--z3cliopt smt.arith.nl=false"
let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a)
#pop-options
inline_for_extraction noextract
val init_key_block (a : alg) (kk : key_size a) (k : stateful_key_t a kk)
(buf_: B.buffer uint8 { B.length buf_ = Spec.size_block a }) :
ST.Stack unit
(requires fun h0 ->
let key = stateful_key a kk in
key.invariant h0 k /\
B.live h0 buf_ /\
B.(loc_disjoint (loc_buffer buf_) (key.footprint h0 k)))
(ensures fun h0 _ h1 ->
B.(modifies (loc_buffer buf_) h0 h1) /\
begin
let k = (stateful_key a kk).v () h0 k in
let input_length = if kk > 0 then Spec.size_block a else 0 in
let input = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
S.equal (S.slice (B.as_seq h1 buf_) 0 input_length) input
end)
let init_key_block a kk k buf_ =
if kk = 0 then ()
else
begin
(**) let h0 = ST.get () in
(* Set the end of the buffer to 0 *)
[@inline_let] let sub_b_len = U32.(block_len a -^ U32.uint_to_t kk) in
let sub_b = B.sub buf_ (U32.uint_to_t kk) sub_b_len in
B.fill sub_b (Lib.IntTypes.u8 0) sub_b_len;
(**) let h1 = ST.get () in
(**) assert(S.slice (B.as_seq h1 buf_) kk (Spec.size_block a) `S.equal` B.as_seq h1 sub_b);
(* Copy the key at the beginning of the buffer *)
Lib.Buffer.update_sub #Lib.Buffer.MUT #uint8 #(U32.uint_to_t (Spec.size_block a))
buf_ 0ul (U32.uint_to_t kk) (stateful_key_to_buffer k);
(**) let h2 = ST.get () in
(**) begin
(**) let k : LS.lseq uint8 kk = (stateful_key a kk).v () h0 k in
(**) let buf_v1 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h1 buf_ in
(**) let buf_v2 : LS.lseq uint8 (Spec.size_block a) = B.as_seq h2 buf_ in
(* Prove that [buf_] is equal to [key @ create ... 0] *)
(**) assert(buf_v2 `S.equal` LS.update_sub buf_v1 0 kk k);
(**) let zeroed : LS.lseq uint8 (Spec.size_block a - kk) = S.create (Spec.size_block a - kk) (Lib.IntTypes.u8 0) in
(**) assert(B.as_seq h1 sub_b `S.equal` zeroed);
(**) let key_and_zeroed : LS.lseq uint8 (Spec.size_block a) = Seq.append k zeroed in
(**) assert(S.equal (S.slice key_and_zeroed 0 kk) k);
(**) assert(S.equal (S.slice key_and_zeroed kk (Spec.size_block a)) zeroed);
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) buf_v1 0 kk k key_and_zeroed;
(**) assert(buf_v2 `S.equal` key_and_zeroed);
(* Prove that the initial input is equal to [key @ create ... 0] *)
(**) let input = Spec.blake2_key_block a kk k in
(**) let key_block0: LS.lseq uint8 (Spec.size_block a) = S.create (Spec.size_block a) (Lib.IntTypes.u8 0) in
(**) assert(input `S.equal` LS.update_sub key_block0 0 kk k);
(**) assert(Seq.equal (LS.sub key_and_zeroed 0 kk) k);
(**) assert(Seq.equal (LS.sub key_and_zeroed kk (Spec.size_block a - kk))
(LS.sub key_block0 kk (Spec.size_block a - kk)));
(**) LS.lemma_update_sub #uint8 #(Spec.size_block a) key_block0 0 kk k key_and_zeroed;
(**) assert(input `S.equal` key_and_zeroed)
(**) end
end
/// Runtime
/// -------
#push-options "--ifuel 1"// --z3cliopt smt.arith.nl=false"
inline_for_extraction noextract
let blake2 (a : alg)
(m : valid_m_spec a)
(kk : key_size a)
(init : blake2_init_st a m)
(update_multi : blake2_update_multi_st a m)
(update_last : blake2_update_last_st a m)
(finish : blake2_finish_st a m) : | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val blake2
(a: alg)
(m: valid_m_spec a)
(kk: key_size a)
(init: blake2_init_st a m)
(update_multi: blake2_update_multi_st a m)
(update_last: blake2_update_last_st a m)
(finish: blake2_finish_st a m)
: I.block unit | [] | Hacl.Streaming.Blake2.blake2 | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
m: Hacl.Impl.Blake2.Generic.valid_m_spec a ->
kk: Hacl.Streaming.Blake2.key_size a ->
init: Hacl.Impl.Blake2.Generic.blake2_init_st a m ->
update_multi: Hacl.Impl.Blake2.Generic.blake2_update_multi_st a m ->
update_last: Hacl.Impl.Blake2.Generic.blake2_update_last_st a m ->
finish: Hacl.Impl.Blake2.Generic.blake2_finish_st a m
-> Hacl.Streaming.Interface.block Prims.unit | {
"end_col": 34,
"end_line": 617,
"start_col": 2,
"start_line": 563
} |
FStar.Pervasives.Lemma | val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a)) | [
{
"abbrev": true,
"full_module": "Hacl.Blake2b_32",
"short_module": "Blake2b32"
},
{
"abbrev": true,
"full_module": "Hacl.Blake2s_32",
"short_module": "Blake2s32"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Blake2.Generic",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Blake2.Core",
"short_module": "Core"
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.UInt128",
"short_module": "U128"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let spec_is_incremental a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a) | val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
let spec_is_incremental a kk k input0 = | false | null | false | let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let s = init_s a kk in
repeati_split_at_eq a s input;
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (s1 == s2);
S.lemma_eq_intro (S.slice input (S.length input - l_last) (S.length input)) last;
S.lemma_eq_intro (S.slice last (S.length last - l_last) (S.length last)) last;
Spec.Blake2.Alternative.lemma_spec_equivalence_update a kk k input0 s;
assert (U32.v (output_len a) = output_size a) | {
"checked_file": "Hacl.Streaming.Blake2.fst.checked",
"dependencies": [
"Spec.Blake2.Alternative.fsti.checked",
"Spec.Blake2.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Blake2.Generic.fst.checked",
"Hacl.Impl.Blake2.Core.fsti.checked",
"Hacl.Blake2s_32.fst.checked",
"Hacl.Blake2b_32.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Blake2.fst"
} | [
"lemma"
] | [
"Hacl.Streaming.Blake2.alg",
"Hacl.Streaming.Blake2.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Streaming.Blake2.max_key",
"Hacl.Streaming.Blake2.lbytes",
"FStar.Seq.Base.seq",
"Hacl.Streaming.Blake2.uint8",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Hacl.Streaming.Blake2.max_input_length",
"Prims.bool",
"Prims.op_Addition",
"Spec.Blake2.size_block",
"Prims.nat",
"Lib.UpdateMulti.uint8",
"Prims._assert",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Hacl.Streaming.Blake2.output_len",
"Hacl.Streaming.Blake2.output_size",
"Prims.unit",
"Spec.Blake2.Alternative.lemma_spec_equivalence_update",
"FStar.Seq.Base.lemma_eq_intro",
"FStar.Seq.Base.slice",
"Prims.op_Subtraction",
"Prims.eq2",
"Spec.Blake2.state",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Blake2.wt",
"Lib.IntTypes.SEC",
"Lib.LoopCombinators.repeati",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.IntTypes.U8",
"Spec.Blake2.max_limb",
"Spec.Blake2.blake2_update1",
"Hacl.Streaming.Blake2.repeati_split_at_eq",
"Hacl.Streaming.Blake2.t",
"Hacl.Streaming.Blake2.init_s",
"FStar.Pervasives.Native.tuple2",
"Lib.UpdateMulti.split_at_last_lazy",
"Hacl.Streaming.Blake2.block_len",
"Prims.op_Multiply",
"Spec.Blake2.split",
"FStar.Seq.Base.append",
"Prims.op_GreaterThan",
"Spec.Blake2.blake2_key_block",
"FStar.Seq.Base.empty"
] | [] | module Hacl.Streaming.Blake2
module HS = FStar.HyperStack
module B = LowStar.Buffer
module G = FStar.Ghost
module S = FStar.Seq
module LS = Lib.Sequence
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module U128 = FStar.UInt128
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
module ST = FStar.HyperStack.ST
open FStar.Mul
module Loops = Lib.LoopCombinators
/// Opening a bunch of modules for Blake2
/// =====================================
inline_for_extraction noextract
let uint8 = Lib.IntTypes.uint8
inline_for_extraction noextract
let uint32 = Lib.IntTypes.uint32
unfold noextract
let size_nat = Lib.IntTypes.size_nat
unfold noextract
let max_key = Spec.Blake2.max_key
unfold noextract
let lbytes = Lib.ByteSequence.lbytes
module Spec = Spec.Blake2
module Core = Hacl.Impl.Blake2.Core
open Hacl.Impl.Blake2.Generic
module Blake2s32 = Hacl.Blake2s_32
module Blake2b32 = Hacl.Blake2b_32
/// An instance of the stateful type class for blake2
/// =================================================
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50"
inline_for_extraction noextract
let index = unit
inline_for_extraction noextract
let alg = Spec.alg
inline_for_extraction noextract
let m_spec = Core.m_spec
/// The stateful state: (wv, hash)
inline_for_extraction noextract
let s (a : alg) (m : m_spec) = Core.(state_p a m & state_p a m)
inline_for_extraction noextract
let t (a : alg) = Spec.state a
(* In the internal state, we keep wv, the working vector. It's essentially
temporary scratch space that the Blake2 implementation expects to receive. (Why
is the implementation not performing its own stack allocations? Don't know!) *)
inline_for_extraction noextract
let get_wv (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with wv, _ -> wv
inline_for_extraction noextract
let get_state_p (#a : alg) (#m : m_spec) (s : s a m) : Tot (Core.state_p a m) =
match s with _, p -> p
(* But the working vector is not reflected in the state at all -- it doesn't
have meaningful specification contents. *)
inline_for_extraction noextract
let state_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (Spec.state a) =
Core.state_v h (get_state_p s)
inline_for_extraction noextract
let s_v (#a : alg) (#m : m_spec) (h : HS.mem) (s : s a m) : GTot (t a) =
state_v h s
/// Small helper which facilitates inferencing implicit arguments for buffer
/// operations
inline_for_extraction noextract
let state_to_lbuffer (#a : alg) (#m : m_spec) (s : Core.state_p a m) :
B.lbuffer (Core.element_t a m) (4 * U32.v (Core.row_len a m)) =
s
inline_for_extraction noextract
let stateful_blake2 (a : alg) (m : m_spec) : I.stateful unit =
I.Stateful
(fun () -> s a m) (* s *)
(* footprint *)
(fun #_ _ acc ->
let wv, b = acc in
B.loc_union
(B.loc_addr_of_buffer (state_to_lbuffer wv))
(B.loc_addr_of_buffer (state_to_lbuffer b)))
(* freeable *)
(fun #_ _ acc ->
let wv, b = acc in
B.freeable (state_to_lbuffer wv) /\
B.freeable (state_to_lbuffer b))
(* invariant *)
(fun #_ h acc ->
let wv, b = acc in
B.live h (state_to_lbuffer wv) /\
B.live h (state_to_lbuffer b) /\
B.disjoint (state_to_lbuffer wv) (state_to_lbuffer b))
(fun () -> t a) (* t *)
(fun () h acc -> s_v h acc) (* v *)
(fun #_ h acc -> let wv, b = acc in ()) (* invariant_loc_in_footprint *)
(fun #_ l acc h0 h1 -> let wv, b = acc in ()) (* frame_invariant *)
(fun #_ _ _ _ _ -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
let wv = Core.alloc_state a m in
let b = Core.alloc_state a m in
wv, b)
(* create_in *)
(fun () r ->
let wv = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
let b = B.malloc r (Core.zero_element a m) U32.(4ul *^ Core.row_len a m) in
wv, b)
(* free *)
(fun _ acc ->
match acc with wv, b ->
B.free (state_to_lbuffer wv);
B.free (state_to_lbuffer b))
(* copy *)
(fun _ src dst ->
match src with src_wv, src_b ->
match dst with src_wv, dst_b ->
B.blit (state_to_lbuffer src_b) 0ul (state_to_lbuffer dst_b) 0ul
U32.(4ul *^ Core.row_len a m))
/// Stateful key
/// ============
inline_for_extraction noextract
let key_size (a : alg) = kk:nat{kk <= Spec.max_key a}
inline_for_extraction noextract
let key_size_t (a : alg) =
key_size:U32.t{U32.v key_size <= Spec.max_key a}
/// Defining stateful keys
inline_for_extraction noextract
let stateful_key_t (a : alg) (key_size : key_size a) : Type =
if key_size = 0 then unit else b:B.buffer uint8 { B.length b == key_size}
inline_for_extraction noextract
let buffer_to_stateful_key_t (a : alg) (kk : key_size a{kk > 0})
(k : B.buffer uint8 { B.length k == kk }) :
Tot (stateful_key_t a kk) =
k
inline_for_extraction noextract
let unit_to_stateful_key_t (a : alg) :
Tot (stateful_key_t a 0) =
()
/// The ``has_key`` parameter is meta
/// TODO: this definition could be moved to Hacl.Streaming.Interface, it could
/// be pretty useful in other situations as it generalizes ``stateful_buffer`` in
/// the case the length is zero. Note that rather than being unit, the type could
/// be buffer too (and we would use null whenever needed).
inline_for_extraction noextract
let stateful_key (a : alg) (kk : key_size a) :
I.stateful unit =
I.Stateful
(fun _ -> stateful_key_t a kk)
(* footprint *)
(fun #_ h s -> if kk = 0 then B.loc_none else B.loc_addr_of_buffer (s <: B.buffer uint8))
(* freeable *)
(fun #_ h s -> if kk = 0 then True else B.freeable (s <: B.buffer uint8))
(* invariant *)
(fun #_ h s ->
if kk = 0 then True
else B.live h (s <: B.buffer uint8))
(fun _ -> s:S.seq uint8 { S.length s == kk })
(fun _ h s -> if kk = 0 then Seq.empty else B.as_seq h (s <: B.buffer uint8))
(fun #_ h s -> ()) (* invariant_loc_in_footprint *)
(fun #_ l s h0 h1 -> ()) (* frame_invariant *)
(fun #_ l s h0 h1 -> ()) (* frame_freeable *)
(* alloca *)
(fun () ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.alloca (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* create_in *)
(fun () r ->
if kk > 0 then
buffer_to_stateful_key_t a kk (B.malloc r (Lib.IntTypes.u8 0) (U32.uint_to_t kk))
else unit_to_stateful_key_t a)
(* free *)
(fun _ s -> if kk > 0 then B.free (s <: B.buffer uint8) else ())
(* copy *)
(fun _ s_src s_dst ->
if kk > 0 then
B.blit (s_src <: B.buffer uint8) 0ul
(s_dst <: B.buffer uint8) 0ul (U32.uint_to_t kk)
else ())
inline_for_extraction noextract
let stateful_key_to_buffer (#a : alg) (#kk : key_size a)
(key : stateful_key_t a kk) :
b:B.buffer uint8 { B.length b = kk } =
if kk = 0 then B.null #uint8 else key
inline_for_extraction noextract
let k = stateful_key
/// Actual functor instantiation
/// ============================
/// Small helpers
/// -------------
noextract
let max_input_length (a : alg) : n:nat { n <= Spec.max_limb a /\ n > Spec.size_block a } =
assert_norm (pow2 64 < pow2 128);
pow2 64 - 1
noextract inline_for_extraction
let max_input_len (a: alg): (x:U64.t { U64.v x == max_input_length a }) = 0xffffffffffffffffUL
inline_for_extraction noextract
let block (a : alg) = (block: S.seq uint8 { S.length block = Spec.size_block a })
inline_for_extraction noextract
let block_len (a : alg) : U32.t = Core.size_block a
inline_for_extraction noextract
let output_size (a : alg) : nat = Spec.max_output a
inline_for_extraction noextract
let output_len (a : alg) = U32.uint_to_t (output_size a)
/// From the functor-provided previous length (uint64, public) to a suitable
/// type for Blake2 (secret uint64/uint128)
inline_for_extraction noextract
let blake2_prevlen (a : alg)
(prevlen : U64.t{ U64.v prevlen <= max_input_length a}) :
x:Spec.limb_t a {
Lib.IntTypes.uint_v x = U64.v prevlen } =
let open Lib.IntTypes in
match a with
| Spec.Blake2S -> to_u64 #U64 #PUB prevlen
| Spec.Blake2B ->
[@inline_let] let x : uint64 = to_u64 #U64 #PUB prevlen in
Lib.IntTypes.cast U128 SEC x
/// Specs
/// -----
noextract
let init_s (a : alg) (kk : size_nat{kk <= max_key a}) :
Tot (t a) =
Spec.blake2_init_hash a kk (output_size a)
noextract
let update_multi_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ prevlen + S.length input <= max_input_length a /\
S.length input % Spec.size_block a = 0 }) :
Tot (t a)
=
let nb = S.length input / U32.v (block_len a) in
Lib.LoopCombinators.repeati nb (Spec.blake2_update1 a prevlen input) acc
noextract
let update_last_s (#a : alg) (acc : t a)
(prevlen : nat{prevlen % Spec.size_block a = 0})
(input : Seq.seq uint8{ S.length input + prevlen <= max_input_length a /\
S.length input <= Spec.size_block a }) :
Tot (t a) =
Spec.blake2_update_last a prevlen (S.length input) input acc
noextract
let finish_s (#a : alg) (acc : t a) :
output : S.seq uint8 { S.length output = U32.v (output_len a) } =
Spec.blake2_finish a acc (U32.v (output_len a))
noextract
let spec_s (a : alg)
(kk : size_nat{kk <= max_key a})
(key : lbytes kk)
(input : S.seq uint8{if kk = 0 then S.length input <= max_input_length a else S.length input + Spec.size_block a <= max_input_length a}) =
Spec.blake2 a input kk key (output_size a)
/// Interlude for spec proofs
/// -------------------------
val update_multi_zero:
#a : alg ->
acc:t a ->
prevlen:nat{prevlen % Spec.size_block a = 0} ->
Lemma
(requires (prevlen <= max_input_length a))
(ensures (update_multi_s #a acc prevlen S.empty == acc))
let update_multi_zero #a acc prevlen =
Lib.LoopCombinators.eq_repeati0 (0 / U32.v (block_len a)) (Spec.blake2_update1 a prevlen S.empty) acc
#push-options "--z3cliopt smt.arith.nl=false"
val update_multi_associative:
#a : alg ->
acc: t a ->
prevlen1:nat ->
prevlen2:nat ->
input1:S.seq uint8 ->
input2:S.seq uint8 ->
Lemma
(requires (
(**) Math.Lemmas.pos_times_pos_is_pos Spec.size_block_w (Spec.size_word a);
prevlen1 % Spec.size_block a = 0 /\
S.length input1 % Spec.size_block a = 0 /\
S.length input2 % Spec.size_block a = 0 /\
prevlen1 + S.length input1 + S.length input2 <= max_input_length a /\
prevlen2 = prevlen1 + S.length input1))
(ensures (
let input = S.append input1 input2 in
S.length input % Spec.size_block a = 0 /\
prevlen2 % Spec.size_block a = 0 /\
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2 ==
update_multi_s acc prevlen1 input))
#pop-options
#push-options "--z3rlimit 400"
let update_multi_associative #a acc prevlen1 prevlen2 input1 input2 =
let input = S.append input1 input2 in
let nb = S.length input / U32.v (block_len a) in
let nb1 = S.length input1 / U32.v (block_len a) in
let nb2 = S.length input2 / U32.v (block_len a) in
let f = Spec.blake2_update1 a prevlen1 input in
let f1 = Spec.blake2_update1 a prevlen1 input1 in
let f2 = Spec.blake2_update1 a prevlen2 input2 in
let aux1 (i:nat{i < nb1}) (acc:t a) : Lemma (f i acc == f1 i acc)
= assert (Spec.get_blocki a input i `Seq.equal` Spec.get_blocki a input1 i)
in
let aux2 (i:nat{i < nb2}) (acc:t a) : Lemma (f2 i acc == f (i + nb1) acc)
= assert (Spec.get_blocki a input2 i `Seq.equal` Spec.get_blocki a input (i + nb1))
in
let open Lib.LoopCombinators in
let open Lib.Sequence.Lemmas in
calc (==) {
update_multi_s (update_multi_s acc prevlen1 input1) prevlen2 input2;
(==) { }
repeati nb2 f2 (repeati nb1 f1 acc);
(==) {
Classical.forall_intro_2 aux1;
repeati_extensionality nb1 f1 f acc
}
repeati nb2 f2 (repeati nb1 f acc);
(==) {
repeati_def nb1 f acc;
repeati_def nb2 f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right 0 nb2 (fixed_a (t a)) f2 (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) {
Classical.forall_intro_2 aux2;
repeat_gen_right_extensionality nb2 nb1 (fixed_a (t a)) (fixed_a (t a)) f2 f (repeat_right 0 nb1 (fixed_a (t a)) f acc)
}
repeat_right nb1 (nb1 + nb2) (fixed_a (t a)) f (repeat_right 0 nb1 (fixed_a (t a)) f acc);
(==) { repeat_right_plus 0 nb1 nb (fixed_a (t a)) f acc; repeati_def nb f acc }
repeati nb f acc;
(==) { }
update_multi_s acc prevlen1 input;
}
#pop-options
/// A helper function: the hash incremental function defined with the functions
/// locally defined (with a signature adapted to the functor).
noextract
val blake2_hash_incremental_s :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
output:S.seq uint8 { S.length output = output_size a }
#push-options "--z3cliopt smt.arith.nl=false"
let blake2_hash_incremental_s a kk k input0 =
let key_block = if kk > 0 then Spec.blake2_key_block a kk k else S.empty in
let key_block_len = S.length key_block in
let input = Seq.append key_block input0 in
assert (key_block_len = (if kk = 0 then 0 else Spec.size_block a));
(**) Math.Lemmas.modulo_lemma 0 (U32.v (block_len a));
let bs, l = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let acc1 = init_s a kk in
let acc2 = update_multi_s #a acc1 0 bs in
let acc3 = update_last_s #a acc2 (S.length bs) l in
let acc4 = finish_s #a acc3 in
acc4
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
val repeati_split_at_eq :
a : alg ->
s : t a ->
input:S.seq uint8 { S.length input <= max_input_length a } ->
Lemma(
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
n_blocks = Lib.Sequence.length blocks / Spec.size_block a /\ // This is necessary for type-checking
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 input) s ==
Lib.LoopCombinators.repeati n_blocks (Spec.blake2_update1 a 0 blocks) s)
#pop-options
#push-options "--z3cliopt smt.arith.nl=false"
let repeati_split_at_eq a s input =
let n_blocks, l_last = Spec.split a (S.length input) in
let blocks, last = Lib.UpdateMulti.split_at_last_lazy (U32.v (block_len a)) input in
let f = Spec.blake2_update1 a 0 input in
let g = Spec.blake2_update1 a 0 blocks in
let s1 = Lib.LoopCombinators.repeati n_blocks f s in
assert (Lib.Sequence.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.cancel_mul_div n_blocks (Spec.size_block a);
assert (n_blocks = Lib.Sequence.length blocks / Spec.size_block a);
assert (Lib.Sequence.length blocks <= max_input_length a);
let s2 = Lib.LoopCombinators.repeati n_blocks g s in
assert (input `Seq.equal` Seq.append blocks last);
assert (S.length input = S.length blocks + S.length last);
introduce forall (i:nat{i < n_blocks}). (Spec.get_blocki a input i) `S.equal` (Spec.get_blocki a blocks i)
with
begin
let b0 = Spec.get_blocki a input i in
let b1 = Spec.get_blocki a blocks i in
assert (S.length blocks = n_blocks * Spec.size_block a);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) (i + 1) n_blocks;
assert ((i + 1) * Spec.size_block a <= S.length blocks);
Math.Lemmas.lemma_mult_le_right (Spec.size_block a) i n_blocks;
assert (i * Spec.size_block a <= S.length blocks);
Math.Lemmas.distributivity_add_left i 1 (Spec.size_block a);
assert ((i + 1) * Spec.size_block a = i * Spec.size_block a + Spec.size_block a);
introduce forall (j: nat{j < Spec.size_block a}). S.index b0 j == S.index b1 j
with
begin
assert (i * Spec.size_block a + j < i * Spec.size_block a + Spec.size_block a);
Math.Lemmas.nat_times_nat_is_nat i (Spec.size_block a);
S.lemma_index_slice input (i * Spec.size_block a) ((i + 1) * Spec.size_block a) j;
assert (S.index b0 j == S.index input (j + (i * Spec.size_block a)))
end
end;
assert (forall (i:nat{i < n_blocks}) acc. f i acc == g i acc);
Lib.Sequence.Lemmas.repeati_extensionality n_blocks f g s
#pop-options
val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a))
#restart-solver | false | false | Hacl.Streaming.Blake2.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val spec_is_incremental :
a : alg ->
kk: size_nat{kk <= max_key a} ->
k: lbytes kk ->
input:S.seq uint8 { if kk = 0 then S.length input <= max_input_length a else S.length input + (Spec.size_block a) <= max_input_length a } ->
Lemma(
blake2_hash_incremental_s a kk k input ==
Spec.blake2 a input kk k (output_size a)) | [] | Hacl.Streaming.Blake2.spec_is_incremental | {
"file_name": "code/streaming/Hacl.Streaming.Blake2.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Hacl.Streaming.Blake2.alg ->
kk: Hacl.Streaming.Blake2.size_nat{kk <= Hacl.Streaming.Blake2.max_key a} ->
k: Hacl.Streaming.Blake2.lbytes kk ->
input:
FStar.Seq.Base.seq Hacl.Streaming.Blake2.uint8
{ (match kk = 0 with
| true -> FStar.Seq.Base.length input <= Hacl.Streaming.Blake2.max_input_length a
| _ ->
FStar.Seq.Base.length input + Spec.Blake2.size_block a <=
Hacl.Streaming.Blake2.max_input_length a)
<:
Type0 }
-> FStar.Pervasives.Lemma
(ensures
Hacl.Streaming.Blake2.blake2_hash_incremental_s a kk k input ==
Spec.Blake2.blake2 a input kk k (Hacl.Streaming.Blake2.output_size a)) | {
"end_col": 47,
"end_line": 485,
"start_col": 39,
"start_line": 468
} |
Prims.Tot | val validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r + 1)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) | val validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r + 1))
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r + 1)) = | false | null | false |
u: (bitsum'_key_type b -> Tot (Type u#r)) ->
f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (u x))) ->
v: (x: bitsum'_key_type b -> Tot (validator (dsnd (f x)))) ->
x: parse_filter_refine (filter_bitsum' b)
-> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_type",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Spec.BitSum.synth_bitsum'"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r + 1)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_t | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | b: LowParse.Spec.BitSum.bitsum' cl from -> Type | {
"end_col": 69,
"end_line": 47,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos | val validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = | false | null | false | fun u f v x #rrel #rel sl pos -> v () sl pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitStop",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.BitSum.validate_bitsum_cases_t"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitstop | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | cl: LowParse.BitFields.uint_t tot t
-> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitStop ()) | {
"end_col": 13,
"end_line": 56,
"start_col": 2,
"start_line": 55
} |
Prims.Tot | val mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b) (decreases b) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b)
(decreases b)
= match b with
| BitStop _ -> validate_bitsum_cases_bitstop cl
| BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest)
| BitSum' key key_size e payload ->
validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size))) | val mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b) (decreases b)
let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b) (decreases b) = | false | null | false | match b with
| BitStop _ -> validate_bitsum_cases_bitstop cl
| BitField sz rest ->
validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest)
| BitSum' key key_size e payload ->
validate_bitsum_cases_bitsum'_intro cl
bitsum'_size
key
key_size
e
payload
(mk_validate_bitsum_cases_bitsum'_t' cl
bitsum'_size
key
key_size
e
payload
[]
e
(mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size))) | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total",
""
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"LowParse.Low.BitSum.validate_bitsum_cases_bitstop",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Low.BitSum.validate_bitsum_cases_bitfield",
"LowParse.Low.BitSum.mk_validate_bitsum_cases_t'",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_intro",
"LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t'",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"LowParse.Low.BitSum.validate_bitsum_cases_t"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b) (decreases b) | [
"recursion"
] | LowParse.Low.BitSum.mk_validate_bitsum_cases_t' | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size
-> Prims.Tot (LowParse.Low.BitSum.validate_bitsum_cases_t b) | {
"end_col": 229,
"end_line": 258,
"start_col": 2,
"start_line": 254
} |
Prims.Tot | val validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
() | val validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p)) = | false | null | false | synth_bitsum'_injective b;
validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"LowParse.Low.Base.leaf_reader",
"LowParse.Spec.BitSum.filter_bitsum'_t",
"LowParse.Low.Combinators.validate_synth",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Low.Combinators.validate_filter",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_injective",
"LowParse.Spec.BitSum.parse_bitsum'"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p)) | [] | LowParse.Low.BitSum.validate_bitsum' | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
v: LowParse.Low.Base.validator p ->
r: LowParse.Low.Base.leaf_reader p ->
phi: LowParse.Spec.BitSum.filter_bitsum'_t b
-> LowParse.Low.Base.validator (LowParse.Spec.BitSum.parse_bitsum' b p) | {
"end_col": 6,
"end_line": 30,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos | val validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = | false | null | false | fun u f v x #rrel #rel sl pos ->
phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Low.BitSum.validate_bitsum_cases_t",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitField",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Spec.BitSum.coerce"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitfield | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} ->
rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) ->
phi: LowParse.Low.BitSum.validate_bitsum_cases_t rest
-> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitField sz rest) | {
"end_col": 7,
"end_line": 75,
"start_col": 2,
"start_line": 68
} |
Prims.Tot | val validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
: Tot (Type u#(r + 1)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) | val validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
: Tot (Type u#(r + 1))
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
: Tot (Type u#(r + 1)) = | false | null | false |
u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r)) ->
f:
(x: bitsum'_key_type (BitSum' key key_size e payload) -> Tot (k: parser_kind & parser k (u x))
) ->
v: (x: bitsum'_key_type (BitSum' key key_size e payload) -> Tot (validator (dsnd (f x)))) ->
x:
parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload))
{ ~(list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size
<:
bitfield cl key_size)
(list_map snd l1)) } ->
xr: t{xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size}
-> Tot
(validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload)
(synth_bitsum' (BitSum' key key_size e payload) x))))) | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.eq2",
"FStar.List.Tot.Base.append",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.l_not",
"LowParse.Spec.Enum.list_mem",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.Enum.list_map",
"FStar.Pervasives.Native.snd",
"LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Spec.BitSum.synth_bitsum'"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
: Tot (Type u#(r + 1)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) ->
l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2}
-> Type | {
"end_col": 131,
"end_line": 123,
"start_col": 2,
"start_line": 118
} |
Prims.Tot | val validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *)) | val validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = | false | null | false | (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic) | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"Prims.squash",
"Prims.eq2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.append",
"Prims.Nil",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.l_not",
"LowParse.Spec.Enum.list_mem",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.Enum.list_map",
"FStar.Pervasives.Native.snd",
"LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.ErrorCode.validator_error_generic",
"Prims.unit",
"Prims._assert",
"Prims.l_False",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` [])) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_nil | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
h: Prims.squash (e == e @ [])
-> LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload e [] | {
"end_col": 40,
"end_line": 155,
"start_col": 2,
"start_line": 153
} |
Prims.Tot | val validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos | val validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = | false | null | false | fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs",
"LowParse.Low.BitSum.validate_bitsum_cases_t"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_intro | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
phi:
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl
bitsum'_size
key
key_size
e
payload
[]
e
-> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitSum' key
key_size
e
payload) | {
"end_col": 25,
"end_line": 139,
"start_col": 2,
"start_line": 137
} |
Prims.Tot | val mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
(mk_validate_bitsum_cases_t':
(b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload}
-> Tot (validate_bitsum_cases_t u#r b)))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload;l2]) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t') | val mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
(mk_validate_bitsum_cases_t':
(b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload}
-> Tot (validate_bitsum_cases_t u#r b)))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload;l2])
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
(mk_validate_bitsum_cases_t':
(b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload}
-> Tot (validate_bitsum_cases_t u#r b)))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload;l2]) = | false | null | false | bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@@ inline_let ]let _ = L.append_l_nil l1 in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@@ inline_let ]let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl
bitsum'_size
key
key_size
e
payload
(l1 `L.append` [(k, r)])
q
mk_validate_bitsum_cases_t') | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total",
""
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.eq2",
"FStar.List.Tot.Base.append",
"Prims.precedes",
"LowParse.Spec.BitSum.BitSum'",
"LowParse.Low.BitSum.validate_bitsum_cases_t",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_nil",
"Prims.unit",
"FStar.List.Tot.Properties.append_l_nil",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_cons",
"LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t'",
"Prims.Cons",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"FStar.List.Tot.Properties.append_assoc",
"LowParse.Spec.Enum.enum_repr_of_key_append_cons",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t",
"LowParse.Spec.BitSum.bitsum_wellfoundedness"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2})
(mk_validate_bitsum_cases_t':
(b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload}
-> Tot (validate_bitsum_cases_t u#r b)))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload;l2]) | [
"recursion"
] | LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t' | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) ->
l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} ->
mk_validate_bitsum_cases_t':
(
b:
LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
{b << LowParse.Spec.BitSum.BitSum' key key_size e payload}
-> LowParse.Low.BitSum.validate_bitsum_cases_t b)
-> Prims.Tot
(LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl
bitsum'_size
key
key_size
e
payload
l1
l2) | {
"end_col": 137,
"end_line": 242,
"start_col": 2,
"start_line": 228
} |
FStar.Pervasives.Lemma | val valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid p h sl pos /\
(let x = contents p h sl pos in
filter_bitsum' b x == true /\
(let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(get_valid_pos (dsnd (f k)) h sl pos1) /\
(let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x))))) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos
))
(ensures (
valid p h sl pos /\ (
let x = contents p h sl pos in
filter_bitsum' b x == true /\ (
let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ (
let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\
x == synth_case.f tg y /\
y == synth_case.g tg x
)))))
= valid_bitsum_elim' b tag_of_data type_of_tag synth_case p f h sl pos;
synth_bitsum'_injective b;
assert (valid ((p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b) h sl pos);
valid_synth h (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) sl pos;
valid_filter h p (filter_bitsum' b) sl pos;
let tg = synth_bitsum' b (contents p h sl pos) in
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
assert (tg == tag_of_data x);
assert (x == synth_case.f tg y);
synth_case.f_g_eq tg x;
synth_case.f_inj tg (synth_case.g tg x) y | val valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid p h sl pos /\
(let x = contents p h sl pos in
filter_bitsum' b x == true /\
(let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(get_valid_pos (dsnd (f k)) h sl pos1) /\
(let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x)))))
let valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid p h sl pos /\
(let x = contents p h sl pos in
filter_bitsum' b x == true /\
(let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(get_valid_pos (dsnd (f k)) h sl pos1) /\
(let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x))))) = | false | null | true | valid_bitsum_elim' b tag_of_data type_of_tag synth_case p f h sl pos;
synth_bitsum'_injective b;
assert (valid ((p `parse_filter` (filter_bitsum' b)) `parse_synth` (synth_bitsum' b)) h sl pos);
valid_synth h (p `parse_filter` (filter_bitsum' b)) (synth_bitsum' b) sl pos;
valid_filter h p (filter_bitsum' b) sl pos;
let tg = synth_bitsum' b (contents p h sl pos) in
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
assert (tg == tag_of_data x);
assert (x == synth_case.f tg y);
synth_case.f_g_eq tg x;
synth_case.f_inj tg (synth_case.g tg x) y | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.synth_case_t",
"LowParse.Spec.Base.parser",
"Prims.dtuple2",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f_inj",
"LowParse.Spec.BitSum.__proj__SynthCase__item__g",
"Prims.unit",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f_g_eq",
"Prims._assert",
"Prims.eq2",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f",
"LowParse.Low.Base.Spec.contents",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.BitSum.parse_bitsum_kind",
"LowParse.Spec.BitSum.parse_bitsum",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BitSum.parse_bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Low.Combinators.valid_filter",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Low.Combinators.valid_synth",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Low.Base.Spec.valid",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.BitSum.synth_bitsum'_injective",
"LowParse.Low.BitSum.valid_bitsum_elim'",
"Prims.squash",
"Prims.l_and",
"Prims.bool",
"LowParse.Low.Base.Spec.valid_pos",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b)
(decreases b)
= match b with
| BitStop _ -> validate_bitsum_cases_bitstop cl
| BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest)
| BitSum' key key_size e payload ->
validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size)))
#push-options "--z3rlimit 64"
#restart-solver
inline_for_extraction
let validate_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))
(vs: validate_bitsum_cases_t b)
: Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= fun #rrel #rel sl pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos);
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos)
in
let pos1 = validate_bitsum' b v r phi sl pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts p h sl (uint64_to_uint32 pos)
in
let x = r sl (uint64_to_uint32 pos) in
[@inline_let]
let _ =
let y = synth_bitsum' b x in
let tg = bitsum'_key_of_t b y in
parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1));
valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1)
in
vs (type_of_tag) f vf x sl pos1
#pop-options
let valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)
)))
(ensures (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)
))
= valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1
#pop-options
let valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos
))
(ensures (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\ (
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)
))))
= valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos
let valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos
))
(ensures (
valid p h sl pos /\ (
let x = contents p h sl pos in
filter_bitsum' b x == true /\ (
let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ (
let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\
x == synth_case.f tg y /\
y == synth_case.g tg x | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_bitsum_elim
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid p h sl pos /\
(let x = contents p h sl pos in
filter_bitsum' b x == true /\
(let tg = synth_bitsum' b x in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos p h sl pos in
valid (dsnd (f k)) h sl pos1 /\
valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(get_valid_pos (dsnd (f k)) h sl pos1) /\
(let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x))))) | [] | LowParse.Low.BitSum.valid_bitsum_elim | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag ->
p: LowParse.Spec.Base.parser kt t ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos)
(ensures
LowParse.Low.Base.Spec.valid p h sl pos /\
(let x = LowParse.Low.Base.Spec.contents p h sl pos in
LowParse.Spec.BitSum.filter_bitsum' b x == true /\
(let tg = LowParse.Spec.BitSum.synth_bitsum' b x in
let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in
let pos1 = LowParse.Low.Base.Spec.get_valid_pos p h sl pos in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k)) h sl pos1 /\
LowParse.Low.Base.Spec.valid_pos (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos
(LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1) /\
(let x =
LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos
in
let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in
tg == tag_of_data x /\ x == SynthCase?.f synth_case tg y /\
y == SynthCase?.g synth_case tg x)))) | {
"end_col": 43,
"end_line": 442,
"start_col": 2,
"start_line": 428
} |
Prims.Tot | val validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x})))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos | val validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x})))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x})))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = | false | null | false | fun u f v x_ #rrel #rel sl pos ->
[@@ inline_let ]let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@@ inline_let ]let k = key_of r in
destr_payload k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_
sl
pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_repr",
"LowParse.Spec.Enum.enum_key",
"Prims.eq2",
"LowParse.Spec.Enum.enum_key_of_repr",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Low.BitSum.validate_bitsum_cases_t",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'",
"Prims.Mkdtuple2",
"FStar.UInt.uint_t",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.BitFields.get_bitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x})))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitsum_gen | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
key_of:
(x: LowParse.Spec.Enum.enum_repr e
-> y: LowParse.Spec.Enum.enum_key e {y == LowParse.Spec.Enum.enum_key_of_repr e x}) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
destr_payload:
(k: LowParse.Spec.Enum.enum_key e -> LowParse.Low.BitSum.validate_bitsum_cases_t (payload k))
-> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitSum' key
key_size
e
payload) | {
"end_col": 17,
"end_line": 100,
"start_col": 2,
"start_line": 90
} |
FStar.Pervasives.Lemma | val valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos))))
(ensures
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)
)))
(ensures (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)
))
= valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1 | val valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos))))
(ensures
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1)))
let valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos))))
(ensures
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))) = | false | null | true | valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1 | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.synth_case_t",
"LowParse.Spec.Base.parser",
"Prims.dtuple2",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Low.Base.Spec.valid_facts",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BitSum.parse_bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Low.Base.Spec.contents",
"Prims.unit",
"LowParse.Spec.BitSum.parse_bitsum_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BitSum.parse_bitsum_kind",
"LowParse.Spec.BitSum.parse_bitsum",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b)
(decreases b)
= match b with
| BitStop _ -> validate_bitsum_cases_bitstop cl
| BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest)
| BitSum' key key_size e payload ->
validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size)))
#push-options "--z3rlimit 64"
#restart-solver
inline_for_extraction
let validate_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))
(vs: validate_bitsum_cases_t b)
: Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= fun #rrel #rel sl pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos);
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos)
in
let pos1 = validate_bitsum' b v r phi sl pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts p h sl (uint64_to_uint32 pos)
in
let x = r sl (uint64_to_uint32 pos) in
[@inline_let]
let _ =
let y = synth_bitsum' b x in
let tg = bitsum'_key_of_t b y in
parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1));
valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1)
in
vs (type_of_tag) f vf x sl pos1
#pop-options
let valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)
)))
(ensures (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos))))
(ensures
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))) | [] | LowParse.Low.BitSum.valid_bitsum_intro | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag ->
p: LowParse.Spec.Base.parser kt t ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos /\
(let tg =
LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos
in
let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k))
h
sl
(LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos)
))
(ensures
(let tg =
LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos
in
let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in
let pos1 =
LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos
in
let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos
(SynthCase?.f synth_case tg y)
(LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1))) | {
"end_col": 36,
"end_line": 349,
"start_col": 2,
"start_line": 343
} |
FStar.Pervasives.Lemma | val valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\
(let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))))) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos
))
(ensures (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\ (
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)
))))
= valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos | val valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\
(let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1)))))
let valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\
(let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))))) = | false | null | true | valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"lemma"
] | [
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.synth_case_t",
"LowParse.Spec.Base.parser",
"Prims.dtuple2",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Low.BitSum.valid_bitsum_intro",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BitSum.parse_bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Low.Base.Spec.contents",
"LowParse.Spec.BitSum.parse_bitsum_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.BitSum.parse_bitsum_kind",
"LowParse.Spec.BitSum.parse_bitsum",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
(mk_validate_bitsum_cases_t':
(* universe-polymorphic mutually recursive functions must be "split off"
cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544
*)
(b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) ->
Tot (validate_bitsum_cases_t u#r b)
)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_validate_bitsum_cases_t' (payload k))
(mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
[@filter_bitsum'_t_attr]
noextract
let rec mk_validate_bitsum_cases_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (validate_bitsum_cases_t u#r b)
(decreases b)
= match b with
| BitStop _ -> validate_bitsum_cases_bitstop cl
| BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest)
| BitSum' key key_size e payload ->
validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size)))
#push-options "--z3rlimit 64"
#restart-solver
inline_for_extraction
let validate_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))
(vs: validate_bitsum_cases_t b)
: Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= fun #rrel #rel sl pos ->
let h = HST.get () in
[@inline_let]
let _ =
valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos);
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos)
in
let pos1 = validate_bitsum' b v r phi sl pos in
if is_error pos1
then pos1
else
[@inline_let] let _ =
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos));
valid_facts p h sl (uint64_to_uint32 pos)
in
let x = r sl (uint64_to_uint32 pos) in
[@inline_let]
let _ =
let y = synth_bitsum' b x in
let tg = bitsum'_key_of_t b y in
parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1));
valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1)
in
vs (type_of_tag) f vf x sl pos1
#pop-options
let valid_bitsum_intro
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)
)))
(ensures (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)
))
= valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos;
parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos);
valid_facts (parse_bitsum' b p) h sl pos;
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid_facts (dsnd (f k)) h sl pos1
#pop-options
let valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(h: HS.mem)
(#rrel: _)
(#rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos
))
(ensures (
valid (parse_bitsum' b p) h sl pos /\ (
let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\ (
let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_bitsum_elim'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos))
(ensures
(valid (parse_bitsum' b p) h sl pos /\
(let tg = contents (parse_bitsum' b p) h sl pos in
let k = bitsum'_key_of_t b tg in
let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in
valid (dsnd (f k)) h sl pos1 /\
(let y = contents (dsnd (f k)) h sl pos1 in
valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f)
h
sl
pos
(synth_case.f tg y)
(get_valid_pos (dsnd (f k)) h sl pos1))))) | [] | LowParse.Low.BitSum.valid_bitsum_elim' | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag ->
p: LowParse.Spec.Base.parser kt t ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos)
(ensures
LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos /\
(let tg =
LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos
in
let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in
let pos1 =
LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos
in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k)) h sl pos1 /\
(let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.BitSum.parse_bitsum b
tag_of_data
type_of_tag
synth_case
p
f)
h
sl
pos
(SynthCase?.f synth_case tg y)
(LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1)))) | {
"end_col": 70,
"end_line": 390,
"start_col": 2,
"start_line": 383
} |
Prims.Tot | val validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2:
list (key & bitfield cl key_size)
{ e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 })
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail:
validate_bitsum_cases_bitsum'_t u#r
cl
bitsum'_size
key
key_size
e
payload
(l1 `L.append` [(k, r)])
l2)
: Tot
(validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun u f v x xr #rrel #rel sl pos ->
// [@inline_let]
let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x sl pos
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos | val validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2:
list (key & bitfield cl key_size)
{ e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 })
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail:
validate_bitsum_cases_bitsum'_t u#r
cl
bitsum'_size
key
key_size
e
payload
(l1 `L.append` [(k, r)])
l2)
: Tot
(validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2:
list (key & bitfield cl key_size)
{ e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 })
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail:
validate_bitsum_cases_bitsum'_t u#r
cl
bitsum'_size
key
key_size
e
payload
(l1 `L.append` [(k, r)])
l2)
: Tot
(validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = | false | null | false | fun u f v x xr #rrel #rel sl pos ->
let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in
[@@ inline_let ]let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@@ inline_let ]let cond = (xr <: t) = yr in
[@@ inline_let ]let _ =
assert (cond == true <==>
(cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload (fun x ->
u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))
)
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))
)
x
sl
pos
else
[@@ inline_let ]let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1)
(L.map snd [(k, r)])
(cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail u f v (x <: t) xr sl pos | {
"checked_file": "LowParse.Low.BitSum.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BitSum.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.BitSum.fst"
} | [
"total"
] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.eq2",
"FStar.List.Tot.Base.append",
"Prims.Cons",
"FStar.Pervasives.Native.Mktuple2",
"LowParse.Spec.Enum.list_mem",
"LowParse.Spec.Enum.list_map",
"FStar.Pervasives.Native.fst",
"LowParse.Spec.Enum.enum_repr_of_key",
"Prims.Nil",
"LowParse.Low.BitSum.validate_bitsum_cases_t",
"LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Low.Base.validator",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.l_not",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"FStar.Pervasives.Native.snd",
"LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'",
"Prims.Mkdtuple2",
"Prims.bool",
"Prims.unit",
"FStar.List.Tot.Properties.append_mem",
"FStar.List.Tot.Base.map",
"FStar.List.Tot.Properties.map_append",
"FStar.List.Tot.Properties.append_assoc",
"Prims._assert",
"Prims.l_iff",
"Prims.op_Equality",
"LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_rhs",
"LowParse.Spec.Enum.enum_repr_of_key_append_cons"
] | [] | module LowParse.Low.BitSum
include LowParse.Low.Combinators
include LowParse.Spec.BitSum
module U32 = FStar.UInt32
module HS = FStar.HyperStack
#push-options "--z3rlimit 16"
inline_for_extraction
let validate_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(v: validator p)
(r: leaf_reader p)
(phi: filter_bitsum'_t b)
: Tot (validator (parse_bitsum' b p))
= synth_bitsum'_injective b;
validate_synth
(validate_filter
v
r
(filter_bitsum' b)
(fun x -> phi x))
(synth_bitsum' b)
()
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let validate_bitsum_cases_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type b -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
inline_for_extraction
let validate_bitsum_cases_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
= fun u f v x #rrel #rel sl pos ->
v () sl pos
inline_for_extraction
let validate_bitsum_cases_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: validate_bitsum_cases_t u#r rest)
: Tot (validate_bitsum_cases_t u#r (BitField sz rest))
= fun u f v x #rrel #rel sl pos ->
phi
(fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x))
(fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x))
x
sl
pos
inline_for_extraction
let validate_bitsum_cases_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k))))
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x_ #rrel #rel sl pos ->
[@inline_let]
let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in
[@inline_let]
let k = key_of r in
destr_payload
k
(fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
(fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)))
x_ sl pos
module L = FStar.List.Tot
inline_for_extraction
noextract
let validate_bitsum_cases_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (Type u#(r+1))
= (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) ->
(f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) ->
(v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) ->
(x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
inline_for_extraction
let validate_bitsum_cases_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e)
: Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
= fun u f v x #rrel #rel sl pos ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi u f v x xr sl pos
inline_for_extraction
let validate_bitsum_cases_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
= (fun u f v x xr #rrel #rel sl pos ->
assert False;
validator_error_generic (* dummy *))
#push-options "--z3rlimit 32"
inline_for_extraction
let validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) | false | false | LowParse.Low.BitSum.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_bitsum_cases_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2:
list (key & bitfield cl key_size)
{ e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 })
(destr_payload: validate_bitsum_cases_t u#r (payload k))
(destr_tail:
validate_bitsum_cases_bitsum'_t u#r
cl
bitsum'_size
key
key_size
e
payload
(l1 `L.append` [(k, r)])
l2)
: Tot
(validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) | [] | LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_cons | {
"file_name": "src/lowparse/LowParse.Low.BitSum.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) ->
k: key ->
r: LowParse.BitFields.bitfield cl key_size ->
l2:
Prims.list (key * LowParse.BitFields.bitfield cl key_size)
{ e == l1 @ FStar.Pervasives.Native.Mktuple2 k r :: l2 /\
LowParse.Spec.Enum.list_mem k (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\
LowParse.Spec.Enum.enum_repr_of_key e k == r /\ e == (l1 @ [k, r]) @ l2 } ->
destr_payload: LowParse.Low.BitSum.validate_bitsum_cases_t (payload k) ->
destr_tail:
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl
bitsum'_size
key
key_size
e
payload
(l1 @ [k, r])
l2
-> LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl
bitsum'_size
key
key_size
e
payload
l1
(FStar.Pervasives.Native.Mktuple2 k r :: l2) | {
"end_col": 41,
"end_line": 204,
"start_col": 2,
"start_line": 181
} |
Prims.Tot | val equal (regs1:t) (regs2:t) : prop0 | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal regs1 regs2 = feq regs1 regs2 | val equal (regs1:t) (regs2:t) : prop0
let equal regs1 regs2 = | false | null | false | feq regs1 regs2 | {
"checked_file": "Vale.PPC64LE.Regs.fst.checked",
"dependencies": [
"Vale.PPC64LE.Machine_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.PPC64LE.Regs.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Regs.t",
"FStar.FunctionalExtensionality.feq",
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Machine_s.nat64",
"Vale.Def.Prop_s.prop0"
] | [] | module Vale.PPC64LE.Regs
open Vale.PPC64LE.Machine_s
open FStar.FunctionalExtensionality | false | true | Vale.PPC64LE.Regs.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal (regs1:t) (regs2:t) : prop0 | [] | Vale.PPC64LE.Regs.equal | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Regs.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | regs1: Vale.PPC64LE.Regs.t -> regs2: Vale.PPC64LE.Regs.t -> Vale.Def.Prop_s.prop0 | {
"end_col": 39,
"end_line": 5,
"start_col": 24,
"start_line": 5
} |
Prims.Tot | val linv_ctx (a: LSeq.lseq uint64 0) : Type0 | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True | val linv_ctx (a: LSeq.lseq uint64 0) : Type0
let linv_ctx (a: LSeq.lseq uint64 0) : Type0 = | false | null | false | True | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims.l_True"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val linv_ctx (a: LSeq.lseq uint64 0) : Type0 | [] | Hacl.Impl.K256.Qinv.linv_ctx | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.Sequence.lseq Lib.IntTypes.uint64 0 -> Type0 | {
"end_col": 50,
"end_line": 25,
"start_col": 46,
"start_line": 25
} |
FStar.HyperStack.ST.Stack | val qinv (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == S.qinv (qas_nat h0 f) /\
qe_lt_q h1 out) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv out f =
let h0 = ST.get () in
SI.qinv_is_qinv_lemma (qas_nat h0 f);
qinv_ out f | val qinv (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == S.qinv (qas_nat h0 f) /\
qe_lt_q h1 out)
let qinv out f = | true | null | false | let h0 = ST.get () in
SI.qinv_is_qinv_lemma (qas_nat h0 f);
qinv_ out f | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Hacl.Impl.K256.Qinv.qinv_",
"Prims.unit",
"Hacl.Spec.K256.Qinv.qinv_is_qinv_lemma",
"Hacl.K256.Scalar.qas_nat",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
// r16; ..;r23
inline_for_extraction noextract
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8; //tmp = r16
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r17
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011; //tmp = r18
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101; //tmp = r19
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11; //tmp = r20
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r21
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101; //tmp = r22
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001; //tmp = r23
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
//r24; r25
inline_for_extraction noextract
val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp)
let qinv7 tmp f x6 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp f; //tmp = r23
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f));
qsquare_times_in_place tmp 8ul;
qmul tmp tmp x6; //tmp = r24
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6))
inline_for_extraction noextract
val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv8 tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101 =
push_frame ();
let x6 = create_qelem () in
let x8 = create_qelem () in
let x14 = create_qelem () in
let h1 = ST.get () in
qinv2 x_11 x_1011 x_1101 x6 x8 x14; //x6; x8; x14
let h2 = ST.get () in
assert (modifies (loc x6 |+| loc x8 |+| loc x14) h1 h2);
qinv3 tmp x14; //x28; x56; r0; r1
let h3 = ST.get () in
assert (modifies (loc tmp) h2 h3);
qinv4 tmp x_101 x_111 x_1011; //r2; ..; r8
let h4 = ST.get () in
assert (modifies (loc tmp) h3 h4);
qinv5 tmp x_101 x_111 x_1001 x_1101; //r9; ..; r15
let h5 = ST.get () in
assert (modifies (loc tmp) h4 h5);
qinv6 tmp x8 x_11 x_1001 x_1011 x_1101; //r16; ..; r23
let h6 = ST.get () in
assert (modifies (loc tmp) h5 h6);
qinv7 tmp f x6; //r24; r25
let h7 = ST.get () in
assert (modifies (loc tmp) h6 h7);
pop_frame ()
inline_for_extraction noextract
val qinv_ (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == SI.qinv (qas_nat h0 f) /\
qe_lt_q h1 out)
#set-options "--z3rlimit 150"
let qinv_ out f =
push_frame ();
let x_10 = create_qelem () in
let x_11 = create_qelem () in
let x_101 = create_qelem () in
let x_111 = create_qelem () in
let x_1001 = create_qelem () in
let x_1011 = create_qelem () in
let x_1101 = create_qelem () in
qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101;
qinv8 out f x_11 x_101 x_111 x_1001 x_1011 x_1101;
pop_frame ()
val qinv (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == S.qinv (qas_nat h0 f) /\
qe_lt_q h1 out) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == S.qinv (qas_nat h0 f) /\
qe_lt_q h1 out) | [] | Hacl.Impl.K256.Qinv.qinv | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.K256.Scalar.qelem -> f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 505,
"start_col": 16,
"start_line": 502
} |
Prims.Tot | val mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
} | val mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul
let mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul = | false | null | false | { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod } | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Hacl.Impl.Exponentiation.Definitions.Mkconcrete_ops",
"Lib.IntTypes.U64",
"FStar.UInt32.uint_to_t",
"FStar.Ghost.hide",
"Hacl.Impl.Exponentiation.Definitions.to_comm_monoid",
"Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid",
"Hacl.Impl.K256.Qinv.one_mod",
"Hacl.Impl.K256.Qinv.mul_mod",
"Hacl.Impl.K256.Qinv.sqr_mod"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul | [] | Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.Definitions.concrete_ops Lib.IntTypes.U64
(FStar.UInt32.uint_to_t 4 <: FStar.UInt32.t)
(FStar.UInt32.uint_to_t 0 <: FStar.UInt32.t) | {
"end_col": 20,
"end_line": 65,
"start_col": 2,
"start_line": 62
} |
Prims.Tot | val mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
} | val mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul
let mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul = | false | null | false | {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl
} | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Hacl.Impl.Exponentiation.Definitions.Mkto_comm_monoid",
"Lib.IntTypes.U64",
"FStar.UInt32.uint_to_t",
"Spec.K256.PointOps.qelem",
"Hacl.Spec.K256.Qinv.nat_mod_comm_monoid",
"Hacl.Impl.K256.Qinv.linv_ctx",
"Hacl.Impl.K256.Qinv.linv",
"Hacl.Impl.K256.Qinv.refl"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul | [] | Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.Definitions.to_comm_monoid Lib.IntTypes.U64
(FStar.UInt32.uint_to_t 4 <: FStar.UInt32.t)
(FStar.UInt32.uint_to_t 0 <: FStar.UInt32.t) | {
"end_col": 17,
"end_line": 41,
"start_col": 2,
"start_line": 37
} |
FStar.HyperStack.ST.Stack | val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b | val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
let qsquare_times_in_place out b = | true | null | false | let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Lib.IntTypes.size_t",
"Hacl.Impl.Exponentiation.lexp_pow2_in_place",
"Lib.IntTypes.U64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Prims.unit",
"Spec.Exponentiation.exp_pow2_lemma",
"Spec.K256.PointOps.qelem",
"Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops",
"Hacl.K256.Scalar.qas_nat",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) | [] | Hacl.Impl.K256.Qinv.qsquare_times_in_place | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.K256.Scalar.qelem -> b: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 79,
"end_line": 79,
"start_col": 34,
"start_line": 76
} |
FStar.HyperStack.ST.Stack | val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv7 tmp f x6 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp f; //tmp = r23
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f));
qsquare_times_in_place tmp 8ul;
qmul tmp tmp x6; //tmp = r24
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6)) | val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp)
let qinv7 tmp f x6 = | true | null | false | let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp f;
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f));
qsquare_times_in_place tmp 8ul;
qmul tmp tmp x6;
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times_in_place",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
// r16; ..;r23
inline_for_extraction noextract
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8; //tmp = r16
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r17
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011; //tmp = r18
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101; //tmp = r19
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11; //tmp = r20
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r21
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101; //tmp = r22
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001; //tmp = r23
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
//r24; r25
inline_for_extraction noextract
val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv7 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | tmp: Hacl.K256.Scalar.qelem -> f: Hacl.K256.Scalar.qelem -> x6: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 89,
"end_line": 413,
"start_col": 20,
"start_line": 403
} |
Prims.Tot | val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_mod ctx x y xy = qmul xy x y | val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = | false | null | false | qmul xy x y | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.__uint_to_t",
"Hacl.K256.Scalar.qmul",
"Prims.unit"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [] | Hacl.Impl.K256.Qinv.mul_mod | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.Definitions.lmul_st Lib.IntTypes.U64
4ul
0ul
Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid | {
"end_col": 36,
"end_line": 52,
"start_col": 25,
"start_line": 52
} |
FStar.HyperStack.ST.Stack | val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out | val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
let qsquare_times out a b = | true | null | false | let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Lib.IntTypes.size_t",
"Hacl.Impl.Exponentiation.lexp_pow2",
"Lib.IntTypes.U64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Prims.unit",
"Spec.Exponentiation.exp_pow2_lemma",
"Spec.K256.PointOps.qelem",
"Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops",
"Hacl.K256.Scalar.qas_nat",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) | [] | Hacl.Impl.K256.Qinv.qsquare_times | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.K256.Scalar.qelem -> a: Hacl.K256.Scalar.qelem -> b: Lib.IntTypes.size_t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 72,
"end_line": 93,
"start_col": 27,
"start_line": 90
} |
Prims.Tot | val linv (a: LSeq.lseq uint64 4) : Type0 | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q | val linv (a: LSeq.lseq uint64 4) : Type0
let linv (a: LSeq.lseq uint64 4) : Type0 = | false | null | false | SD.bn_v #U64 #4 a < S.q | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.U64",
"Spec.K256.PointOps.q"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val linv (a: LSeq.lseq uint64 4) : Type0 | [] | Hacl.Impl.K256.Qinv.linv | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> Type0 | {
"end_col": 25,
"end_line": 29,
"start_col": 2,
"start_line": 29
} |
Prims.Tot | val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) | val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = | false | null | false | make_u64_4 one (u64 1, u64 0, u64 0, u64 0) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.__uint_to_t",
"Hacl.K256.Scalar.make_u64_4",
"FStar.Pervasives.Native.Mktuple4",
"Lib.IntTypes.uint64",
"Lib.IntTypes.u64",
"Prims.unit"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [] | Hacl.Impl.K256.Qinv.one_mod | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.Definitions.lone_st Lib.IntTypes.U64
4ul
0ul
Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid | {
"end_col": 65,
"end_line": 47,
"start_col": 22,
"start_line": 47
} |
Prims.Tot | val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sqr_mod ctx x xx = qsqr xx x | val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = | false | null | false | qsqr xx x | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"total"
] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.__uint_to_t",
"Hacl.K256.Scalar.qsqr",
"Prims.unit"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid | [] | Hacl.Impl.K256.Qinv.sqr_mod | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.Exponentiation.Definitions.lsqr_st Lib.IntTypes.U64
4ul
0ul
Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid | {
"end_col": 32,
"end_line": 57,
"start_col": 23,
"start_line": 57
} |
FStar.HyperStack.ST.Stack | val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) | val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = | true | null | false | let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) | [] | Hacl.Impl.K256.Qinv.qinv2 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x_11: Hacl.K256.Scalar.qelem ->
x_1011: Hacl.K256.Scalar.qelem ->
x_1101: Hacl.K256.Scalar.qelem ->
x6: Hacl.K256.Scalar.qelem ->
x8: Hacl.K256.Scalar.qelem ->
x14: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 88,
"end_line": 193,
"start_col": 40,
"start_line": 178
} |
Prims.GTot | val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a | val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem
let refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem = | false | null | false | SD.bn_v #U64 #4 a | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [
"sometrivial"
] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Hacl.Impl.K256.Qinv.linv",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.U64",
"Spec.K256.PointOps.qelem"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem | [] | Hacl.Impl.K256.Qinv.refl | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 {Hacl.Impl.K256.Qinv.linv a}
-> Prims.GTot Spec.K256.PointOps.qelem | {
"end_col": 19,
"end_line": 33,
"start_col": 2,
"start_line": 33
} |
FStar.HyperStack.ST.Stack | val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) | val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = | true | null | false | let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Hacl.Impl.K256.Qinv.qsquare_times",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) | [] | Hacl.Impl.K256.Qinv.qinv1 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Hacl.K256.Scalar.qelem ->
x_10: Hacl.K256.Scalar.qelem ->
x_11: Hacl.K256.Scalar.qelem ->
x_101: Hacl.K256.Scalar.qelem ->
x_111: Hacl.K256.Scalar.qelem ->
x_1001: Hacl.K256.Scalar.qelem ->
x_1011: Hacl.K256.Scalar.qelem ->
x_1101: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 76,
"end_line": 157,
"start_col": 56,
"start_line": 129
} |
FStar.HyperStack.ST.Stack | val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame () | val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 = | true | null | false | push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14;
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul;
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul;
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame () | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times_in_place",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.K256.Qinv.qsquare_times",
"Hacl.K256.Scalar.create_qelem",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv3 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | tmp: Hacl.K256.Scalar.qelem -> x14: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 229,
"start_col": 2,
"start_line": 206
} |
FStar.HyperStack.ST.Stack | val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) | val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 = | true | null | false | let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101;
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111;
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011;
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111;
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111;
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times_in_place",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv4 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
tmp: Hacl.K256.Scalar.qelem ->
x_101: Hacl.K256.Scalar.qelem ->
x_111: Hacl.K256.Scalar.qelem ->
x_1011: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 92,
"end_line": 279,
"start_col": 34,
"start_line": 244
} |
FStar.HyperStack.ST.Stack | val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111)) | val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 = | true | null | false | let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101;
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101;
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101;
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111;
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111;
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times_in_place",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv5 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
tmp: Hacl.K256.Scalar.qelem ->
x_101: Hacl.K256.Scalar.qelem ->
x_111: Hacl.K256.Scalar.qelem ->
x_1001: Hacl.K256.Scalar.qelem ->
x_1101: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 92,
"end_line": 331,
"start_col": 41,
"start_line": 296
} |
FStar.HyperStack.ST.Stack | val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8; //tmp = r16
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r17
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011; //tmp = r18
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101; //tmp = r19
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11; //tmp = r20
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r21
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101; //tmp = r22
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001; //tmp = r23
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001)) | val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 = | true | null | false | let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8;
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001;
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11;
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101;
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101;
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001;
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001)) | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Scalar.qmul",
"Hacl.Impl.K256.Qinv.qsquare_times_in_place",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
// r16; ..;r23
inline_for_extraction noextract
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv6 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
tmp: Hacl.K256.Scalar.qelem ->
x8: Hacl.K256.Scalar.qelem ->
x_11: Hacl.K256.Scalar.qelem ->
x_1001: Hacl.K256.Scalar.qelem ->
x_1011: Hacl.K256.Scalar.qelem ->
x_1101: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 93,
"end_line": 389,
"start_col": 44,
"start_line": 349
} |
FStar.HyperStack.ST.Stack | val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv8 tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101 =
push_frame ();
let x6 = create_qelem () in
let x8 = create_qelem () in
let x14 = create_qelem () in
let h1 = ST.get () in
qinv2 x_11 x_1011 x_1101 x6 x8 x14; //x6; x8; x14
let h2 = ST.get () in
assert (modifies (loc x6 |+| loc x8 |+| loc x14) h1 h2);
qinv3 tmp x14; //x28; x56; r0; r1
let h3 = ST.get () in
assert (modifies (loc tmp) h2 h3);
qinv4 tmp x_101 x_111 x_1011; //r2; ..; r8
let h4 = ST.get () in
assert (modifies (loc tmp) h3 h4);
qinv5 tmp x_101 x_111 x_1001 x_1101; //r9; ..; r15
let h5 = ST.get () in
assert (modifies (loc tmp) h4 h5);
qinv6 tmp x8 x_11 x_1001 x_1011 x_1101; //r16; ..; r23
let h6 = ST.get () in
assert (modifies (loc tmp) h5 h6);
qinv7 tmp f x6; //r24; r25
let h7 = ST.get () in
assert (modifies (loc tmp) h6 h7);
pop_frame () | val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv8 tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101 = | true | null | false | push_frame ();
let x6 = create_qelem () in
let x8 = create_qelem () in
let x14 = create_qelem () in
let h1 = ST.get () in
qinv2 x_11 x_1011 x_1101 x6 x8 x14;
let h2 = ST.get () in
assert (modifies (loc x6 |+| loc x8 |+| loc x14) h1 h2);
qinv3 tmp x14;
let h3 = ST.get () in
assert (modifies (loc tmp) h2 h3);
qinv4 tmp x_101 x_111 x_1011;
let h4 = ST.get () in
assert (modifies (loc tmp) h3 h4);
qinv5 tmp x_101 x_111 x_1001 x_1101;
let h5 = ST.get () in
assert (modifies (loc tmp) h4 h5);
qinv6 tmp x8 x_11 x_1001 x_1011 x_1101;
let h6 = ST.get () in
assert (modifies (loc tmp) h5 h6);
qinv7 tmp f x6;
let h7 = ST.get () in
assert (modifies (loc tmp) h6 h7);
pop_frame () | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Prims._assert",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.K256.Qinv.qinv7",
"Hacl.Impl.K256.Qinv.qinv6",
"Hacl.Impl.K256.Qinv.qinv5",
"Hacl.Impl.K256.Qinv.qinv4",
"Hacl.Impl.K256.Qinv.qinv3",
"Lib.Buffer.op_Bar_Plus_Bar",
"Hacl.Impl.K256.Qinv.qinv2",
"Hacl.K256.Scalar.create_qelem",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
// r16; ..;r23
inline_for_extraction noextract
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8; //tmp = r16
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r17
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011; //tmp = r18
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101; //tmp = r19
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11; //tmp = r20
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r21
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101; //tmp = r22
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001; //tmp = r23
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
//r24; r25
inline_for_extraction noextract
val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp)
let qinv7 tmp f x6 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp f; //tmp = r23
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f));
qsquare_times_in_place tmp 8ul;
qmul tmp tmp x6; //tmp = r24
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6))
inline_for_extraction noextract
val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp) | [] | Hacl.Impl.K256.Qinv.qinv8 | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
tmp: Hacl.K256.Scalar.qelem ->
f: Hacl.K256.Scalar.qelem ->
x_11: Hacl.K256.Scalar.qelem ->
x_101: Hacl.K256.Scalar.qelem ->
x_111: Hacl.K256.Scalar.qelem ->
x_1001: Hacl.K256.Scalar.qelem ->
x_1011: Hacl.K256.Scalar.qelem ->
x_1101: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 464,
"start_col": 2,
"start_line": 435
} |
FStar.HyperStack.ST.Stack | val qinv_ (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == SI.qinv (qas_nat h0 f) /\
qe_lt_q h1 out) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Qinv",
"short_module": "SI"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.K256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_ out f =
push_frame ();
let x_10 = create_qelem () in
let x_11 = create_qelem () in
let x_101 = create_qelem () in
let x_111 = create_qelem () in
let x_1001 = create_qelem () in
let x_1011 = create_qelem () in
let x_1101 = create_qelem () in
qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101;
qinv8 out f x_11 x_101 x_111 x_1001 x_1011 x_1101;
pop_frame () | val qinv_ (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == SI.qinv (qas_nat h0 f) /\
qe_lt_q h1 out)
let qinv_ out f = | true | null | false | push_frame ();
let x_10 = create_qelem () in
let x_11 = create_qelem () in
let x_101 = create_qelem () in
let x_111 = create_qelem () in
let x_1001 = create_qelem () in
let x_1011 = create_qelem () in
let x_1101 = create_qelem () in
qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101;
qinv8 out f x_11 x_101 x_111 x_1001 x_1011 x_1101;
pop_frame () | {
"checked_file": "Hacl.Impl.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Qinv.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Qinv.fst"
} | [] | [
"Hacl.K256.Scalar.qelem",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.K256.Qinv.qinv8",
"Hacl.Impl.K256.Qinv.qinv1",
"Hacl.K256.Scalar.create_qelem",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.K256.Qinv
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.K256.Scalar
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module S = Spec.K256
module SI = Hacl.Spec.K256.Qinv
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module SD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
unfold
let linv (a:LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
unfold
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
inline_for_extraction noextract
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = {
BE.a_spec = S.qelem;
BE.comm_monoid = SI.nat_mod_comm_monoid;
BE.linv_ctx = linv_ctx;
BE.linv = linv;
BE.refl = refl;
}
inline_for_extraction noextract
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
inline_for_extraction noextract
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
inline_for_extraction noextract
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
inline_for_extraction noextract
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = {
BE.to = mk_to_k256_scalar_comm_monoid;
BE.lone = one_mod;
BE.lmul = mul_mod;
BE.lsqr = sqr_mod;
}
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ qe_lt_q h out)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
[@CInline]
let qsquare_times_in_place out b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b);
BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
val qsquare_times (out a:qelem) (b:size_t) : Stack unit
(requires fun h ->
live h out /\ live h a /\ disjoint out a /\
qe_lt_q h a)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\
qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
[@CInline]
let qsquare_times out a b =
let h0 = ST.get () in
SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b);
BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
inline_for_extraction noextract
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit
(requires fun h ->
live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\
live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\
disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\
disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\
disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\
disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\
disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\
disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\
disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\
disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\
disjoint x_1011 x_1101 /\ qe_lt_q h f)
(ensures fun h0 _ h1 ->
modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+|
loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\
(let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in
let _x_11 = S.qmul _x_10 (qas_nat h0 f) in
let _x_101 = S.qmul _x_10 _x_11 in
let _x_111 = S.qmul _x_10 _x_101 in
let _x_1001 = S.qmul _x_10 _x_111 in
let _x_1011 = S.qmul _x_10 _x_1001 in
let _x_1101 = S.qmul _x_10 _x_1011 in
qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\
qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\
qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\
qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\
qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\
qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\
qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times x_10 f 1ul;
let h1 = ST.get () in
assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1);
qmul x_11 x_10 f;
let h2 = ST.get () in
assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f));
qmul x_101 x_10 x_11;
let h3 = ST.get () in
assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11));
qmul x_111 x_10 x_101;
let h4 = ST.get () in
assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101));
qmul x_1001 x_10 x_111;
let h5 = ST.get () in
assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111));
qmul x_1011 x_10 x_1001;
let h6 = ST.get () in
assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001));
qmul x_1101 x_10 x_1011;
let h7 = ST.get () in
assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
inline_for_extraction noextract
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit
(requires fun h ->
live h x_11 /\ live h x_1011 /\ live h x_1101 /\
live h x6 /\ live h x8 /\ live h x14 /\
disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\
disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\
disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\
disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\
qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\
(let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in
let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in
let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in
qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\
qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\
qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in
qsquare_times x6 x_1101 2ul;
qmul x6 x6 x_1011;
let h1 = ST.get () in
assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011));
qsquare_times x8 x6 2ul;
qmul x8 x8 x_11;
let h2 = ST.get () in
assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11));
qsquare_times x14 x8 6ul;
qmul x14 x14 x6;
let h3 = ST.get () in
assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
inline_for_extraction noextract
val qinv3 (tmp x14: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x14 /\ disjoint tmp x14 /\
qe_lt_q h x14)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\
qe_lt_q h1 tmp)
let qinv3 tmp x14 =
push_frame ();
let x56 = create_qelem () in
let h0 = ST.get () in
qsquare_times tmp x14 14ul;
qmul tmp tmp x14; //tmp = x28
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14));
qsquare_times x56 tmp 28ul;
qmul x56 x56 tmp;
let h2 = ST.get () in
assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp));
qsquare_times tmp x56 56ul; //tmp = r0
qmul tmp tmp x56;
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56));
qsquare_times_in_place tmp 14ul; //tmp = r1
qmul tmp tmp x14;
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14));
pop_frame ()
//r2; .. ;r8
inline_for_extraction noextract
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\
disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\
qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_101; //tmp = r2
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r3
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r4
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1011; //tmp = r5
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1011; //tmp = r6
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r7
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_111; //tmp = r8
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
// r9; ..; r15
inline_for_extraction noextract
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x_101 /\ live h x_111 /\
live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp)
(qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r9
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_101; //tmp = r10
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101));
qsquare_times_in_place tmp 3ul;
qmul tmp tmp x_111; //tmp = r11
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r12
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_101; //tmp = r13
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_111; //tmp = r14
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_111; //tmp = r15
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
// r16; ..;r23
inline_for_extraction noextract
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h x8 /\ live h x_11 /\
live h x_1001 /\ live h x_1011 /\ live h x_1101 /\
disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\
disjoint tmp x_1011 /\ disjoint tmp x_1101 /\
qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\
qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp)
(qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in
qsquare_times_in_place tmp 9ul;
qmul tmp tmp x8; //tmp = r16
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_1001; //tmp = r17
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1011; //tmp = r18
let h3 = ST.get () in
assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1101; //tmp = r19
let h4 = ST.get () in
assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 5ul;
qmul tmp tmp x_11; //tmp = r20
let h5 = ST.get () in
assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11));
qsquare_times_in_place tmp 6ul;
qmul tmp tmp x_1101; //tmp = r21
let h6 = ST.get () in
assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 10ul;
qmul tmp tmp x_1101; //tmp = r22
let h7 = ST.get () in
assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101));
qsquare_times_in_place tmp 4ul;
qmul tmp tmp x_1001; //tmp = r23
let h8 = ST.get () in
assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
//r24; r25
inline_for_extraction noextract
val qinv7 (tmp f x6: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x6 /\
disjoint tmp f /\ disjoint tmp x6 /\
qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\
qe_lt_q h1 tmp)
let qinv7 tmp f x6 =
let h0 = ST.get () in
qsquare_times_in_place tmp 6ul;
qmul tmp tmp f; //tmp = r23
let h1 = ST.get () in
assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f));
qsquare_times_in_place tmp 8ul;
qmul tmp tmp x6; //tmp = r24
let h2 = ST.get () in
assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6))
inline_for_extraction noextract
val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit
(requires fun h ->
live h tmp /\ live h f /\ live h x_11 /\
live h x_101 /\ live h x_111 /\ live h x_1001 /\
live h x_1011 /\ live h x_1101 /\
disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\
disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\
disjoint tmp x_1101 /\
qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\
qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\
qe_lt_q h x_1101)
(ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\
qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f)
(qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111)
(qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\
qe_lt_q h1 tmp)
let qinv8 tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101 =
push_frame ();
let x6 = create_qelem () in
let x8 = create_qelem () in
let x14 = create_qelem () in
let h1 = ST.get () in
qinv2 x_11 x_1011 x_1101 x6 x8 x14; //x6; x8; x14
let h2 = ST.get () in
assert (modifies (loc x6 |+| loc x8 |+| loc x14) h1 h2);
qinv3 tmp x14; //x28; x56; r0; r1
let h3 = ST.get () in
assert (modifies (loc tmp) h2 h3);
qinv4 tmp x_101 x_111 x_1011; //r2; ..; r8
let h4 = ST.get () in
assert (modifies (loc tmp) h3 h4);
qinv5 tmp x_101 x_111 x_1001 x_1101; //r9; ..; r15
let h5 = ST.get () in
assert (modifies (loc tmp) h4 h5);
qinv6 tmp x8 x_11 x_1001 x_1011 x_1101; //r16; ..; r23
let h6 = ST.get () in
assert (modifies (loc tmp) h5 h6);
qinv7 tmp f x6; //r24; r25
let h7 = ST.get () in
assert (modifies (loc tmp) h6 h7);
pop_frame ()
inline_for_extraction noextract
val qinv_ (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == SI.qinv (qas_nat h0 f) /\
qe_lt_q h1 out)
#set-options "--z3rlimit 150" | false | false | Hacl.Impl.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_ (out f: qelem) : Stack unit
(requires fun h ->
live h out /\ live h f /\ disjoint out f /\
qe_lt_q h f)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
qas_nat h1 out == SI.qinv (qas_nat h0 f) /\
qe_lt_q h1 out) | [] | Hacl.Impl.K256.Qinv.qinv_ | {
"file_name": "code/k256/Hacl.Impl.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | out: Hacl.K256.Scalar.qelem -> f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 490,
"start_col": 2,
"start_line": 479
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} | let bn_get_top_index_t (len: size_nat) (i: nat{i <= len}) = | false | null | false | x: nat{x < len} | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
() | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_top_index_t : len: Lib.IntTypes.size_nat -> i: Prims.nat{i <= len} -> Type0 | [] | Hacl.Spec.Bignum.Lib.bn_get_top_index_t | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Lib.IntTypes.size_nat -> i: Prims.nat{i <= len} -> Type0 | {
"end_col": 72,
"end_line": 312,
"start_col": 58,
"start_line": 312
} |
|
Prims.Tot | val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2) | val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 = | false | null | false | let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.LoopCombinators.repeati",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Lib.cswap2_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.uint"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len) | [] | Hacl.Spec.Bignum.Lib.cswap2 | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bit: Hacl.Spec.Bignum.Definitions.limb t ->
b1: Hacl.Spec.Bignum.Definitions.lbignum t len ->
b2: Hacl.Spec.Bignum.Definitions.lbignum t len
-> Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len | {
"end_col": 52,
"end_line": 278,
"start_col": 30,
"start_line": 276
} |
Prims.Tot | val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 | val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = | false | null | false | (a >>. size i) &. uint #t 1 | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.size",
"Lib.IntTypes.uint"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
/// | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t | [] | Hacl.Spec.Bignum.Lib.limb_get_ith_bit | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i < Lib.IntTypes.bits t}
-> Hacl.Spec.Bignum.Definitions.limb t | {
"end_col": 57,
"end_line": 22,
"start_col": 30,
"start_line": 22
} |
Prims.Tot | val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 | val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b = | false | null | false | Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.LoopCombinators.repeat_gen",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_t",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_f",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} | [] | Hacl.Spec.Bignum.Lib.bn_get_top_index | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len -> res: Lib.IntTypes.size_nat{res < len} | {
"end_col": 80,
"end_line": 328,
"start_col": 2,
"start_line": 328
} |
Prims.Tot | val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_pow2 #t #aLen a i = sub a 0 i | val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = | false | null | false | sub a 0 i | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.sub",
"Hacl.Spec.Bignum.Definitions.limb"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i | [] | Hacl.Spec.Bignum.Lib.bn_mod_pow2 | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen}
-> Hacl.Spec.Bignum.Definitions.lbignum t i | {
"end_col": 40,
"end_line": 205,
"start_col": 31,
"start_line": 205
} |
Prims.Tot | val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_div_pow2 #t #len b i =
slice b i len | val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i = | false | null | false | slice b i len | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.slice",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Subtraction"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) | [] | Hacl.Spec.Bignum.Lib.bn_div_pow2 | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i <= len}
-> Hacl.Spec.Bignum.Definitions.lbignum t (len - i) | {
"end_col": 15,
"end_line": 185,
"start_col": 2,
"start_line": 185
} |
FStar.Pervasives.Lemma | val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c) | val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d = | false | null | true | Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.small_division_lemma_1",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"Prims.op_Division",
"FStar.Math.Lemmas.lemma_div_plus",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.lemma_div_lt_nat"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d) | [] | Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma_aux | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat
-> FStar.Pervasives.Lemma (requires a + b * Prims.pow2 c < Prims.pow2 (c + d) /\ a < Prims.pow2 c)
(ensures b < Prims.pow2 d) | {
"end_col": 47,
"end_line": 106,
"start_col": 2,
"start_line": 102
} |
Prims.Tot | val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2) | val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) = | false | null | false | let dummy = mask &. (p1.[ i ] ^. p2.[ i ]) in
let p1 = p1.[ i ] <- p1.[ i ] ^. dummy in
let p2 = p2.[ i ] <- p2.[ i ] ^. dummy in
(p1, p2) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Definitions.lbignum",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logxor",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Hat_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len) | [] | Hacl.Spec.Bignum.Lib.cswap2_f | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mask: Hacl.Spec.Bignum.Definitions.limb t ->
i: Prims.nat{i < len} ->
_: (Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len)
-> Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len | {
"end_col": 10,
"end_line": 265,
"start_col": 38,
"start_line": 261
} |
Prims.Tot | val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv | val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv = | false | null | false | let mask = eq_mask b.[ i ] (zeros t SEC) in
if v mask = 0 then i else priv | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_t",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.bool",
"Prims.op_Addition",
"Lib.IntTypes.int_t",
"Lib.IntTypes.eq_mask",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.zeros"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1) | [] | Hacl.Spec.Bignum.Lib.bn_get_top_index_f | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
i: Prims.nat{i < len} ->
priv: Hacl.Spec.Bignum.Lib.bn_get_top_index_t len i
-> Hacl.Spec.Bignum.Lib.bn_get_top_index_t len (i + 1) | {
"end_col": 32,
"end_line": 324,
"start_col": 41,
"start_line": 322
} |
FStar.Pervasives.Lemma | val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2) | val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i = | false | null | true | let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.bits",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"Prims.unit",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.uint",
"Lib.IntTypes.mod_mask_lemma",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.size"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) | [] | Hacl.Spec.Bignum.Lib.limb_get_ith_bit_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i < Lib.IntTypes.bits t}
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.limb_get_ith_bit a i) ==
Lib.IntTypes.v a / Prims.pow2 i % 2) | {
"end_col": 37,
"end_line": 32,
"start_col": 35,
"start_line": 27
} |
Prims.Tot | val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b | val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b = | false | null | false | bits t * bn_get_top_index b | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Lib.bn_get_top_index",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"Prims.op_Division"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len} | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len} | [] | Hacl.Spec.Bignum.Lib.bn_low_bound_bits | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len
-> res: Lib.IntTypes.size_nat{res / Lib.IntTypes.bits t < len} | {
"end_col": 29,
"end_line": 379,
"start_col": 2,
"start_line": 379
} |
Prims.Tot | val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j | val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind = | false | null | false | let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[ i ] j | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Lib.limb_get_ith_bit",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.int",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t | [] | Hacl.Spec.Bignum.Lib.bn_get_ith_bit | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len}
-> Hacl.Spec.Bignum.Definitions.limb t | {
"end_col": 30,
"end_line": 38,
"start_col": 38,
"start_line": 35
} |
FStar.Pervasives.Lemma | val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1 | val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 = | false | null | true | let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1 | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.IntTypes.logxor_lemma",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Hat_Dot",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.range_t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.IntTypes.uint",
"Prims.l_imp",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.op_Amp_Dot",
"Prims.op_Subtraction",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.IntTypes.op_Subtraction_Dot"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) | [] | Hacl.Spec.Bignum.Lib.lemma_cswap2_step | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bit: Hacl.Spec.Bignum.Definitions.limb t {Lib.IntTypes.v bit <= 1} ->
p1: Hacl.Spec.Bignum.Definitions.limb t ->
p2: Hacl.Spec.Bignum.Definitions.limb t
-> FStar.Pervasives.Lemma
(ensures
(let mask = Lib.IntTypes.uint 0 -. bit in
let dummy = mask &. p1 ^. p2 in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
(match Lib.IntTypes.v bit = 1 with
| true -> p1' == p2 /\ p2' == p1
| _ -> p1' == p1 /\ p2' == p2)
<:
Type0)) | {
"end_col": 20,
"end_line": 250,
"start_col": 36,
"start_line": 238
} |
Prims.Tot | val bn_get_bits:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
limb t | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_bits #t #nLen n ind l =
let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in
bn_get_bits_limb n ind &. mask_l | val bn_get_bits:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
limb t
let bn_get_bits #t #nLen n ind l = | false | null | false | let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in
bn_get_bits_limb n ind &. mask_l | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.bits",
"Prims.op_Division",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Lib.bn_get_bits_limb",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.uint",
"Lib.IntTypes.size",
"Hacl.Spec.Bignum.Definitions.limb"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t
let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[i] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in
p2
val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
let bn_get_bits_limb_aux_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
calc (==) {
bn_v n / pow2 ind % pow2 pbits;
(==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) }
res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j);
(==) { bn_get_ith_bit_aux_lemma n ind }
res / pow2 (pbits - j) * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) }
bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_plus ind (pbits - j) }
bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.euclidean_division_definition ind pbits }
bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) }
bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.distributivity_add_left i 1 pbits }
bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) }
bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1;
}
val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
let bn_get_bits_limb_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
bn_get_ith_bit_aux_lemma n ind;
assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j));
if j = 0 then () else begin
bn_get_bits_limb_aux_lemma n ind;
if i + 1 < nLen then begin
let p2 = n.[i + 1] <<. (size (pbits - j)) in
calc (==) {
v p2 % pow2 (pbits - j);
(==) { }
v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits }
v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j);
(==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) }
0;
};
let p3 = p1 |. p2 in
logor_disjoint p1 p2 (pbits - j);
assert (v p3 == v p1 + v p2);
bn_eval_index n (i + 1);
assert (res == v p1 + v p2);
assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end
else begin
bn_eval_bound n nLen;
assert (bn_v n < pow2 (nLen * pbits));
Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits);
Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits);
assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0);
assert_norm (pow2 0 = 1);
assert (res == v p1)
end
end
val bn_get_bits:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
limb t | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_bits:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
limb t | [] | Hacl.Spec.Bignum.Lib.bn_get_bits | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen ->
i: Lib.IntTypes.size_nat ->
l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen}
-> Hacl.Spec.Bignum.Definitions.limb t | {
"end_col": 34,
"end_line": 512,
"start_col": 34,
"start_line": 510
} |
Prims.Tot | val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[i] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in
p2 | val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t
let bn_get_bits_limb #t #nLen n ind = | false | null | false | let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[ i ] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[ i + 1 ] <<. (size (bits t - j))) else p1 in
p2 | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_AmpAmp",
"Prims.op_Addition",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.size",
"Prims.op_Subtraction",
"Prims.bool",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Prims.int",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t | [] | Hacl.Spec.Bignum.Lib.bn_get_bits_limb | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen ->
ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen}
-> Hacl.Spec.Bignum.Definitions.limb t | {
"end_col": 4,
"end_line": 409,
"start_col": 37,
"start_line": 404
} |
Prims.Tot | val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp | val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind = | false | null | false | let i = ind / bits t in
let j = ind % bits t in
let inp = input.[ i ] <- input.[ i ] |. (uint #t 1 <<. size j) in
inp | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logor",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Lib.IntTypes.shift_left",
"Lib.IntTypes.mk_int",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.l_Forall",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.uint",
"Lib.IntTypes.size",
"Prims.int",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len | [] | Hacl.Spec.Bignum.Lib.bn_set_ith_bit | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len}
-> Hacl.Spec.Bignum.Definitions.lbignum t len | {
"end_col": 5,
"end_line": 94,
"start_col": 38,
"start_line": 90
} |
FStar.Pervasives.Lemma | val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) | val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b = | false | null | true | let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0
then assert_norm (pow2 0 = 1)
else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Equality",
"Prims.int",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.pow2",
"Prims.bool",
"FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1",
"Hacl.Spec.Bignum.Lib.bn_low_bound_bits",
"Prims.unit",
"Prims._assert",
"Prims.op_LessThanOrEqual",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_eval_lemma",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_lemma",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Lib.bn_get_top_index"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b) | [] | Hacl.Spec.Bignum.Lib.bn_low_bound_bits_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len
-> FStar.Pervasives.Lemma
(requires
1 < Hacl.Spec.Bignum.Definitions.bn_v b /\
Lib.IntTypes.bits t * len <= Lib.IntTypes.max_size_t /\
Hacl.Spec.Bignum.Definitions.bn_v b % 2 = 1)
(ensures
Prims.pow2 (Hacl.Spec.Bignum.Lib.bn_low_bound_bits b) < Hacl.Spec.Bignum.Definitions.bn_v b) | {
"end_col": 76,
"end_line": 394,
"start_col": 39,
"start_line": 386
} |
FStar.Pervasives.Lemma | val bn_get_bits_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_bits_lemma #t #nLen n ind l =
let tmp = bn_get_bits_limb n ind in
let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in
let tmp1 = tmp &. mask_l in
Math.Lemmas.pow2_lt_compat (bits t) l;
mod_mask_lemma tmp (size l);
assert (v (mod_mask #t #SEC (size l)) == v mask_l);
assert (v tmp1 == v tmp % pow2 l);
bn_get_bits_limb_lemma #t #nLen n ind;
assert (v tmp1 == bn_v n / pow2 ind % pow2 (bits t) % pow2 l);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) l (bits t);
assert (v tmp1 == bn_v n / pow2 ind % pow2 l) | val bn_get_bits_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l)
let bn_get_bits_lemma #t #nLen n ind l = | false | null | true | let tmp = bn_get_bits_limb n ind in
let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in
let tmp1 = tmp &. mask_l in
Math.Lemmas.pow2_lt_compat (bits t) l;
mod_mask_lemma tmp (size l);
assert (v (mod_mask #t #SEC (size l)) == v mask_l);
assert (v tmp1 == v tmp % pow2 l);
bn_get_bits_limb_lemma #t #nLen n ind;
assert (v tmp1 == bn_v n / pow2 ind % pow2 (bits t) % pow2 l);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) l (bits t);
assert (v tmp1 == bn_v n / pow2 ind % pow2 l) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.bits",
"Prims.op_Division",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"Hacl.Spec.Bignum.Lib.bn_get_bits_limb_lemma",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"Lib.IntTypes.size",
"Lib.IntTypes.mod_mask_lemma",
"FStar.Math.Lemmas.pow2_lt_compat",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.uint",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Lib.bn_get_bits_limb"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t
let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[i] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in
p2
val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
let bn_get_bits_limb_aux_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
calc (==) {
bn_v n / pow2 ind % pow2 pbits;
(==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) }
res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j);
(==) { bn_get_ith_bit_aux_lemma n ind }
res / pow2 (pbits - j) * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) }
bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_plus ind (pbits - j) }
bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.euclidean_division_definition ind pbits }
bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) }
bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.distributivity_add_left i 1 pbits }
bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) }
bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1;
}
val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
let bn_get_bits_limb_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
bn_get_ith_bit_aux_lemma n ind;
assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j));
if j = 0 then () else begin
bn_get_bits_limb_aux_lemma n ind;
if i + 1 < nLen then begin
let p2 = n.[i + 1] <<. (size (pbits - j)) in
calc (==) {
v p2 % pow2 (pbits - j);
(==) { }
v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits }
v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j);
(==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) }
0;
};
let p3 = p1 |. p2 in
logor_disjoint p1 p2 (pbits - j);
assert (v p3 == v p1 + v p2);
bn_eval_index n (i + 1);
assert (res == v p1 + v p2);
assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end
else begin
bn_eval_bound n nLen;
assert (bn_v n < pow2 (nLen * pbits));
Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits);
Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits);
assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0);
assert_norm (pow2 0 = 1);
assert (res == v p1)
end
end
val bn_get_bits:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
limb t
let bn_get_bits #t #nLen n ind l =
let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in
bn_get_bits_limb n ind &. mask_l
val bn_get_bits_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_bits_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> i:size_nat
-> l:size_nat{l < bits t /\ i / bits t < nLen} ->
Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l) | [] | Hacl.Spec.Bignum.Lib.bn_get_bits_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen ->
i: Lib.IntTypes.size_nat ->
l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen}
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_bits n i l) ==
Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 i % Prims.pow2 l) | {
"end_col": 47,
"end_line": 534,
"start_col": 40,
"start_line": 523
} |
FStar.Pervasives.Lemma | val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2) | val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[ i ] j in
limb_get_ith_bit_lemma b.[ i ] j;
calc ( == ) {
v b.[ i ] / pow2 j % 2;
( == ) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
( == ) { (assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j)) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"Prims.unit",
"FStar.Calc.calc_finish",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Hacl.Spec.Bignum.Lib.limb_get_ith_bit_lemma",
"Hacl.Spec.Bignum.Lib.limb_get_ith_bit"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) | [] | Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len}
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_ith_bit b i) ==
Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 i % 2) | {
"end_col": 41,
"end_line": 86,
"start_col": 40,
"start_line": 71
} |
FStar.Pervasives.Lemma | val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
} | val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i = | false | null | true | let pbits = bits t in
calc ( == ) {
bn_v a % pow2 (pbits * i);
( == ) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
( == ) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i))
(pow2 (pbits * i))
(bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
( == ) { (bn_eval_bound (slice a 0 i) i;
Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i))) }
bn_v (slice a 0 i);
} | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Prims.squash",
"FStar.Math.Lemmas.modulo_addition_lemma",
"FStar.Math.Lemmas.small_mod",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Lib.IntTypes.bits"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) | [] | Hacl.Spec.Bignum.Lib.bn_mod_pow2_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen}
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Lib.bn_mod_pow2 a i) ==
Hacl.Spec.Bignum.Definitions.bn_v a % Prims.pow2 (Lib.IntTypes.bits t * i)) | {
"end_col": 5,
"end_line": 219,
"start_col": 36,
"start_line": 209
} |
FStar.Pervasives.Lemma | val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) | val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind = | false | null | true | let pbits = bits t in
assert (forall (k: nat{ind < k /\ k < len}). v b.[ k ] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b ==
bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ ind ]) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Addition",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Hacl.Spec.Bignum.Definitions.limb",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval1",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Hacl.Spec.Bignum.Definitions.bn_eval_zeroes",
"Lib.Sequence.eq_intro",
"Lib.Sequence.create",
"Lib.IntTypes.uint",
"Prims.l_Forall",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Lib.IntTypes.bits"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) | [] | Hacl.Spec.Bignum.Lib.bn_get_top_index_eval_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len -> ind: Prims.nat
-> FStar.Pervasives.Lemma
(requires
ind < len /\ (ind > 0 ==> Lib.IntTypes.v b.[ ind ] <> 0) /\
(forall (k: Prims.nat{ind < k /\ k < len}). Lib.IntTypes.v b.[ k ] = 0))
(ensures
Hacl.Spec.Bignum.Definitions.bn_v b ==
Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b 0 ind) +
Prims.pow2 (Lib.IntTypes.bits t * ind) * Lib.IntTypes.v b.[ ind ]) | {
"end_col": 74,
"end_line": 369,
"start_col": 47,
"start_line": 358
} |
FStar.Pervasives.Lemma | val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
() | val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b = | false | null | true | Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat
len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[ priv ] <> 0) /\
(forall (k: nat{priv < k /\ k < i}). v b.[ k ] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[ i ] (zeros t SEC) in
eq_mask_lemma b.[ i ] (zeros t SEC);
assert (if v mask = 0 then v b.[ i ] <> 0 else v b.[ i ] = 0);
let res = if v mask = 0 then i else priv in
res)
0
in
() | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_and",
"Prims.eq2",
"Prims.l_or",
"Prims.op_LessThan",
"Lib.LoopCombinators.repeat_gen",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_t",
"Hacl.Spec.Bignum.Lib.bn_get_top_index_f",
"Prims.l_imp",
"Prims.op_GreaterThan",
"Prims.op_disEquality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.Sequence.index",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_Forall",
"Prims.op_Equality",
"Lib.LoopCombinators.repeati_inductive",
"Lib.IntTypes.size_nat",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.op_String_Access",
"Prims.op_Addition",
"Prims.bool",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.eq_mask_lemma",
"Lib.IntTypes.zeros",
"Lib.IntTypes.int_t",
"Lib.IntTypes.eq_mask",
"Lib.LoopCombinators.unfold_repeat_gen",
"Lib.LoopCombinators.eq_repeat_gen0"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) | [] | Hacl.Spec.Bignum.Lib.bn_get_top_index_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len
-> FStar.Pervasives.Lemma
(ensures
(let ind = Hacl.Spec.Bignum.Lib.bn_get_top_index b in
ind < len /\ (ind > 0 ==> Lib.IntTypes.v b.[ ind ] <> 0) /\
(forall (k: Prims.nat{ind < k /\ k < len}). Lib.IntTypes.v b.[ k ] = 0))) | {
"end_col": 4,
"end_line": 349,
"start_col": 2,
"start_line": 336
} |
FStar.Pervasives.Lemma | val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j) | val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[ i ]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[ i ]) (i * pbits) j;
assert (v b.[ i ] < pow2 j) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.pow2",
"Prims.unit",
"Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma_aux",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.bn_eval1",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Prims.nat",
"FStar.Math.Lemmas.pow2_lt_compat",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0)) | [] | Hacl.Spec.Bignum.Lib.bn_lt_pow2_index_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < len}
-> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 ind)
(ensures
(let i = ind / Lib.IntTypes.bits t in
Lib.IntTypes.v b.[ i ] < Prims.pow2 (ind % Lib.IntTypes.bits t) /\
Hacl.Spec.Bignum.Definitions.bn_v b ==
Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b 0 i) +
Prims.pow2 (i * Lib.IntTypes.bits t) * Lib.IntTypes.v b.[ i ] /\
Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b (i + 1) len) = 0)) | {
"end_col": 27,
"end_line": 135,
"start_col": 42,
"start_line": 115
} |
FStar.Pervasives.Lemma | val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) | val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i = | false | null | true | let pbits = bits t in
calc ( == ) {
bn_v c / pow2 (pbits * i);
( == ) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
( == ) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i))
(pow2 (pbits * i))
(bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
( == ) { (bn_eval_bound (slice c 0 i) i;
Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i))) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Prims.squash",
"FStar.Math.Lemmas.division_addition_lemma",
"FStar.Math.Lemmas.small_division_lemma_1",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Lib.IntTypes.bits"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) | [] | Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Lib.bn_div_pow2 b i) ==
Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 (Lib.IntTypes.bits t * i)) | {
"end_col": 60,
"end_line": 201,
"start_col": 35,
"start_line": 190
} |
FStar.Pervasives.Lemma | val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) | val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[ i ] >>. size j in
calc ( == ) {
v b.[ i ] / pow2 j;
( == ) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
( == ) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
( == ) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
( == ) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Calc.calc_finish",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_index",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.euclidean_div_axiom",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.size"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) | [] | Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < len}
-> FStar.Pervasives.Lemma
(ensures
(let i = ind / Lib.IntTypes.bits t in
let j = ind % Lib.IntTypes.bits t in
Lib.IntTypes.v (b.[ i ] >>. Lib.IntTypes.size j) ==
Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 ind % Prims.pow2 (Lib.IntTypes.bits t - j))
) | {
"end_col": 58,
"end_line": 65,
"start_col": 44,
"start_line": 45
} |
FStar.Pervasives.Lemma | val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
() | val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 = | false | null | true | let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let p1, p2 =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len))
len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k: nat{k < i}).
(if v bit = 1
then p1.[ k ] == b2.[ k ] /\ p2.[ k ] == b1.[ k ]
else p1.[ k ] == b1.[ k ] /\ p2.[ k ] == b2.[ k ])) /\
(forall (k: nat{i <= k /\ k < len}). p1.[ k ] == b1.[ k ] /\ p2.[ k ] == b2.[ k ]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[ i ] p2.[ i ];
cswap2_f #t #len mask i (p1, p2))
(b1, b2)
in
assert (if v bit = 1
then
(eq_intro p1 b2;
p1 == b2)
else
(eq_intro p1 b1;
p1 == b1));
assert (if v bit = 1
then
(eq_intro p2 b1;
p2 == b1)
else
(eq_intro p2 b2;
p2 == b2));
() | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.unit",
"Prims._assert",
"Prims.op_Equality",
"Prims.int",
"Prims.eq2",
"Lib.Sequence.eq_intro",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Prims.l_and",
"FStar.Pervasives.Native.Mktuple2",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.Bignum.Lib.cswap2_f",
"Prims.l_Forall",
"Prims.nat",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.LoopCombinators.repeati_inductive",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Lib.lemma_cswap2_step",
"Lib.LoopCombinators.unfold_repeati",
"Prims.op_Addition",
"Lib.LoopCombinators.eq_repeati0",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.uint"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) | [] | Hacl.Spec.Bignum.Lib.cswap2_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bit: Hacl.Spec.Bignum.Definitions.limb t {Lib.IntTypes.v bit <= 1} ->
b1: Hacl.Spec.Bignum.Definitions.lbignum t len ->
b2: Hacl.Spec.Bignum.Definitions.lbignum t len
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ p1 p2 = _ in
(match Lib.IntTypes.v bit = 1 with
| true -> p1 == b2 /\ p2 == b1
| _ -> p1 == b1 /\ p2 == b2)
<:
Type0)
<:
Type0)) | {
"end_col": 4,
"end_line": 309,
"start_col": 36,
"start_line": 290
} |
FStar.Pervasives.Lemma | val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t)) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_bits_limb_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
bn_get_ith_bit_aux_lemma n ind;
assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j));
if j = 0 then () else begin
bn_get_bits_limb_aux_lemma n ind;
if i + 1 < nLen then begin
let p2 = n.[i + 1] <<. (size (pbits - j)) in
calc (==) {
v p2 % pow2 (pbits - j);
(==) { }
v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits }
v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j);
(==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) }
0;
};
let p3 = p1 |. p2 in
logor_disjoint p1 p2 (pbits - j);
assert (v p3 == v p1 + v p2);
bn_eval_index n (i + 1);
assert (res == v p1 + v p2);
assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end
else begin
bn_eval_bound n nLen;
assert (bn_v n < pow2 (nLen * pbits));
Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits);
Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits);
assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0);
assert_norm (pow2 0 = 1);
assert (res == v p1)
end
end | val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
let bn_get_bits_limb_lemma #t #nLen n ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[ i ] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
bn_get_ith_bit_aux_lemma n ind;
assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j));
if j = 0
then ()
else
(bn_get_bits_limb_aux_lemma n ind;
if i + 1 < nLen
then
let p2 = n.[ i + 1 ] <<. (size (pbits - j)) in
calc ( == ) {
v p2 % pow2 (pbits - j);
( == ) { () }
v n.[ i + 1 ] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j);
( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[ i + 1 ] * pow2 (pbits - j))
(pbits - j)
pbits }
v n.[ i + 1 ] * pow2 (pbits - j) % pow2 (pbits - j);
( == ) { Math.Lemmas.multiple_modulo_lemma (v n.[ i + 1 ]) (pow2 (pbits - j)) }
0;
};
let p3 = p1 |. p2 in
logor_disjoint p1 p2 (pbits - j);
assert (v p3 == v p1 + v p2);
bn_eval_index n (i + 1);
assert (res == v p1 + v p2);
assert (ind / bits t + 1 < nLen && 0 < ind % bits t)
else
(bn_eval_bound n nLen;
assert (bn_v n < pow2 (nLen * pbits));
Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits);
Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits);
assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0);
assert_norm (pow2 0 = 1);
assert (res == v p1))) | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"Prims._assert",
"Prims.op_AmpAmp",
"Prims.op_Modulus",
"Prims.unit",
"Prims.eq2",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Definitions.bn_eval_index",
"Lib.IntTypes.logor_disjoint",
"Prims.op_Subtraction",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Bar_Dot",
"FStar.Calc.calc_finish",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"FStar.Math.Lemmas.multiple_modulo_lemma",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.size",
"FStar.Pervasives.assert_norm",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Math.Lemmas.pow2_minus",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Lib.bn_get_bits_limb_aux_lemma",
"Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma",
"Lib.IntTypes.op_Greater_Greater_Dot"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t
let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[i] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in
p2
val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
let bn_get_bits_limb_aux_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
calc (==) {
bn_v n / pow2 ind % pow2 pbits;
(==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) }
res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j);
(==) { bn_get_ith_bit_aux_lemma n ind }
res / pow2 (pbits - j) * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) }
bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_plus ind (pbits - j) }
bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.euclidean_division_definition ind pbits }
bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) }
bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.distributivity_add_left i 1 pbits }
bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) }
bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1;
}
val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t)) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_bits_limb_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t)) | [] | Hacl.Spec.Bignum.Lib.bn_get_bits_limb_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen ->
ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen}
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_bits_limb n ind) ==
Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ind % Prims.pow2 (Lib.IntTypes.bits t)) | {
"end_col": 5,
"end_line": 500,
"start_col": 43,
"start_line": 463
} |
FStar.Pervasives.Lemma | val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_get_bits_limb_aux_lemma #t #nLen n ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
calc (==) {
bn_v n / pow2 ind % pow2 pbits;
(==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) }
res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j);
(==) { bn_get_ith_bit_aux_lemma n ind }
res / pow2 (pbits - j) * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) }
bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_plus ind (pbits - j) }
bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.euclidean_division_definition ind pbits }
bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1;
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) }
bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.distributivity_add_left i 1 pbits }
bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) }
bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1;
} | val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
let bn_get_bits_limb_aux_lemma #t #nLen n ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[ i ] >>. size j in
let res = bn_v n / pow2 ind % pow2 pbits in
calc ( == ) {
bn_v n / pow2 ind % pow2 pbits;
( == ) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) }
(res / pow2 (pbits - j)) * pow2 (pbits - j) + res % pow2 (pbits - j);
( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
(res / pow2 (pbits - j)) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j);
( == ) { bn_get_ith_bit_aux_lemma n ind }
(res / pow2 (pbits - j)) * pow2 (pbits - j) + v p1;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits }
(bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j) * pow2 (pbits - j) + v p1;
( == ) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) }
(bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j) * pow2 (pbits - j) + v p1;
( == ) { Math.Lemmas.pow2_plus ind (pbits - j) }
(bn_v n / pow2 (ind + pbits - j) % pow2 j) * pow2 (pbits - j) + v p1;
( == ) { Math.Lemmas.euclidean_division_definition ind pbits }
(bn_v n / pow2 (i * pbits + pbits) % pow2 j) * pow2 (pbits - j) + v p1;
( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits))
pbits
(pbits - j) }
(bn_v n / pow2 (i * pbits + pbits)) * pow2 (pbits - j) % pow2 pbits + v p1;
( == ) { Math.Lemmas.distributivity_add_left i 1 pbits }
(bn_v n / pow2 ((i + 1) * pbits)) * pow2 (pbits - j) % pow2 pbits + v p1;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits))
(pow2 (pbits - j))
(pow2 pbits) }
(bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits) * pow2 (pbits - j) % pow2 pbits + v p1;
} | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.size"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
}
///
/// % pow2 and / pow2
///
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i =
slice b i len
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in
calc (==) {
bn_v c / pow2 (pbits * i);
(==) { bn_eval_split_i c i }
(bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i);
(==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) }
bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len);
(==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) }
bn_v (slice c i len);
};
assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in
calc (==) {
bn_v a % pow2 (pbits * i);
(==) { bn_eval_split_i a i }
(bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i);
(==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) }
(bn_v (slice a 0 i)) % pow2 (pbits * i);
(==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) }
bn_v (slice a 0 i);
}
///
/// Conditional swap
///
//the same as in curve25519
val lemma_cswap2_step:
#t:limb_t
-> bit:limb t{v bit <= 1}
-> p1:limb t
-> p2:limb t ->
Lemma
(let mask = uint #t 0 -. bit in
let dummy = mask &. (p1 ^. p2) in
let p1' = p1 ^. dummy in
let p2' = p2 ^. dummy in
if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in
assert (v bit == 0 ==> v mask == 0);
assert (v bit == 1 ==> v mask == pow2 (bits t) - 1);
let dummy = mask &. (p1 ^. p2) in
logand_lemma mask (p1 ^. p2);
assert (v bit == 1 ==> v dummy == v (p1 ^. p2));
assert (v bit == 0 ==> v dummy == 0);
let p1' = p1 ^. dummy in
assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0));
logxor_lemma p1 p2;
let p2' = p2 ^. dummy in
logxor_lemma p2 p1
val cswap2_f:
#t:limb_t
-> #len:size_nat
-> mask:limb t
-> i:nat{i < len}
-> tuple2 (lbignum t len) (lbignum t len) ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[i] ^. p2.[i]) in
let p1 = p1.[i] <- p1.[i] ^. dummy in
let p2 = p2.[i] <- p2.[i] ^. dummy in
(p1, p2)
val cswap2:
#t:limb_t
-> #len:size_nat
-> bit:limb t
-> b1:lbignum t len
-> b2:lbignum t len ->
tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
val cswap2_lemma:
#t:limb_t
-> #len:size_nat
-> bit:limb t{v bit <= 1}
-> b1:lbignum t len
-> b2:lbignum t len ->
Lemma (let (p1, p2) = cswap2 bit b1 b2 in
(if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in
Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2);
let (p1, p2) =
Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len
(fun i (p1, p2) ->
(p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\
(forall (k:nat{k < i}).
(if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\
(forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k]))
(fun i (p1, p2) ->
Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i;
lemma_cswap2_step bit p1.[i] p2.[i];
cswap2_f #t #len mask i (p1, p2)) (b1, b2) in
assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1));
assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2));
//eq_intro p1 (if v bit = 1 then b2 else b1);
//eq_intro p2 (if v bit = 1 then b1 else b2);
()
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
val bn_get_top_index_f:
#t:limb_t
-> #len:size_nat
-> b:lbignum t len
-> i:nat{i < len}
-> priv:bn_get_top_index_t len i ->
bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[i] (zeros t SEC) in
if v mask = 0 then i else priv
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len ->
Lemma (let ind = bn_get_top_index #t #len b in
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0;
let res =
Loops.repeati_inductive #size_nat len
(fun i priv ->
priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\
priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0))
(fun i priv ->
Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i;
let mask = eq_mask b.[i] (zeros t SEC) in
eq_mask_lemma b.[i] (zeros t SEC);
assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0);
let res = if v mask = 0 then i else priv in
res) 0 in
()
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma
(requires
ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
(ensures
bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in
assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0);
bn_eval_split_i b (ind + 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len));
eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0));
bn_eval_zeroes #t (len - ind - 1) (len - ind - 1);
assert (bn_v b == bn_v (slice b 0 (ind + 1)));
bn_eval_split_i (slice b 0 (ind + 1)) ind;
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1)));
bn_eval1 (slice b ind (ind + 1));
assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
val bn_low_bound_bits:
#t:limb_t
-> #len:size_pos{bits t * len <= max_size_t}
-> b:lbignum t len ->
res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma
(requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1)
(ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in
bn_get_top_index_lemma #t #len b;
bn_get_top_index_eval_lemma #t #len b ind;
assert (pow2 (bn_low_bound_bits b) <= bn_v b);
if ind = 0 then
assert_norm (pow2 0 = 1)
else
Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
val bn_get_bits_limb:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
limb t
let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in
let j = ind % bits t in
let p1 = n.[i] >>. size j in
let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in
p2
val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_get_bits_limb_aux_lemma:
#t:limb_t
-> #nLen:size_nat
-> n:lbignum t nLen
-> ind:size_nat{ind / bits t < nLen} ->
Lemma (
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[i] >>. size j in
bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) | [] | Hacl.Spec.Bignum.Lib.bn_get_bits_limb_aux_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen ->
ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen}
-> FStar.Pervasives.Lemma
(ensures
(let pbits = Lib.IntTypes.bits t in
let i = ind / pbits in
let j = ind % pbits in
let p1 = n.[ i ] >>. Lib.IntTypes.size j in
Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ind % Prims.pow2 pbits ==
(Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ((i + 1) * pbits) % Prims.pow2 pbits) *
Prims.pow2 (pbits - j) %
Prims.pow2 pbits +
Lib.IntTypes.v p1)) | {
"end_col": 5,
"end_line": 453,
"start_col": 47,
"start_line": 424
} |
FStar.Pervasives.Lemma | val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": "BB"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_set_ith_bit_lemma #t #len input ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[i] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[i] <- input.[i] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[i]) b j;
assert (v inp.[i] == v input.[i] + v b);
calc (==) {
bn_v inp;
(==) { bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) }
bn_v (slice inp 0 (i + 1));
(==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
(==) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i];
(==) { }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b);
(==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b;
(==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind;
(==) { }
bn_v input + pow2 ind;
} | val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind = | false | null | true | let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
bn_lt_pow2_index_lemma #t #len input ind;
assert (v input.[ i ] < pow2 j);
let b = uint #t 1 <<. size j in
let inp = input.[ i ] <- input.[ i ] |. b in
FStar.Math.Lemmas.pow2_lt_compat pbits j;
FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits);
assert (v b == pow2 j);
logor_disjoint (input.[ i ]) b j;
assert (v inp.[ i ] == v input.[ i ] + v b);
calc ( == ) {
bn_v inp;
( == ) { (bn_eval_split_i #t #len inp (i + 1);
bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1)) }
bn_v (slice inp 0 (i + 1));
( == ) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i }
bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1));
( == ) { bn_eval1 (slice inp i (i + 1)) }
bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[ i ];
( == ) { bn_eval_extensionality_j input inp i }
bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[ i ];
( == ) { () }
bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[ i ] + v b);
( == ) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[ i ]) (v b) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[ i ] + pow2 (i * pbits) * v b;
( == ) { (Math.Lemmas.pow2_plus (i * pbits) j;
Math.Lemmas.euclidean_division_definition ind pbits) }
bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[ i ] + pow2 ind;
( == ) { () }
bn_v input + pow2 ind;
} | {
"checked_file": "Hacl.Spec.Bignum.Lib.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Lib.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.IntTypes.bits",
"FStar.Calc.calc_finish",
"Prims.nat",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Addition",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Hacl.Spec.Bignum.Definitions.limb",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Prims.squash",
"Hacl.Spec.Bignum.Definitions.bn_eval1",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.Math.Lemmas.pow2_plus",
"Prims._assert",
"Prims.int",
"Lib.IntTypes.logor_disjoint",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.op_GreaterThan",
"FStar.Math.Lemmas.modulo_lemma",
"FStar.Math.Lemmas.pow2_lt_compat",
"Lib.Sequence.lseq",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logor",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.op_LessThanOrEqual",
"Prims.l_imp",
"Prims.op_disEquality",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.uint",
"Lib.IntTypes.size",
"Hacl.Spec.Bignum.Lib.bn_lt_pow2_index_lemma",
"Prims.op_Modulus"
] | [] | module Hacl.Spec.Bignum.Lib
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BSeq = Lib.ByteSequence
module Loops = Lib.LoopCombinators
module BB = Hacl.Spec.Bignum.Base
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Get and set i-th bit of a bignum
///
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} ->
Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in
let tmp2 = tmp1 &. uint #t 1 in
mod_mask_lemma tmp1 1ul;
assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1));
assert (v tmp2 == v a / pow2 i % 2)
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
limb_get_ith_bit input.[i] j
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} ->
Lemma (let i = ind / bits t in let j = ind % bits t in
v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = b.[i] >>. size j in
calc (==) {
v b.[i] / pow2 j;
(==) { bn_eval_index b i }
(bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits }
(bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j);
(==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) }
(bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j);
(==) { Math.Lemmas.pow2_plus (pbits * i) j }
(bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j);
(==) { Math.Lemmas.euclidean_div_axiom ind pbits }
(bn_v b / pow2 ind) % pow2 (pbits - j);
};
assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} ->
Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
let res = limb_get_ith_bit b.[i] j in
limb_get_ith_bit_lemma b.[i] j;
calc (==) {
v b.[i] / pow2 j % 2;
(==) { bn_get_ith_bit_aux_lemma b ind }
(bn_v b / pow2 ind) % pow2 (pbits - j) % 2;
(==) { assert_norm (pow2 1 = 2);
Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) }
(bn_v b / pow2 ind) % 2;
};
assert (v res == bn_v b / pow2 ind % 2)
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in
let j = ind % bits t in
let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in
inp
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma
(requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c)
(ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c;
assert ((a + b * pow2 c) / pow2 c < pow2 d);
Math.Lemmas.lemma_div_plus a b (pow2 c);
assert (a / pow2 c + b < pow2 d);
Math.Lemmas.small_division_lemma_1 a (pow2 c)
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma
(requires bn_v b < pow2 ind)
(ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\
bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\
bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in
let i = ind / pbits in
let j = ind % pbits in
Math.Lemmas.euclidean_division_definition ind (pbits);
assert (bn_v b < pow2 (i * pbits + j));
Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j);
assert (bn_v b < pow2 (i * pbits + pbits));
bn_eval_split_i #t #len b (i + 1);
bn_eval_bound (slice b 0 (i + 1)) (i + 1);
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0;
assert (bn_v b == bn_v (slice b 0 (i + 1)));
bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i;
bn_eval1 (slice b i (i + 1));
assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]);
bn_eval_bound #t #i (slice b 0 i) i;
bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j;
assert (v b.[i] < pow2 j)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) | false | false | Hacl.Spec.Bignum.Lib.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma
(requires bn_v b < pow2 i)
(ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) | [] | Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Hacl.Spec.Bignum.Definitions.lbignum t len ->
i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len}
-> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 i)
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Lib.bn_set_ith_bit b i) ==
Hacl.Spec.Bignum.Definitions.bn_v b + Prims.pow2 i) | {
"end_col": 3,
"end_line": 176,
"start_col": 44,
"start_line": 142
} |
Subsets and Splits